Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Anselmi, Pasquale (2011) The Gain-Loss Model: A formal model for assessing learning processes. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi di Dottorato)
959Kb

Abstract (inglese)

The thesis presents the Gain-Loss Model, a formal model for assessing learning processes. The theoretical framework is knowledge space theory, which is a novel approach to the assessment of knowledge proposed by Doignon and Falmagne in 1985.
The Gain-Loss Model assesses the knowledge of students in the different steps of the learning process, and the effectiveness of educational interventions in promoting specific learning. The core element is represented by a skill multimap associating each problem with a collection of subsets of skills that are necessary and sufficient to solve it. The model is characterized by parameters which provide information relevant at different levels of didactic practice.
The model has been the subject of investigation at different levels. Its functioning has been analyzed under different conditions, and theoretical developments have been proposed for improving its informative power in practical applications. The investigations have been conducted through simulated studies and empirical applications.
The thesis presents the work completed on the model. On one hand, the theoretical development of the model itself, as well as some extensions of it, are described. On the other hand, the results of the simulation studies and the empirical applications are presented and discussed.

Abstract (italiano)

La tesi presenta il Gain-Loss Model, un modello formale per la valutazione degli interventi educativi. Il contesto teorico è la teoria degli spazi di conoscenza, che costituisce un approccio innovativo alla valutazione delle conoscenze proposto da Doignon e Falmagne nel 1985.
Il Gain-Loss Model valuta le conoscenze possedute dagli studenti nelle diverse fasi del processo educativo e l’efficacia degli interventi didattici nel promuovere l’acquisizione di specifiche abilità. L’elemento di base è rappresentato dalla definizione di una multimappa di abilità che associa ad ogni problema una collezione di sottoinsiemi di abilità necessarie e sufficienti per risolverlo. Il modello è caratterizzato da parametri che forniscono informazioni utili a diversi livelli della didattica.
Il modello è stato oggetto di analisi a diversi livelli. È stato studiato il suo funzionamento in diverse condizioni e sono stati proposti sviluppi teorici in grado di aumentarne l’utilità nelle applicazioni pratiche. Le analisi sono state condotte mediante studi simulati ed applicazioni empiriche.
La tesi presenta il lavoro condotto sul modello. Da una parte, viene descritto lo sviluppo teorico del modello e vengono proposte alcune estensioni dello stesso. Dall’altra, vengono presentati e discussi i risultati degli studi simulati e delle applicazioni empiriche.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Robusto, Egidio
Dottorato (corsi e scuole):Ciclo 23 > Scuole per il 23simo ciclo > SCIENZE PSICOLOGICHE > PSICOLOGIA SOCIALE E DELLA PERSONALITA
Data di deposito della tesi:NON SPECIFICATO
Anno di Pubblicazione:31 Gennaio 2011
Parole chiave (italiano / inglese):Knowledge space theory, skill multimap, learning process, learning object, formal model, knowledge assessment Teoria degli spazi di conoscenza, multimappa di abilità, processo di apprendimento, oggetto didattico, modello formale, valutazione delle conoscenze
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/03 Psicometria
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia Generale
Codice ID:4019
Depositato il:13 Lug 2011 09:32
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Agresti, A. (2002). Categorical data analysis, 2nd edition. New York, NY: Wiley. Cerca con Google

Agresti, A. (2007). An introduction to categorical data analysis, 2nd edition. New York, NY: Wiley. Cerca con Google

Agresti, A., & Lang, J. B. (1993). Quasy-symmetric latent class models, with application to rater agreement. Biometrics, 49, 131-139. Cerca con Google

Albert, D., & Held, T. (1994). Establishing knowledge spaces by systematical Cerca con Google

problem construction. In A. D. (Ed.), Knowledge structures (pp. 78-111). New York, NY: Springer-Verlag. Cerca con Google

Albert, D., & Lukas, J. (Eds.). (1999). Knowledge spaces: Theories, empirical research, applications. Mahwah, NJ: Lawrence Erlbaum. Cerca con Google

Anselmi, P., Stefanutti, L., & Robusto, E. (Submitted). Parameter identifiability and goodness of recovery in the Constrained Gain-Loss Model. Cerca con Google

Arminger, G., Clogg, C. C., & Sobel, M. E. (Eds.). (1995). Handbook of statistical modeling for the social and behavioral sciences. New York, NY: Plenum Press. Cerca con Google

Clogg, C. C. (1979). Some latent structure models for the analysis of Likert-type data. Social Sciences Research, 8, 287-301. Cerca con Google

Cosyn, E., & Thiéry, N. (2000). A practical procedure to build a knowledge structure. Journal of Mathematical Psychology, 44, 383-407. Cerca con Google

de la Torre, J. (2008). An empirically based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45, 343-362. Cerca con Google

de la Torre, J., & Douglas, J. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69, 333-353. Cerca con Google

de la Torre, J., & Douglas, J. (2008). Model evaluation and multiple strategies in cognitive diagnosis: An analysis of fraction subtraction data. Psychometrika, 73, 595-624. Cerca con Google

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological), 39(1), 1-38. Cerca con Google

DiBello, L. V., & Stout, W. (2007). Guest editors introduction and overview: IRT-based cognitive diagnostic models and related methods. Journal of Educational Measurement, 44, 285-291. Cerca con Google

Doignon, J.-P. (1994). Knowledge spaces and skill assignments. In G. H. Fisher & D. Laming (Eds.), Contributions to mathematical psychology, psychometrics and methodology (pp. 111-121). New York, NY: Springer-Verlag. Cerca con Google

Doignon, J.-P., & Falmagne, J.-C. (1985). Spaces for the assessment of knowledge. International Journal of Man-Machine Studies, 23, 175-196. Cerca con Google

Doignon, J.-P., & Falmagne, J.-C. (1999). Knowledge spaces. Berlin: Springer-Verlag. Cerca con Google

Dowling, C. E. (1993). On the irredundant generation of knowledge spaces. Journal of Mathematical Psychology, 37 (1), 49-62. Cerca con Google

Düntsch, I., & Gediga, G. (1995). Skills and knowledge structures. British Journal of Mathematical and Statistical Psychology, 48, 9-27. Cerca con Google

Falmagne, J.-C. (1989). A latent trait theory via a stochastic learning theory for a knowledge space. Psychometrika, 54 (2), 283-303. Cerca con Google

Falmagne, J.-C. (1993). Stochastic learning paths in a knowledge structure. Journal of Mathematical Psychology, 37, 489-512. Cerca con Google

Falmagne, J.-C. (1996). Errata to SLP. Journal of Mathematical Psychology, 40, 169-174. Cerca con Google

Falmagne, J.-C., Cosyn, E., Doignon, J.-P., & Thiéry, N. (2006). The assessment of knowledge, in theory and in practice. In B. Ganter & L. Kwuida (Eds.), Formal Concept Analysis, 4th International Conference, ICFCA 2006, Dresden, Germany, february 13-17, 2006, Lecture Notes in Artificial Intelligence (pp. 61-79). Berlin: Springer-Verlag. Cerca con Google

Falmagne, J.-C., & Doignon, J.-P. (1988a). A class of stochastic procedures for the assessment of knowledge. British Journal of Mathematical and Statistical Psychology, 41, 1-23. Cerca con Google

Falmagne, J.-C., & Doignon, J.-P. (1988b). A markovian procedure for assessing the state of a system. Journal of Mathematical Psychology, 32, 232-258. Cerca con Google

Falmagne, J.-C., & Doignon, J.-P. (2011). Learning spaces: Interdisciplinary applied mathematics. Berlin: Springer-Verlag. Cerca con Google

Falmagne, J.-C., Koppen, M., Villano, M., Doignon, J.-P., & Johannesen, L. (1990). Introduction to knowledge spaces: How to build, test, and search them. Psychological Review, 97 (2), 201-224. Cerca con Google

Falmagne, J.-C., & Lakshminarayan, K. (1994). Stochastic learning paths - Estimation and simulation. In G. H. Fisher & D. Laming (Eds.), Contributions to mathematical psychology, psychometrics and methodology (pp. 91-110). New York, NY: Springer-Verlag. Cerca con Google

Fiacco, A. V., & McCormick, G. P. (Eds.). (1990). Nonlinear programming: Sequential unconstrained minimization techniques. Philadelphia, PA: SIAM. Cerca con Google

Gediga, G., & Düntsch, I. (2002). Skill set analysis in knowledge structures. British Journal of Mathematical and Statistical Psychology, 55, 361-384. Cerca con Google

Haberman, S. (1979). Qualitative data analysis (Vols. 1, 2). New York, NY: Academic Press. Cerca con Google

Held, T., & Korossy, K. (1998). Data analysis as a heuristic for establishing theoretically founded item structures. Zeitschrift für Psychologie, 206 (2), 169-188. Cerca con Google

Heller, J., Levene, M., Keenoy, K., Albert, D., & Hockemeyer, C. (2007). Cognitive aspects of trails: A stochastic model linking navigation behaviour to the learner's cognitive state. In J. Schoonenboom, J. Heller, K. Keenoy, M. Levene, & M. Turcsanyi-Szabo (Eds.), Trails in education: Technologies that support navigational learning (pp. 119-146). Rotterdam: Sense Cerca con Google

Publisher. Cerca con Google

Heller, J., & Repitsch, C. (2008). Distributed skill functions and the meshing of knowledge structures. Journal of Mathematical Psychology, 52, 147-157. Cerca con Google

Heller, J., Steiner, C., Hockemeyer, C., & Albert, D. (2006). Competence-based knowledge structures for personalised learning. International Journal on E-Learning, 5, 75-88. Cerca con Google

Hockemeyer, C. (2003). Competence based adaptive e-learning in dynamic domains. In F. W. Hesse & Y. Tamura (Eds.), The joint workshop of cognition and learning through mediacommunication for advanced e-learning (jwcl) (pp. 79-82). Berlin. Cerca con Google

Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258-272. Cerca con Google

Kambouri, M., Koppen, M., Villano, M., & Falmagne, J.-C. (1994). Knowledge assessment: Tapping human expertise by the QUERY routine. International Journal of Human-Computer Studies, 40, 119-151. Cerca con Google

Koppen, M. (1993). Extracting human expertise for constructing knowledge spaces: An algorithm. Journal of Mathematical Psychology, 37, 1-20. Cerca con Google

Koppen, M., & Doignon, J.-P. (1990). How to build a knowledge space by querying an expert. Journal of Mathematical Psychology, 34, 311-331. Cerca con Google

Korossy, K. (1999). Modeling knowledge as competence and performance. In D. Albert & J. Lukas (Eds.), Knowledge spaces: Theories, empirical research, and applications (pp. 103-132). Mahwah: Lawrence Erlbaum Associates. Cerca con Google

Lakshminarayan, K., & Gilson, F. (1998). An application of a stochastic knowledge structure model. In C. E. Dowling, F. S. Roberts, & P. Theuns (Eds.), Recent progress in mathematical psychology, scientific psychology series (pp. 155-172). Mahwah: Lawrence Erlbaum Associates. Cerca con Google

Langeheine, R., Pannekoek, J., & van de Pol, F. (1996). Bootstrapping goodness-of-fit measures in categorical data analysis. Sociological Methods and Research, 24, 492-516. Cerca con Google

Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. Boston: Houghton Mill. Cerca con Google

Lindsay, B., Clogg, C. C., & Grego, J. (1991). Semiparametric estimation in the rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association, 86, 96-107. Cerca con Google

Lukas, J., & Albert, D. (1993). Knowledge assessment based on skill assignment and psychological task analysis. In G. Strube & K. F. Wender (Eds.), The cognitive psychology of knowledge (pp. 139-159). Amsterdam: Elsevier Science Publishers B.V. Cerca con Google

Macready, G. B., & Dayton, C. M. (1977). The use of probabilistic models in the assessment of mastery. Journal of Educational and Behavioral Statistics, 2, 99-120. Cerca con Google

Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64, 187-212. Cerca con Google

Masters, G. (1995). Validity of psychological assessment: Validation of inferences from persons' responses and performances as scientific inquiry into score meaning. American Psychologist, 50, 741-749. Cerca con Google

Messick, S. (1989). Validity. In R. Linn (Ed.), Educational measurement (pp. 13-103). New York, NY: Macmillian. Cerca con Google

Mislevy, R. J., & Gitomer, D. H. (1996). The role of probability-based inference in an intelligent tutoring system. User-Modeling and User-Adapted Interaction, 5, 253-282. Cerca con Google

Nichols, P., & Sugrue, B. (1999). The lack of fidelity between cognitively complex constructs and conventional test development practice. Educational Measurement: Issues and Practice, 18, 18-29. Cerca con Google

Pellegrino, J., Chudowsky, N., & Glaser, R. (Eds.). (2001). Knowing what students know: The science and design of educational assessment. Washington, DC: National Academy Press. Cerca con Google

Rabiner, L. R., & Juang, B. H. (1986). An introduction to hidden Markov models. IEEE Acoustics, Speech & Signal Processing, Magazine, 3, 4-16. Cerca con Google

Robusto, E., Stefanutti, L., & Anselmi, P. (2010). The Gain-Loss Model: A probabilistic skill multimap model for assessing learning processes. Journal of Educational Measurement, 47, 373-394. Cerca con Google

Rupp, A. A., & Templin, J. (2008). The effects of Q-matrix misspecification on parameter estimates and classification accuracy in the DINA model. Educational and Psychological Measurement, 68, 78-96. Cerca con Google

Sargin, A., & Ünlü, A. (2009). Inductive item tree analysis: Corrections, improvements, and comparisons. Mathematical Social Sciences, 58, 376-392. Cerca con Google

Schrepp, M. (1999a). Extracting knowledge structures from observed data. British Journal of Mathematical and Statistical Psychology, 52, 213-224. Cerca con Google

Schrepp, M. (1999b). On the empirical construction of implications between bi-valued test items. Mathematical Social Sciences, 38, 361-375. Cerca con Google

Schrepp, M. (2002). Explorative analysis of empirical data by boolean analysis of questionnaires. Zeitschrift für Psychologie, 210 (2), 99-109. Cerca con Google

Schrepp, M. (2003). A method for the analysis of hierarchical dependencies between items of a questionnaire. Methods of Psychological Research, 19, 43-79. Cerca con Google

Stefanutti, L. (2006). A logistic approach to knowledge structures. Journal of Mathematical Psychology, 50, 545-561. Cerca con Google

Stefanutti, L., Anselmi, P., & Robusto, E. (in press). Assessing learning processes with the Gain-Loss Model. Behavior Research Methods. Cerca con Google

Stefanutti, L., & Robusto, E. (2009). Recovering a probabilistic knowledge structure by constraining its parameter space. Psychometrika, 74, 83-96. Cerca con Google

Taagepera, M., Potter, F., Miller, G. E., & Lakshminarayan, K. (1997). Mapping Cerca con Google

students' thinking patterns by the use of the knowledge space theory. International Journal of Science Education, 19, 283-302. Cerca con Google

Van Leeuwe, J. F. J. (1974). Item tree analysis. Nederlands Tijdschrift voor de Psychologie, 29, 475-484. Cerca con Google

von Davier, M. (1997). Bootstrapping goodness-of-fit statistics for sparse categorical data: Results of a Monte Carlo study. Methods of Psychological Research, 2, 29-48. Cerca con Google

Wright, S. J. (Ed.). (1997). Primal-dual interior-point methods. Philadelphia, PA: SIAM. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record