Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Ansuini, Caterina (2008) Reaching beyond grasp. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

A skill fundamental to human behaviour is our ability to interact with objects in the environment. One of such skills which has received considerable attention from researchers is grasping behaviour. The investigation of grasping has been largely stimulated by the work of Marc Jeannerod (1981; 1984). Jeannerod's pioneering work led to a surge in research on human prehension, some of it looking at the relationship between grasping parameters and object's properties including size and position, but much of it dedicated to the investigation of other properties, including fragility, size of the contact surface, texture and weight. Of interest for the present thesis is that an important object's feature such as shape, and how this feature influence prehension, has so far received little attention. A possible reason behind such lack of interest may lay in the nature of the measure chiefly utilized for describing grasping kinematics, i.e. the maximum distance between the index finger and thumb. Although the use of this measure simplifies the study of a complex biomechanical system as the hand making its behavior more easily quantifiable, it also prevents the investigation of factors to which the hand "reacts" only through such complexity. The shape of the to-be-grasped object might be one of these factors. Support to this idea comes from recent evidence showing that, when looking at all digits rather than two-digits kinematics, the effect of object shape emerges, i.e., hand shaping phenomenon (Santello and Soechting, 1998).
With this in mind, Chapter 1 provides the theoretical background for the experimental work included within the present thesis. Specifically it includes a critical discussion concerned with the comparison between the "multi" and the "two-digits" approach and it highlights how the investigation of the relationship between object shape and hand shaping has the potential to shed further light on how hands prepare to grasping. The following chapter (Chapter 2) provides a description of the methods and the technical aspects which are common to all the experiments included within the present thesis. Then, the description of the experimental work initiates in Chapter 3. Here I report on an experiment aimed at investigating whether and how a sudden and unexpected change in object shape affects hand posture while reaching towards an object. The results of this study suggest that the object's shape perturbation does not disrupt the hand shaping phenomenon. The experiment reported in Chapter 4 considers the processes of selection-for-action by looking at the effects that distractor objects, of a similar or a different shape than the target object, may have on hand shaping. Regardless the shape of the distractor object, its presence affects hand shaping in terms of fingers' abduction angles, but not fingers' angular excursions. The grasping action is often followed by another action (e.g. pass the object to another person, placing it on a shelf). The effects that the implicit demands embedded in a "second" action on the kinematics of the "first" action are reported in two experiments described in Chapters 5 and 6. The first of these two experiments was aimed to test whether the hand posture might modulate accordingly to the accuracy constraints dictated by the task to be performed after the grasping of the very same object (Chapter 5). Results from this experiment show that the hand does not strictly mirrors the shape of the to-be-grasped object, but it is sensitive to the accuracy requirements imposed by the end-goal. The experiment described in Chapter 6 goes a step forward by manipulating not simply the accuracy requirements of the task following grasping, but its functional nature. In this experiment subjects were requested to reach towards and grasp the same object as to perform different actions. The invariance of the shape of the target object did not lead to an invariable hand posture while reaching towards it. The hand was shaped according to the functional goal of the action. The experiment reported in Chapter 7 was designed to address whether the time intervening between the reach-to-grasp phase and the subsequent phase, leading to the action goal, plays a role in action planning and execution. Overall the results indicated that the presence of an interruption between object grasping and the following action led the central nervous system to plan and control hand movement as if no other actions had to be performed. Finally, in Chapter 8, I attempt to provide a critical discussion of the reported results. These results are discussed in light of current theories proposed to explain how the central nervous system controls a complex motor behaviour such as prehension and how contextual information may influence such control.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Castiello, Umberto
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE PSICOLOGICHE > PERCEZIONE E PSICOFISICA
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Parole chiave (italiano / inglese):reach-to-grasp, kinematics, motor control
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/02 Psicobiologia e psicologia fisiologica
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia Generale
Codice ID:401
Depositato il:10 Ott 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Allport, A. (1987). Selection for action: Some behavioral and neurophysiological considerations of attention and action. In: H. Heuer & A. F. Sanders (Eds.), Perspectives on perception and action (pp. 395-419). Hillsdale, NJ: Erlbaum. Cerca con Google

2. Ansuini, C, Giosa, L., Turella, L., Altoè, G., & Castiello, U. (2007). An object for an action, the same object for other actions: effect on hand shaping. Experimental Brain Research. Published on-line. Cerca con Google

3. Ansuini, C., Santello, M., Massaccesi, S., & Castiello, U. (2006). Effects of end-goal on hand shaping. Journal of Neurophysiology, 95, 2456-2465. Cerca con Google

4. Arbib, M. A., Iberall, T., & Lyons, D. (1985). Coordinated control programs for movements of the hand. Experimental Brain Research, 10, 111-129. Cerca con Google

5. Armbrüster, C., & Spijkers, W. (2006). Movement planning in prehension: do intended actions influence the initial reach and grasp movement? Motor Control, 10, 311-329. Cerca con Google

6. Biegstraaten, M., Smeets, J. B., & Brenner, E. (2003). The influence of obstacles on the speed of grasping. Experimental Brain Research, 149, 530-534. Cerca con Google

7. Bingham, G., Iberall, T., & Arbib, M. A. (1986). Opposition space as a structuring concept for the analysis of skilled hand movements. Experimental Brain Research Series, 15, 159-173. Cerca con Google

8. Birznieks, I., Jenmalm, P., Goodwin, A. W., & Johansson, R. S. (2001). Encoding of direction of fingertip forces by human tactile afferents. Journal of Neuroscience, 21, 8222-8237. Cerca con Google

9. Blake, A. (1992). Computational modelling of hand-eye coordination. Philosophical Transactions of the Royal Society of London, 337, 351-360. Cerca con Google

10. Blakemore, S. J., Wolpert, D. M., & Frith, C. D. (1998). Central cancellation of self-produced tickle sensation. Nature Neuroscience, 1, 635-640. Cerca con Google

11. Bock, O., & Jungling, S. (1999). Reprogramming of grip aperture in a double - step virtual grasping paradigm. Experimental Brain Research, 125, 61-66. Cerca con Google

12. Bonfiglioli, C., & Castiello, U. (1998). Dissociation of covert and overt spatial attention during prehension movements: selective interference effects. Perception and Psychophysics, 60, 1426-1440. Cerca con Google

13. Bootsma, R. J., Marteniuk, R. G., Mackenzie, C. L., & Zaal, F. T. J. M. (1994). The speed-accuracy trade-off in manual prehension: effects of movement amplitude, object size and object width on kinematic characteristics. Experimental Brain Research, 98, 535-41. Cerca con Google

14. Castiello, U. (1996). Grasping a fruit: selection for action. Journal of Experimental Psychology: Human Perception and Performance, 22, 582-603. Cerca con Google

15. Castiello, U. (1998). Attentional coding for three-dimensional objects and two-dimensional shapes. Differential interference effects. Experimental Brain Research, 123, 289-297. Cerca con Google

16. Castiello, U. (1999). Mechanism of selection for the control of hand action. Trends in Cognitive Sciences, 3, 264-271 Cerca con Google

17. Castiello, U. (2005). The neuroscience of grasping. Nature Review Neuroscience, 6, 726-36. Cerca con Google

18. Castiello, U., Bennett, K. M., & Chambers, H. (1998). Reach to grasp: the response to a simultaneous perturbation of object position and size. Experimental Brain Research, 120, 31-40. Cerca con Google

19. Castiello, U., Bennett, K. M., & Paulignan, ,Y. (1992). Does the type of prehension influence the kinematics of reaching? Behavioural Brain Research, 50, 7-15. Cerca con Google

20. Castiello, U., Bennett, K. M., & Stelmach, G. E. (1993). Reach to grasp: the natural response to perturbation of object size. Experimental Brain Research, 94, 163-178. Cerca con Google

21. Chang, S. W. C., & Abrams, R. A. (2004). Hand movements deviate toward distracters in the absence of response competition. The Journal of General Psychology, 131, 328-344. Cerca con Google

22. Chieffi, S., Fogassi, L., Gallese, V., & Gentilucci, M. (1992). Prehension movements directed towards approaching objects: Influence of stimulus velocity on the transport and the grasp components. Neuropsychologia, 30, 877-897. Cerca con Google

23. Chieffi, S., & Gentilucci, M. (1993). Coordination between the transport and the grasp components during prehension movements. Experimental Brain Research, 94, 471-477. Cerca con Google

24. Cohen, R. G., & Rosenbaum, D. A. (2004). Where grasps are made reveals how grasps are planned: generation and recall of motor plans. Experimental Brain Research, 157, 486-495. Cerca con Google

25. Cole, K. J., & Abbs, J. H. (1986). Coordination of three - joint digit movements for rapid, finger - thumb grasp. Journal of Neurophysiology, 55, 1407-1423. Cerca con Google

26. Colebatch, J. G., & Gandevia, S. C. (1989). The distribution of muscular weakness in upper motor neuron lesions affecting the arm. Brain, 112, 749-763. Cerca con Google

27. Danckert, J. A., Sharif, N., Haffender, A. M., Schiff, K. C., & Goodale, M. A. (2002). A temporal analysis of grasping in the Ebbinghaus illusion: planning versus online control. Experimental Brain Research, 144, 275-280. Cerca con Google

28. Davidson, P. R., & Wolpert, D. M. (2004). Scaling down motor memories: de-adaptation after motor learning. Neuroscience Letters, 370, 102-107. Cerca con Google

29. Deubel, H., Schneider, W. X., & Paprotta, I. (1998). Selective dorsal and ventral processing: evidence for a common attentional mechanism in reaching and perception. Visual Cognition, 5, 81-107. Cerca con Google

30. Eastough, D., & Edwards, M. G. (2007). Movement kinematics in prehension are affected by grasping objects of different mass. Experimental Brain Research, 176, 193-198. Cerca con Google

31. Fischer, M. H., & Adam, J. (2001). Distractor effect on pointing: the role of spatial layout. Experimental Brain Research, 136, 507-513. Cerca con Google

32. Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of a movement. Journal of Experimental Psychology, 47, 381-91. Cerca con Google

33. Fikes, T. G., Klatsky, R. L., & Lederman, S. J. (1994). Effects of object texture on precontact movement time in human prehension. Journal of Motor Behavior, 26, 325-332. Cerca con Google

34. Flanagan, J. R., Bowman, M. C., & Johansson, R. S. (2006). Control strategies in object manipulation tasks. Current Opinion in Neurobiology, 16, 650-659. Cerca con Google

35. Flanagan, J. R., Nakano, E., Imamizu, H., Osu, R., Yoshioka, T., & Kawato, M. (1999). Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. Journal of Neuroscience, 19, RC34 (1-5). Cerca con Google

36. Frak, V., Paulignan, Y., & Jeannerod, M. (2001). Orientation of the opposition axis in mentally simulated grasping. Experimental Brain Research, 136, 120-127. Cerca con Google

37. Galea, M. P., Castiello, U., & Dalwood, N. (2001). Thumb invariance during prehension movement: effect of object orientation. NeuroReport, 12, 2185-2187. Cerca con Google

38. Ganel, T., & Goodale, M. A. (2003). Visual control of action but not perception requires analytical processing of object shape. Nature, 426, 664-667. Cerca con Google

39. Gao, F., Latash, M. L., & Zatsiorsky, V. M. (2006). Maintaining rotational equilibrium during object manipulation: linear behavior of a highly non-linear system. Experimental Brain Research, 169, 519-531. Cerca con Google

40. Gentilucci, M., Castiello, U., Corradini, M. L., Scarpa, M., Umiltà, C. A., & Rizzolatti, G. (1991). Influence of different types of grasping on the transport component of prehension movements. Neuropsychologia, 29, 361-378. Cerca con Google

41. Gentilucci, M., Chieffi, S., Scarpa, M., & Castiello, U. (1992). Temporal coupling between transport and grasp components during prehension movements: Effects of visual perturbation. Behavioural Brain Research, 47, 71-82. Cerca con Google

42. Gentilucci, M., Negrotti, A., & Gangitano, M. (1997) Planning an action. Experimental Brain Research, 115, 116-128. Cerca con Google

43. Ghahramani, Z., & Wolpert, D. M. (1997). Modular decomposition in visuomotor learning. Nature, 386, 392-395. Cerca con Google

44. Goodale, M. A., Meenan, J. P., Buelthoff, H. H., Nicolle, D. A., Murphy, K. J., & Racicot, C. I. (1994). Separate neural pathways for the visual analysis of object shape in perception and prehension. Current Biology, 4, 604-610. Cerca con Google

45. Howard, L. A., & Tipper, S. P. (1997). Hand deviations away from visual cues: indirect evidence for inhibition. Experimental Brain Research, 113, 144-152. Cerca con Google

46. Hoff, B., & Arbib, M. A. (1993). Simulation of interaction of hand transport and preshape during visually guided reaching to perturbed targets. Journal of Motor Behavior, 25, 175-192. Cerca con Google

47. Hu, Y., Eagleson, R., & Goodale, M. A. (1999). The effects of delay on the kinematics of grasping. Experimental Brain Research, 126, 109-116. Cerca con Google

48. Iberall, T., & Fagg, A. H. (1996). Neural networks models for selecting hand shapes. In: Wing A. M., Haggard, P., & Flanagan, J. R. (Eds.) Hand and Brain (pp. 243 - 264). San Diego, CA: Academic Press. Cerca con Google

49. Jackson, S. R., Jackson, G. M., & Rosicky, J. (1995). Are non-relevant objects represented in working memory? The effect of non-target objects on reach and grasp kinematics. Experimental Brain Research, 102, 519-530. Cerca con Google

50. Jakobson, L. S., & Goodale, M. A. (1991). Factors affecting higher-order movement planning: a kinematic analysis of human prehension. Experimental Brain Research, 86, 199-208. Cerca con Google

51. Jeannerod, M. (1981). Intersegmental coordination during reaching at natural visual objects. In: J. Long, & A. Baddeley (Eds.), Attention and performance IX (pp. 153-169). Hilsdale, NJ: Lawrence Erlbaum Associates. Cerca con Google

52. Jeannerod, M. (1984). The timing of natural prehension movements. Journal of Motor Behavior, 16, 235-254. Cerca con Google

53. Jeannerod, M. (1986). The formation of finger grip during prehension: A cortically mediated visuomotor pattern. Behavioural Brain Research, 19, 99-116. Cerca con Google

54. Jeannerod, M. (1988). The neural and behavioural organization of goal-directed movements. Oxford: Clarendon Press. Cerca con Google

55. Jenmalm, P., Goodwin, A. W., & Johansson, R. S. (1998). Control of grasp stability when humans lift objects with different surface curvatures. Journal of Neurophysiology, 79, 1643-1652. Cerca con Google

56. Jerde, T. E., Soechting, J. F., & Flanders, M. (2003b). Biological constraints simplify the recognition of hand shapes. IEEE Transactions on. Bio-medical Engineering, 50, 265-269. Cerca con Google

57. Jerde, T. E., Soechting, J. F., & Flanders, M. (2003a). Coarticulation in fluent fingerspelling. Journal of Neuroscience, 15, 2383-2393. Cerca con Google

58. Johansson, R. S., Westling, G., Backstrom, A., & Flanagan, J. R. (2001). Eye-hand coordination in object manipulation. Journal of Neuroscience, 21, 6917-6932. Cerca con Google

59. Johansson, R. S., & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56, 550-564. Cerca con Google

60. Johansson, R. S., & Westling, G. (1987). Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Experimental Brain Research, 66, 141-154. Cerca con Google

61. Johnson-Frey, S. H., McCarty, M. E., & Keen, R. (2004). Reaching beyond spatial perception: effects of intended future actions on visually guided prehension. Visual Cognition, 11, 371-399. Cerca con Google

62. Kapandji, I. A. (1970). The Physiology of Joints. Upper Limb (2nd ed.). (Vol. 1, pp. 146-202). London: E and S Livingstone. Cerca con Google

63. Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9, 718-27. Cerca con Google

64. Keulen, R. F., Adam, J. J., Fischer, M. H., Kuipers, H., & Jolles, J. (2002). Selective reaching: evidence for multiple frames of reference. Journal of Experimental Psychology: Human Perception and Performance, 28, 515-526. Cerca con Google

65. Kinoshita, H., Kawai, S., & Ikuta, K. (1995). Contributions and co-ordination of individual fingers in multiple finger prehension. Ergonomics, 38, 1212-1230. Cerca con Google

66. Klapp, S. T., & Greim, D. M. (1979). Programmed control of aimed movements revisited: the role of target visibility and symmetry. Journal of Experimental Psychology: Human Perception and Performance, 5, 509-521. Cerca con Google

67. Kuhn, T. S. (1962). Revolutions as changes of world view. In: The Structure of Scientific Revolutions. (Eds. 3th pp. 111-136). Chicago: University of Chicago Press. Cerca con Google

68. Land, M., Mennie, N., & Rusted, J. (1999). The roles of vision and eye movements in the control of activities in daily living. Perception, 28, 1311-1328. Cerca con Google

69. Lemon, R. N. (1999). Neural control of dexterity: what has been achieved? Experimental Brain Research, 128, 6-12. Cerca con Google

70. Liberman, A. M. (1970). The grammars of speech and language. Cognitive Psychology, 1, 301-323. Cerca con Google

71. Lukos, J., Ansuini, C., & Santello, M. (2007). Choice of contact points during multi-digit grasping: Effect of predictability of object center of mass location. Journal of Neuroscience, 27, 3894-3903. Cerca con Google

72. Marteniuk, R. G., Leavitt, J. L., MacKenzie, C. L., & Athenes, S. (1990). Functional relationship between grasp and transport components in a prehension task. Human Movement Science, 9, 149-176. Cerca con Google

73. Marteniuk, R. G., MacKenzie, C. L., Jeannerod, M., Athenes, S., & Dugas, C. (1987). Constraints on human arm movement trajectories. Canadian Journal of Psychology, 41, 365-378. Cerca con Google

74. Marzke, M. W. (1994). Evolution. In: K. M. B. Bennett, & U. Castiello (Eds.), Insights into the Reach to Grasp Movement (pp. 19-35). Amsterdam: Elsevier Science. Cerca con Google

75. Mason, C. R., Gomez, J. E., & Ebner, T. J. (2001). Hand synergies during reach-to-grasp. Journal of Neurophysiology, 86, 2896-2910. Cerca con Google

76. Meegan, D. V., & Tipper, S. P. (1998). Reaching into cluttered visual environments: spatial and temporal influences of distracting objects. Quarterly Journal of Experimental Psychology A, 51, 225-249. Cerca con Google

77. Meulenbroek, R. G., Rosenbaum, D. A., Jansen, C., Vaughan, J., & Vogt, S. (2001) Multijoint grasping movements. Simulated and observed effects of object location, object size, and initial aperture. Experimental Brain Research, 138, 219-234. Cerca con Google

78. Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Networks, 9, 1265-1279. Cerca con Google

79. Napier, J. R. (1956). The prehensile movements of the human hand. Journal of Bone and Joint Surgery, British Volume, 38B, 902- 913. Cerca con Google

80. Napier, J. R. (1960). Studies of the hands of living primates. Proceedings of the Zoological Society of London, 134, 647-657. Cerca con Google

81. Paulignan, Y., Frak, V. G., Toni, I., & Jeannerod, M. (1997). Influence of object position and size on human prehension movements. Experimental Brain Research, 114, 226-234. Cerca con Google

82. Paulignan, Y., & Jeannerod, M. (1996). Prehension movements. The visuomotor channels hypoyhesis revisited. In A. M. Wing, P. Haggard, & R. Flanagan (Eds.), Hand and Brain : The Neurophysiology and Psychology of Hand movements. (pp. 265-282). San Diego: Academic Press. Cerca con Google

83. Paulignan, Y., Jeannerod, M., MacKenzie, C., & Marteniuk, R. (1991a). Selective perturbation of visual input during prehension movements. 2. The effects of changing object size. Experimental Brain Research, 87, 407-420. Cerca con Google

84. Paulignan, Y., MacKenzie, C., Marteniuk, R., & Jeannerod, M. (1991b). Selective perturbation of visual input during prehension movements. 1. The effects of changing object position. Experimental Brain Research, 83, 502-512. Cerca con Google

85. Paulignan, Y., MacKenzie, C., Marteniuk, R., & Jeannerod, M. (1990). The coupling of arm and finger movements during prehension. Experimental Brain Research, 79, 431-435. Cerca con Google

86. Pratt, J., & Abrams, R. A. (1994). Action-oriented inhibition: effects of distractors on movement planning and execution. Human Movement Science, 13, 245-254. Cerca con Google

87. Quaney, M. B., Nudo, R. J., & Cole, K. J. (2005). Can internal models of objects be utilized for different prehension tasks? Journal of Neurophysiology, 93, 2021-2027. Cerca con Google

88. Rosenbaum, D. A., & Jorgensen, M. J. (1992). Planning macroscopic aspects of manual control. Human Movement Science, 11, 61-69. Cerca con Google

89. Rosenbaum, D. A., Vaughan, J., Barnes, H. J., & Jorgensen, M. J. (1992). Time course of movement planning: selection of handgrips for object manipulation. Journal of Experimental Psychology. Learning, Memory, and Cognition, 18, 1058-1073. Cerca con Google

90. Rumelhart, D. E., & Norman, D. A. (1982). Simulating a skilled typist: a study of skilled cognitive - motor performance. Cognitive Science, 6, 1-36. Cerca con Google

91. Salimi, I., Hollender, I., Frazier, W., & Gordon, A. M. (2000). Specificity of internal representations underlying grasping. Journal of Neurophysiology, 84, 2390-2397. Cerca con Google

92. Santello, M., Flanders, M., & Soechting, J. F. (1998). Postural hand synergies for tool use. Journal of Neuroscience, 18, 10105-10115. Cerca con Google

93. Santello, M., Flanders, M., & Soechting, J. F. (2002). Patterns of hand motion during grasping and the influence of sensory guidance. Journal of Neuroscience, 22, 1426-35. Cerca con Google

94. Santello, M., & Soechting, J. F. (1998). Gradual molding of the hand to object contours. Journal of Neurophysiology, 79, 1307-1320. Cerca con Google

95. Savelsbergh, G. J., Whiting, H. T., & Bootsma, R. J. (1991). Grasping tau. Journal of Experimental Psychology: Human Perception and Performance, 17, 315-22. Cerca con Google

96. Savelsbergh, G. J. P., Steenbergen, B., & van der Kamp, J. (1996). The role of fragility information in the guidance of the precision grip. Human Movement Science, 15, 115-112. Cerca con Google

97. Schieber, M. H. (1990). How might the motor cortex individuate movements? Trends in Neurosciences, 13, 440-445. Cerca con Google

98. Smeets, J. B., Hayhoe, M. M., & Ballard, D. H. (1996). Goal-directed arm movements change eye-head coordination. Experimental Brain Research, 109, 434-440. Cerca con Google

99. Smeets, J. B., & Brenner, E. (1999). A new view on grasping. Motor control, 3, 237-71. Cerca con Google

100. Soechting, J. F. (1984). Effect of target size on spatial and temporal characteristics of a pointing movement in man. Experimental Brain Research, 54, 121-132. Cerca con Google

101. Steenbergen, B., Marteniuk, R. G., & Kalbfleisch, L. E. (1995). Achieving coordination in prehension: Joint freezing and postural contributions. Journal of Motor Behavior, 27, 333-348 Cerca con Google

102. Stelmach, G. E., Castiello, U., & Jeannerod, M. (1994). Orienting the finger opposition space during prehension movements. Journal of Motor Behavior, 26, 178-186 Cerca con Google

103. Tipper, S. P., Howard, L. A., & Jackson, S. R. (1997). Selective reaching to grasp: evidence for distractor interference effects. Visual Cognition, 4, 1-38. Cerca con Google

104. Tipper, S. P., Lortie, C., & Baylis, G. C. (1992). Selective reaching: evidence for action-centered attention. Journal of Experimental Psychology: Human Perception and Performance, 18, 891-905. Cerca con Google

105. Tresilian, J. R. (1998). Attention in action or obstruction of movement? A kinematic analysis of avoidance behavior in prehension. Experimental Brain Research, 120, 352-368. Cerca con Google

106. Tubiana, R. (1981). Architecture and function of the hand. In: R. T. Tubiana (Ed.), The Hand. Saunders (pp. 19-93). Philadelphia. Cerca con Google

107. Ulloa, A., & Bullock, D. (2003). A neural network simulating human reach - to - grasp coordination by continuous updating of vector positioning commands. Neural Networks, 16, 1141-1160. Cerca con Google

108. Van Galen, G. P. (1984). Structural complexity of motor patterns: a study of reaction times movement times of hand written letters. Psychological Research, 46, 49-57. Cerca con Google

109. Weir, P., MacKenzie, C. L., Marteniuk, R. G., Cargoe, S. L., & Frazer, M. B. (1991a). The effects of object weight on the kinematics of prehension. Journal of Motor Behavior, 23, 192-204. Cerca con Google

110. Weir, P., MacKenzie, C. L., Marteniuk, R. G., & Cargoe, S. L. (1991b). Is object texture a constraint on human prehension?: kinematic evidence. Journal of Motor Behavior, 23, 205-210. Cerca con Google

111. Wing, A. M., & Fraser, C. (1983). The contribution of the thumb to reaching movements. Quarterly Journal of Experimental Psychology A, 35, 297-309. Cerca con Google

112. Wing, A. M., Turton, A., & Fraser, C. (1986). Grasp size and accuracy of approach in reaching. Journal of Motor Behavior, 18, 245-260. Cerca con Google

113. Winges, S. A., Weber, D. J., & Santello, M. (2003). The role of vision on hand preshaping during reach to grasp. Experimental Brain Research, 152, 489-498. Cerca con Google

114. Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3, 1212-1217. Cerca con Google

115. Wolpert D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11, 1317-1329. Cerca con Google

116. Wolpert, D. M., Goodbody, S. J., & Husain, M. (1998). Maintaining internal representations: the role of the human superior parietal lobe. Nature Neuroscience, 1, 529-533. Cerca con Google

117. Zaal, F. T., & Bootsma, R. J. (1993). Accuracy demands in natural prehension. Human Movement Science, 12, 339-345. Cerca con Google

118. Zatsiorsky, V. M., Gao, F., & Latash, M. L. (2003). Prehension synergies: effects of object geometry and prescribed torques. Experimental Brain Research, 148, 77-87. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record