Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Vagnoni, Cristina (2008) Algorithms for the computation of the joint spectral radius. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

The asymptotic behaviour of the solutions of a discrete linear dynamical system is related to the spectral radius R of its associated family F. In particular, a system is stable if R <= 1 and there exists an extremal norm for the family F.
This kind of systems is important for a large number of applications. In particular, we mention the stability analysis of numerical methods for ordinary differential equations.
In the last decades some algorithms have been proposed in order to find real extremal norms of polytope type in the case of finite families (see for example [BT79] and [GZ05]). However, recently it has been observed that it is more useful to consider complex polytope norms, which are norms whose unit ball is a balanced complex polytope (see for example [GWZ05] and [MiSa06]).
In this work, using the theory developed in [GZ07], we extend the algorithm for the construction (i.e. for the geometric representation) of the unit ball of real polytope norms to the complex space. In order to succeed in our purpose, we first needed to get a deeper theoretical knowledge of the balanced complex polytopes. However, due to the extreme increase in complexity of the geometry of such objects with the dimension n of the space, we have confined ourselves to face the two-dimensional case.
In particular, we have given original theoretical results on the geometry of two-dimensional balanced complex polytopes in order to present the first two efficient algorithms, one for the construction of a balanced complex polytope in the two-dimensional space and one for the computation of the complex polytope norm of a two-dimensional vector starting from the knowledge of the boundary of the corresponding unit ball.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Zennaro, Marino
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE MATEMATICHE > MATEMATICA COMPUTAZIONALE
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
More information:The results of the present dissertation will appear in some papers by C.Vagnoni and by C.Vagnoni and M.Zennaro.
Key Words:balanced complex polytopes, polytope norms, constructive algorithms
Settori scientifico-disciplinari MIUR:Area 01 - Scienze matematiche e informatiche > MAT/08 Analisi numerica
Struttura di riferimento:Dipartimenti > Dipartimento di Matematica
Codice ID:408
Depositato il:31 Oct 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. T. Bousch and J.Mairesse. Asymptotic height optimization for topical IFS, Tetris heaps and the finiteness conjecture. J. Amer. Math. Soc., 15:77-111, 2002. Cerca con Google

2. V.D. Blondel, J. Theys, and A.A. Vladimirov. An elementary counterexample to the finiteness conjecture. SIAM J. Matrix Anal. Appl., 24:963-970, 2003. Cerca con Google

3. M.A. Berger and Y. Wang. Bounded semigroups of matrices. Linear Algebra Appl., 166:21-27, 1992. Cerca con Google

4. I.Daubechies and J.C. Lagarias. Sets ofmatrices all infinite products ofwhich converge. Linear Algebra Appl., 161:227-263, 1992. Cerca con Google

5. H. Edelsbrunner. Algorithms in combinatorial geometry. EATCS Monographs on Theoretical Computer Science. Spring-Verlag, Heidelberg, 1987. Cerca con Google

6. L. Elsner. The generalized spectral-radius theorem: an analytic-geometric proof. Linear Algebra Appl., 220:151-159, 1995. Cerca con Google

7. G. Gripenberg. Computing the joint spectral radius. Linear Algebra Appl., 234:43-60, 1996. Cerca con Google

8. B. Grünbaum. Convex polytopes. John Wiley & Sons, London, 1967. Cerca con Google

9. N. Guglielmi, F. Wirth, and M. Zennaro. Complex polytope extremality results for families of matrices. SIAM J. Matrix Anal. Appl., 27:721-743, 2005. Cerca con Google

10. N. Guglielmi and M. Zennaro. On the zero-stability of variable stepsize multistep methods: the spectral radius approach. Numer. Math., 88:445-458, 2001. Cerca con Google

11. N. Guglielmi and M. Zennaro. Polytope norms and related algorithms for the computation of the joint spectral radius. In 44th IEEE Conference on Decision and Control and European Control Conference ECC'05, pages 3007-3012, Seville, Spain, 12-15 December 2005. Cerca con Google

12. N. Guglielmi and M. Zennaro. Balanced complex polytopes and related vector and matrix norms. J. Convex Anal., 14:729-766, 2007. Cerca con Google

13. H.G. Heuser. Functional analysis. JohnWiley & Sons, New York, 1982. Cerca con Google

14. J.C. Lagarias and Y.Wang. The finiteness conjecture for the generalized spectral radius of a set of matrices. Linear Algebra Appl., 214:17-42, 1995. Cerca con Google

15. M. Maesumi. Optimum unit ball for joint spectral radius: an example from fourcoefficient MRA. In "Approximation Theory VIII: Wavelets and Multilevel Approximation". C.K. Chui and L.L. Schumaker (eds.). 2:267-274, 1995. Cerca con Google

16. M. Maesumi. Calculating joint spectral radius of matrices and Holder exponent of wavelets. In "Approximation Theory IXâ". C.K. Chui and L.L. Schumaker (eds.). pages 1-8, 1998. Cerca con Google

17. M. Maesumi. Construction of optimal norms for semigroups of matrices. In 44th IEEE Conference on Decision and Control and European Control Conference ECC'05, pages 3001-3006, Seville, Spain, 12-15 December 2005. Cerca con Google

18. S. Miani and C. Savorgnan. Complex polytopic control lyapunov functions. In 45th IEEE Conference on Decision and Control, pages 3198-3203, San Diego, CA, USA, 13-15 December 2006. Cerca con Google

19. G.C. Rota and G. Strang. A note on the joint spectral radius. Indag. Math., 22:379-381, 1960. Cerca con Google

20. M.H. Shih. Simultaneous Schur stability. Linear Algebra Appl., 287:323-336, 1999. Cerca con Google

21. M.H. Shih, J.W. Wu, and C.T. Pang. Asymptotic stability and generalized Gelfand spectral radius formula. Linear Algebra Appl., 252:61-70, 1997. Cerca con Google

22. R. Vermiglio. On the computation of the joint spectral radius of matrices - Numerical experiments. Report UDMI/21/99/RR, 1999. Cerca con Google

23. C. Vagnoni and M. Zennaro. The analysis and the construction of balanced complex polytopes in 2d. preprint, April 2007. Cerca con Google

24. G.M. Ziegler. Lectures on polytopes. Springer-Verlag, New York, 1995. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record