Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Boz, Bruno (2011) Denitrification activity and denitrifying population dynamic in the soil of a wooded riparian strip. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
6Mb

Abstract (inglese)

The EU “Nitrates Directive” (Directive 91/676/EEC) and the WFD (Water Framework Directive 2000/60/EEC) introduced a series of measures designed to reduce and prevent water pollution caused or induced by nitrates from agricultural sources.
Riparian zones, located at the interface between terrestrial human activities and waterways, play a key role as a buffer system protecting aquatic ecosystems from excessive nitrogen loads. There are several mechanisms through which excess nitrogen is removed in riparian buffer zones: some act as temporary sinks, for instance soil storage, assimilation and retention by plants and microbes, while the denitrification process permanently removes nitrogen from the soil in a gaseous form.
Within the lower plan of Venice Lagoon watershed, a newly afforested riparian buffer, irrigated with freshwater from the Zero River, was realized; inside this afforested area, a pilot experimental scale system was established. The experimental forest buffer received almost continuous sub-surface water flow with the aim of enhancing nitrate removal through denitrification.
The objectives of this research were to verify the potential capacity of this buffer system in removing the excess of nitrogen from river water and to increase knowledge on the processes there involved, with particular emphasis on denitrification.
To achieve these objectives the following specific activities were performed: (i) the quantification of the combined nitrogen removal rates from water which flows through the woody buffer area; (ii) the measure of the denitrification process in soils, both “in situ” conditions (DNT) and potential denitrification (DEA) and its relationship with the main environmental limiting factors (hydrology, soil, climate, vegetation); (iii) a specific study on denitrifying community, focused on nirK gene, in the soil of the riparian buffer compared to that of a neighbouring agricultural area.
The main results of this work demonstrates that a buffer strip 15 meters wide can remove an excess of nitrate not only at concentrations typical of freshwater bodies (less than 5 mg/L N-NO3), but also with higher peaks (until 25 mg/L), with a reduced effectiveness during colder seasons. It was also demonstrated that microbial denitrification plays a key role in nitrogen removal and that higher denitrification rates were reached in the soil layer often saturated by the perched aquifer. As expected, the potential denitrification rates generally decrease with soil depth, depending on the distribution of the microbial population. In general, organic carbon availability resulted as the most limiting factor.
Moreover, it was established that in the riparian buffer under study both denitrification potential and the nirK-type denitrifying community distribution significantly differ from a contiguous agricultural soil. Even if there is still a limited understanding of the relationships between denitrification activity and denitrifying community structure and/or abundance we observed that denitrifying community composition could affect potential denitrification in soils characterized by different management practices (i.e. riparian forested soils and agricultural soils)

Abstract (italiano)

La “Direttiva Nitrati” (91/676/EEC) e la “Direttiva Acque” (2000/60/EEC) hanno introdotto per gli stati dell’Unione Europea una serie di misure per ridurre e prevenire l’inquinamento delle acque dovuto all’azoto di origine agricola.
Le fasce tampone riparie sono dei sistemi che si frappongono fra le aree agricole ed i corsi d’acqua e giocano un importante ruolo nel proteggere gli ecosistemi acquatici dai carichi azotati. Ci sono diversi processi attraverso cui l’azoto viene rimosso dalle acque che attraversano questi sistemi: alcuni, come la sedimentazione nei suoli e l’assorbimento e la ritenzione operato da piante e batteri, agiscono come zone di accumulo temporaneo; il processo di denitrificazione è invece in grado di rimuovere l’azoto in modo permanente trasformando l’azoto nitrico in azoto molecolare gassoso.
Nella parte terminale del bacino scolante della laguna di Venezia è stata realizzata un’area filtro forestale irrigata con le acque del fiume Zero e al suo interno è stato allestito un sito sperimentale. L’area tampone viene alimentata in modo continuo attraverso un sistema di scoline di irrigazione e di drenaggio che favorisce la formazione di un deflusso sub-superficiale che crea delle condizioni favorevoli allo svolgimento del processo di denitrificazione.
L’obiettivo di questo progetto di ricerca è quello di monitorare la capacità di questo sistema a svolgere l’azione depurante nei confronti delle acque che lo attraversano e di comprendere le dinamiche dei processi che favoriscono tale rimozione, con particolare attenzione al processo di denitrificazione. Per poter indagare tali aspetti sono state condotte una serie di attività: (i) un bilancio complessivo delle quantità di azoto (nelle sue diverse forme) rimosse dalle acque che defluiscono attraverso il sistema; (ii) una misura dei ratei di denitrificazione “in situ” (DNT) e potenziale (DEA) e della loro dipendenza dai principali fattori ambientali (idrologia, caratteristiche dei suoli, andamento climatico e sviluppo vegetazionale); (iii) un confronto fra la distribuzione delle comunità batteriche denitrificanti, contenenti il gene nirK, presenti nei suoli del’area tampone riparia e di una limitrofa area agricola.
I risultati conseguiti hanno dimostrato come una fascia tampone dell’ampiezza di 15 metri sia in grado di garantire un’elevata rimozione di azoto, sia nel caso venga attraversata da acque con concentrazioni tipiche dei corsi idrici superficiali (minori di 5 mg/L di N-NO3), sia in presenza di picchi di azoto più elevati (fino a 25 mg/L di N-NO3). Tale capacità depurante subisce un’inibizione nel corso delle stagioni caratterizzate da basse temperature.
E’ stato inoltre dimostrato che il processo di denitrificazione svolge un ruolo chiave nell’azione depurativa e che risulta particolarmente attivo nella zona di suolo attraversata dal deflusso sub-superficiale. In termini di denitrificazione potenziale, come atteso, si è osservata una riduzione dell’attività passando dallo strato di suolo superficiale a quelli più profondi; ciò è in relazione alla diversa distribuzione delle popolazioni microbiche nei suoli. La disponibilità di carbonio organico è il fattore limitante più importante per il processo di denitrificazione.
Confrontando i suoli dell’area tampone boscata con quelli di una limitrofa area agricola, sia la denitrificazione potenziale, sia la composizione delle comunità batteriche denitrificanti contenenti il gene nirK sono risultate significativamente diverse. Anche se il livello di comprensione delle relazioni esistenti fra l’attività di denitrificazione e la struttura/abbondanza delle comunità microbiche è ancora poco approfondito, dai risultati di questo lavoro si è osservata una possibile relazione fra questi aspetti: il diverso uso del suolo influenza la composizione delle comunità microbiche e ciò, a sua volta, influenza la capacità di denitrificazione potenziale di un suolo

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Casella, Sergio
Correlatore:Basaglia, Marina - Gumiero, Bruna
Dottorato (corsi e scuole):Ciclo 23 > Scuole per il 23simo ciclo > SCIENZE DELLE PRODUZIONI VEGETALI > AGROBIOTECNOLOGIE
Data di deposito della tesi:25 Luglio 2011
Anno di Pubblicazione:25 Luglio 2011
Parole chiave (italiano / inglese):denitrificazione/denitrification fascia tampone/buffer zone azoto/nitrogen nitrati/nitrates nirK DGGE
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/13 Biologia applicata
Area 05 - Scienze biologiche > BIO/07 Ecologia
Area 05 - Scienze biologiche > BIO/19 Microbiologia generale
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Biotecnologie Agrarie
Codice ID:4248
Depositato il:22 Giu 2012 09:39
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abernathy, B. and Rutherford, I.D. (1999). Where along a river’s length ill vegetation most effectively stabilize stream banks? Geomorphology, 23, 55-75. Cerca con Google

Allen, R., Pereira, L. Raes, D. and Smith, M. (1998). Guidelines for computing crop water requirements, in FAO Irrigation and drainage paper, vol. 56, FAO, Roma. Cerca con Google

Altman, S.J. and Parizek, R.M. (1995). Dilution of nonpoint-source nitrate in groundwater. Journal of Environmental Quality, 24, 707-718. Cerca con Google

Ambus, P. and Lowrance, R.L. (1991). Comparison of denitrification in two riparian soils. Soil Science Society of America Journal, 55, 994-997. Cerca con Google

Ambus, P. and Zechmeinster-Boltenstern, S. (2007). Denitrification and N-Cycling. In Biology of the Nitrogen Cycle. H. Bothe, S.J. Ferguson and W.E. Newton (Eds.). Elsevier B.V., pp. 343-358. Cerca con Google

APHA AWWA WEF (2005a). Standard Methods for the Examination of Water and Wastewater; 4500-NO2 Pages 4118 – 4119, 21st edn. American Public Health Association, Washington, D.C. Cerca con Google

APHA AWWA WEF (2005b). Standard Methods for the Examination of Water and Wastewater; 4500-NH3 Page 4-114, 21st edn. American Public Health Association, Washington, D.C. Cerca con Google

ARPAV (Environmental Agency, Regional Laboratory) (2004). The soil map of the Venice Lagoon Watershed. pp 121 Cerca con Google

Bais, H.P., Weir, T.L., Perry, L.G., Gilroy S. and Vivanco, J.M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant. Biol., 57, 233–266. Cerca con Google

Balestrini, R., Arese, C., Delconte, C.A., Lotti, A. and Salerno, F. (2011). Nitrogen removal in subsurface water by narrow buffer strips in the intensive farming landscape of the Po River watershed, Italy. Ecological Engineering, 37, 148-157. Cerca con Google

Baudoin, E., Benizri, E. and Guckert, A. (2003). Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol. Biochem., 35, 1183–1192. Cerca con Google

Beierkuhnlein, C. and Jentsch, A. (2005). Ecological importance of species diversity. A review on the ecological implications of species diversity in plant communities. Plant Diversity and Evolution: Genotypic and Phenotypic Variation in Higher Plants (Henry RJ, ed), pp. 249–285. CAB International, Wallingford, UK. Cerca con Google

Berks, B.C., Ferguson, S.J., Moir, J.W.B. and Richardson, D.J. (1995). Enzyme and associated electron transport systems that catalyse respiratory reduction of nitrogen oxides and oxyanions. Biochim. Biophys. Acta, 1232, 97–173. Cerca con Google

Beschta, R.L. (1984). A computer model for predicting stream temperatures resulting from management of streamside vegetation. USDA Forest Service. WSDG-AD-00009. Cerca con Google

Boyle S.A., Rich J.J., Bottomley P.J., Cromack K. and Myrold D.D. (2006). Reciprocal transfer effects on denitrifying community composition and activity at forest and meadow sites in the Cascade Mountains of Oregon. Soil. Biol. Biochem., 38, 870–878. Cerca con Google

Bremer, C., Braker, G., Matthies, D., Reuter, A., Engels, C. and Conrad, R. (2007). Impact of plant functional group, plant species, and sampling time on the composition of nirK-type denitrifier communities in soil. Appl. Environ. Microb., 73, 6876–6884. Cerca con Google

Bremer, C., Braker, G., Matthies, D., Beierkuhnlein, C. and Conrad, R. (2009). Plant presence and species combination, but not diversity, influence denitrifier activity and the composition of nirK-type denitrifier communities in grassland soil. FEMS Microbiol. Ecol. 2009, 1–11. Cerca con Google

Brookes, P.C., Landman, A., Pruden, G. and Jenkinson, D.S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17 (6), 837-842. Cerca con Google

Brown, G.W. and Krygier, J. T. (1970). Effects of clear cutting on stream temperature. Water Resources Research, 6 (4), 1133-1139. Cerca con Google

Burgin, A.J. and Hamilton, SK. (2007). Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front. Ecol. Environ., 5, 89–96. Cerca con Google

Burt, T.P. (1996). The hydrology of headwater catchments. pp 6-31. In Petts, G.E. and Calow, P. (ed.) River flows and channel forms. Blackwell, Oxford, UK. Cerca con Google

Burt, T.P., Pinay, G., Matheson, F.E., Haycock, N.E., Butturini, A., Clement, J.C., Danielescu, S., Dowrick, D.J., Hefting, M.M., Hillbricht-Ilkowska, A. and Maitre, V. (2002). Water table fluctuations in the riparian zone: comparative results from a pan-European experiment. Journal of Hydrology, 265, 129-148. Cerca con Google

Carline, R.F. and Walsh, M.C. (2007). Responses to riparian restoration in the Spring Creek watershed, central Pennsylvania. Restoration Ecology, 15, 731-742. Cerca con Google

Chescheir, C.M., Skaggs, R.W., Gilliam, J.W. and Broadhead, R.G. (1988). Hydrology of wetland buffer areas for pumped agricultural drainage water. In: Hook, D.D. (Ed.) The Ecology and Management of Wetlands. Timber Press, Portland, OR, pp. 260-274. Cerca con Google

Conners, M.E. and Naiman, R.J. (1984). Particulate allochthonous inputs: relationships with stream size in an undisturbed watershed. Canadian Journal of Fisheries and Aquatic Sciences, 41, 1473-1488. Cerca con Google

Cooke, J.G. and Cooper, A.B. (1988). Sources and sinks of nutrients in a New Zealand hill pasture catchment III. Nitrogen. Hydrol. Process., 2, 135-149. Cerca con Google

Cooper, A.B. (1990). Nitrate depletion in the riparian zone and stream channel of a small headwater catchment. Hydrobiologia, 202, 13-26 Cerca con Google

Correll, D. L. (1983). N and P in soils and runoff of three coastal plain land uses, p. 207–224 .In R. Lowrance, R. Todd, L. Asmussen, and R. Leonard (eds.), Nutrient Cycling in Agricultural Ecosystems. University of Georgia Agricultural Experiment Station Special Publication 23, Athens, Georgia. Cerca con Google

Correll, D.L. and Weller, D.E. (1989). Factors limiting processes in freshwater wetlands: an agricultural primary stream riparian forest. In: Sharitz, R.R. and Gibbons, J.W. (Eds.) Freshwater Wetlands and Wildlife. USDOE, Oak Ridge, TN, USA, pp. 9-23. Cerca con Google

Correll, D. L. (1991). Human impact on the functioning of landscape boundaries, pp 90-109. In Holland, M., Naiman, R. J. and Risser, P. G. (eds.), The Role of Landscape Boundaries in the Management and Restoration of Changing Environments. Man and the Biosphere Program, UNESCO, Paris. Cerca con Google

Correll, D. L., Jordan, T.E. and Weller, D.E. (1996). Failure of agricultural riparian buffers to protect surface waters from groundwater contamination. In: Gilbert, J. (Ed.) Groundwater-Surface Water Ecotones. Cambridge University Press, London. Cerca con Google

Correl, D.L. (1997). Buffer zones and water quality protection: General principles. pp. 7-20. In Haycock, N.E. et al. (ed) Buffer zones: Their processes and potential in water protection. Quest Environmental, Harpenden, UK. Cerca con Google

Costa, R., Gotz, M., Mrotzek, N., Lottmann, J., Berg, G. and Smalla, K. (2006). Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol. Ecol., 56, 236–249. Cerca con Google

Coyne, M.S., Arunakumari A., Averill B.A. and Tiedje, J.M. (1989). Immunological identification and distribution of dissimilatory cd1 and nonheme copper nitrite reductases in denitrifying bacteria, Appl. Environ. Microbiol., 55, 2924-2931. Cerca con Google

Coyne, M.S. and Tiedje, J.A. (1990). Distribution and diversity of dissimilatory NO2- reductases in denitrifying bacteria. In Denitrification in Soil and Sediment. Revsbech, N.P., and Sorensen, J. (eds). New York, USA: Plenum Press, pp. 21–35. Cerca con Google

Dandie, C. E., Wertz, S., Caissie, L., Goyer, C., Burton, D. L., Patten, C.L., Zebarth, B.J. and Trevors, J.T. (2011). Abundance, diversity and functional gene expression of denitrifier communities inadjacent riparian and agricultural zones. FEMS Microbiol. Ecol., 77, 69-82. Cerca con Google

Daniels, R.B. and Gilliam, J.W. (1996). Sediment and chemical load reduction by grass and riparian filters, Soil Sci. Soc. Am. J., 60, 246-251. Cerca con Google

Davidson, E. A., Swank, W. T. and Perry, T. O. (1986). Distinguishing between nitrification and denitrification as sources of gaseous nitrogen production in soil. Applied and Environmental Microbiology, 52, 1280-1286. Cerca con Google

Décamps, H., Pinay, G., Naiman, R.J., Petts, G.E., McClain, M.E., Hillbricht-Ilkowska, A., Hanley, T.A., Holmes, R.M., Quinn, J., Gibert, J., Planty-Tabacchi, A.M., Schiemer, F., Tabacchi, E. and Zalewski, M. (2004). Riparian zones: where biogeochemistry meets biodiversity in management practice. Polish Journal of Ecology, 52 (1), 3-18. Cerca con Google

Desbonnet, A., Pogue, P., Lee, V. and Wolff, N. (1994). Vegetated Buffers in the Coastal Zone. A Summary Review and Bibliography. Rhode Island Sea Grant, University of Rhode Island, Narragansett, RI. Coastal Resources Center Tech. Rep. 2064. Cerca con Google

Dhondt, K., Boeckx, P., Van Cleemput, O. and Hofman, G. (2003). Quantifying nitrate retention processes in a riparian buffer zone using the natural abundance of 15N in NO−3, Rapid Commun. Mass Spectrometry, 17, 1-8. Cerca con Google

Dhondt, K., Boeckx, P., Hofman, G. and Van Cleemput, O. (2004). Temporal and spatial patterns of denitrification enzyme activity and nitrous oxide fluxes in three adjacent vegetated riparian buffer zones. Biol Fertil Soils, 40, 243-251. Cerca con Google

Dierberg, F.E. and DeBusk, T.A. (2005). An evaluation of two tracers in surface-flow wetlands: Rhodamine-WT and Lithium. Wetlands, 25 (1), 8-25. Cerca con Google

Dillaha, T.A., Sberrard, J.H., Lee, D., Mostaghimi S. and Shanholtz V.O. (1988). Evaluation of vegetative filter strips as a best management practice for feed lots. Journal of the Water Pollution Control Federation, 60, 1231-1238. Cerca con Google

Dillaha, T.A., Reneau, R.B., Mostaghimi, S. and Lee, D. (1989). Vegetative filter strips for agricultural non point source pollution control, Transactions of ASAE, 32 (2), 491-496. Cerca con Google

Dillaha, T.A. and Inamdar, S.P. (1996). Buffer zones as sediment traps or sources. In: Haycock, N., Burt, T., Goulding, K. and Pinay G., Editors, Buffer Zones: Their Processes and Potential in Water Protection, Quest Environmental, Harpenden, Hertfordshire, UK (1996), pp. 33-42. Cerca con Google

Dosskey, M.G. and Bertsch, P.M. (1994). Forest sources and pathways of organic matter transport to a blackwater stream: a hydrologic approach. Biogeochemistry, 24, 1-19. Cerca con Google

Driscoll, C.T., Whitall, D., Aber, J., Boyer, E., Castro, M., Cronan, C., Goodale, C.L., Groffman, P., Hopkinson, C., Lambert, K., Lawrence, G. and Ollinger, S. (2003). Nitrogen pollution in the North-eastern United States: sources, effects, and management potions. Bioscience, 53, 357-374. Cerca con Google

EEA European Environment Agency (2005). The European Emvironment State and outlook. Integrated Assessment Part A. EEA report 1/2005. Cerca con Google

Fennesy, M.S. and Cronk, J.K. (1997). The effectiveness and restoration potential of riparian ecotones for the management of nonpoint source pollution, particularly nitrate, Crit. Rev. Environ. Sci. Technol., 27, 285-317. Cerca con Google

Firestone, M.K., Firestone, R.B. and Tiedje, J.M. (1980). Nitrous oxide for soil denitrification: Factors controlling its biological production. Science, 208, 749-751. Cerca con Google

Fogel, R. and Hunt, G. (1983). Contributions of mycorrhizae Cerca con Google

and soil fungi to nutrient cycling in Douglas-fir ecosystems. Canadian Journal of Forest Cerca con Google

Research, 13, 219–232. Cerca con Google

Gamble, T.N., Betlach M.R., and Tiedje J.M. (1977). Numerically dominant denitrifying Bacteria from world soils. Appl Environ Microbiol., 33 (4), 926-939. Cerca con Google

Gambrell, R.P., Gilliam, J.W. and Weed, S.B. (1975). Denitrification in subsoils of the North Carolina coastal plain as affected by soil drainage. Journal of Environmental Quality, 4, 311-316. Cerca con Google

Gilliam, J.W., Daniels, R.B. and Lutz, J.F. (1974). Nitrogen content of shallow groundwater in the North Carolina coastal plain. Journal of Environmental Quality, 20, 671-674. Cerca con Google

Gilliam, J.W., Skaggs, R.W. and Weed, S.B. (1979). Drainage control to diminish nitrate loss from agricultural fields. Journal of Environmental Quality, 8, 137-142. Cerca con Google

Gilliam, J.W., Skaggs, R.W. and Doty, C.W. (1986). Controlled agricultural drainage: An alternative to riparian vegetation. In: Correl, D.L. (Ed.). Watershed Research Perspectives, Smithsonian Press, Washington DC, pp. 225-243. Cerca con Google

Grayston, S.J., Wang S.Q., Campbell, C.D. and Edwards, A.C. (1998). Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem., 30, 369–378. Cerca con Google

Grayston, S.J., Griffith, G.S., Mawdsley, J.L., Campbell, C.D. and Bardgett, R.D. (2001). Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol. Biochem., 33, 533–551. Cerca con Google

Gregory, S. and Ashkenas, L. (1990). Riparian management guide. Willamette National Forest. USDA Forest Service, Willamette National Forest, Eugene, OR. Cerca con Google

Gregory, S.V., Frederick, J.S., Arthur, W., McKee and Kenneth W. C. (1991). An ecosystem perspective of riparian zones: focus on links between land and water. Bioscience, 41 (8), 540-549. Cerca con Google

Gremion, F., Chatzinotas, A., Kaufmann, K., von Sigler, W. and Harms, H. (2004). Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. FEMS Microbiology Ecology, 48 (2), 273–283. Cerca con Google

Griffiths, B.S., Ritz, K., Ebblewhite, N. and Dobson, G. (1999). Soil microbial community structure: effects of substrate loading rates. Soil Biol. Biochem., 31, 145–153. Cerca con Google

Groffman, P.M., Axelrod, E.A., Lemunyon, J.L., Sullivan, W.M. (1991). Denitrification Cerca con Google

in grass and forest vegetated filter strips. Journal of Environmental Quality, 20, 671-674. Cerca con Google

Groffman, P.M., Gold, A.J. and Simmons, R.C. (1992). Nitrate dynamics in riparian forests: microbial studies. Journal of Environmental Quality, 21, 666-671. Cerca con Google

Groffman, P.M., Gold, A.J. and Jacinthe, P.A. (1998). Nitrous oxide production in riparian zones and groundwater. Nutrient Cycling in Agroecosystems, 52, 179-186. Cerca con Google

Groffman, P.M., Holland, E., Myrold, D.D., Robertson, G.P. & Zou, X. (1999). Denitrification. Standard Soil Methods for Long Term Ecological Research (eds G.P. Robertson, C.S. Bledsoe, D.C. Coleman & P. Sollins), pp. 272–288. Oxford University Press, New York. Cerca con Google

Gumiero, B., Boz, B., Cornelio, P. and Casella, S. (2011). Shallow groundwater nitrogen and denitrification in a newly afforested, subirrigated riparian buffer. Journal of Applied Ecology, Article first published online: 17 Jun 2011, DOI: 10.1111/j.1365-2664.2011.02025.x. Cerca con Google

Hallin, S., Braker, G. and Philippot, L. (2007). Molecular tools to assess the diversity and density of denitrifying bacteria in their habitats. In Biology of the Nitrogen Cycle. H. Bothe, S.J. Ferguson and W.E. Newton (Eds.). Elsevier B.V. , pp. 313-330. Cerca con Google

Hanson, G.C., Groffman, P.M. and Gold, A.J. (1994). Symptoms of nitrogen saturation in a riparian wetland. Ecological Applications, 4, 750-756. Cerca con Google

Hakanson, L., Bryhn, A.C. and Hytteborn, J.K. (2007). On the issue of limiting nutrient and predictions of cyanobacteria in aquatic systems. Science of the Total Environment, 379, 89-108. Cerca con Google

Haycock, N.E. and Burt T.P. (1993). The sensitivity of rivers to nitrate leaching: The effectiveness of near-stream land as a nutrient retention zone. In Thomas, D.S.G. and Allison, R.J. (Eds.), Landscape Sensitivity, Wiley, London, pp. 261-272. Cerca con Google

Haycock, N.E. and Pinay, G. (1993a). Role of floodplain sediments in reducing the nitrate concentration of subsurface runoff: a case study in the Costwolds, UK. Hydrol. Processes, 7, 287-295. Cerca con Google

Haycock, N.E. and Pinay G. (1993b). Groundwater nitrate dynamics in grass and poplar vegetated riparian buffer strips during the winter. Journal of Environmetal Quality, 22, 273-278. Cerca con Google

Haycock, N.E., Burt, T.P., Goulding, K.W.T. and. Pinay, G. (1997). Buffer Zones: Their Processes and Potential in Water Protection. Quest Environmental, Harpenden, UK. Cerca con Google

Hector, A., Loreau, M. and Schmid, B, (2005). Biodiversity manipulation experiments: studies replicated at multiple sites. Biodiversity and Ecosystem Functioning. Synthesis and Perspectives (Loreau M., Naeem S. and Inchausti P., eds), pp.36–46. Oxford University Press, Oxford, UK. Cerca con Google

Hedin, L.O., von Fischer, J.C., Ostrom, N.E., Kennedy, B.P., Brown, M.G. and Robertson, G.P. (1998). Thermodynamic constraints on nitrogen transformations and other biochemical processes at soil-stream interfaces. Ecology, 79, 684-703. Cerca con Google

Hefting, M.M. and de Klein, J.J.M. (1998). Nitrogen removal in buffer strips along a lowland stream in the Netherlands: a pilot study. Environmental Pollution, 102, 521-526. Cerca con Google

Hefting, M.M., Clement, J.C., Bienkowski P., Dowrick D., Guenat C., Butturini A., Topa S., Pinay G. and Verhoeven J.T.A. (2005). The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe, Ecol. Eng., 24, 465–482. Cerca con Google

Hendriks, J., Oubrie, A., Castresana, J., Urbani, A., Gemeinhardt, S. and Saraste, M. (2000). Nitric oxide reductase in bacteria. Biochim. Biophys. Acta-Bioenergetics, 1459, 266-273. Cerca con Google

Howarth, R.W. and Marino, R. (2006). Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnology and Oceanography, 51, 364-376. Cerca con Google

Hubbard, R.K. and Lowrance, R.R. (1994). Riparian forest buffer system research at the Coastal Plain Experiment Station, Tifton, GA. Water, Air, and Soil Pollution, 77, 409-432. Cerca con Google

Hunt, P.G., Matheny, T.A. and Stone, K.C. (2004). Denitrification in a coastal plain riparian zone contiguous to a heavily loaded swine wastewater spray field. Journal of Environmental Quality, 33, 2367-2374. Cerca con Google

Hunt, P.G., Matheny, T.A. and Ro, K.S. (2007). Nitrous oxide accumulation in soils from Riparian Buffers of a Coastal Plain Watershed – Carbon/Nitrogen ratio control. Journal of Environmental Quality, 36, 1368-1376. Cerca con Google

Hunter, R.G. and Faulker S.P. (2001). Denitrification potentials in restored and natural bottomland hardwood wetlands. American Journal of Soil Science Society, 65, 1865-1872. Cerca con Google

Hyman, M. R. and Arp, D. J. (1987). Quantification and removal of some contaminating gases from acetylene used to study gas-utilizing enzymes and microorganisms. Applied and Environmental Microbiology, 53, 298-303. Cerca con Google

Hynes, R. K. and Knowles, R. (1978). Inhibition by acetylene of ammonia oxidation in Nitrosomonas europea. FEMS Microbiology Letters, 4, 319-321. Cerca con Google

Keeney, D.R. and Nelson, D.W. (1982). Nitrogen – Inorganic Forms, Methods of soil analysis, Met. 33-3 pages 648-649 and Met. 33-8 – 33-9 pages 676-687. Methods of soil analysis - Part 2 Chemical and Microbiological Properties, 2nd edition, ASA – SSSA. Cerca con Google

Kisand, V. and Wikner J. (2003). Limited resolution of 16S rDNA DGGE caused by melting properties and closely related DNA sequences, J. Microbiol. Methods, 54, 183–191. Cerca con Google

Knowles, R. (1979). Denitrification, acetylene reduction, and methane metabolism in lake sediment exposed to acetylene. Applied and Environmental Microbiology, 38, 486-493. Cerca con Google

Knowles, R. (1982). Denitrification. Microbiol. Rev., 46, 43–70. Cerca con Google

Kuske, C.R., Ticknor, L.O., Miller, M.E., Dunbar, J.M., Davis, J.A., Barns, S.M. and Belnap, J. (2002). Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl. Environ. Microb., 68, 1854–1863. Cerca con Google

Jacobs, T. C., and Gilliam J. W. (1983). Riparian losses of nitrate from agricultural drainage waters. Journal of Environmental Quality, 14, 472-480. Cerca con Google

Jaeger, C.H., Lindow, S.E., Miller, S., Clark, E. and Firestone, M.K. (1999). Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophane. Appl. Environ. Microb., 65, 2685–2690. Cerca con Google

Jenkinson, D.S. and Poulson, D.S. (1976). The effects of biocidal treatments on metabolism in soil-V. A method for measuring soil biomass. Soil Biology and Biochemistry, 8, 209-213. Cerca con Google

Jobbagy, E.G. and Jackson, R.B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10 (2), 423– 436. Cerca con Google

Jordan, T.E., Correl, D.L. and Weller D.E. (1993). Nutrient interception by a riparian forest receiving inputs from cropland. Journal of Environmental Quality, 22, 467-473. Cerca con Google

Joynt, J., Bischoff, M., Turco, R.F., Konopka, A. and Nakatsu C.H. (2006). Microbial community analysis of soils contaminated with lead, chromium and organic solvents. Microb. Ecol., 51, 209–219. Cerca con Google

JRC (2006). Joint Research Centre European Commission Annual Report 2006. Cerca con Google

Kropf, S., Heuer, H., Grüning M. and Smalla, K. (2004). Significance test for comparing complex microbial community fingerprints using pairwise similarity measures, J. Microbiol. Methods , 57, 187–195. Cerca con Google

LaBough, J.W. (1986). Wetland ecosystem studies from a hydrologic perspective. Water Resources Bulletin, 22, 1-10. Cerca con Google

Lipschultz, F., Zafiriou, O. C., Wofsy, S. C., McElroy, M. B., Valois, F. W. and Watson, S. W. (1981). Production of NO and N2O by soil nitrifying bacteria. Nature, 294, 641-643. Cerca con Google

Liu, X., Tiquia, S. M., Holguin, G., Wu, L., Nold, S. C., Devol, A. H., Luo, K., Palumbo, A. V., Tiedje, J. M., and Zhou, J. (2003). Molecular diversity of denitrifying genes in continental margin sediments within the oxygen-deficient zone off the Pacific coast of Mexico. Appl. Environ. Microbiol., 69, 3549-3560 begin_of_the_skype_highlighting              3549-3560      end_of_the_skype_highlighting. Cerca con Google

Livingston, G. P. and Hutchinson, G. L. (1995). Enclosure-based measurement of trace gas exchange: applications and sources of error. In Biogenic Trace Gases: Measuring Emissions from Soil and Water. P. A. Matson and R. C. Harriss (eds). Blackwell Science, Ltd. pp 14-51. Cerca con Google

Lowrance, R.R., Todd, R.L., and Asmussen, L.E. (1983). Waterborne nutrient budgets for the riparian zone of an agricultural watershed. Agriculture, Ecosystems and Environment, 10, 371-384. Cerca con Google

Lowrance, R.R., Todd, R.L., Fail Jr., J., Hendrickson Jr., O., Leonard, R. and Asmussen, L. (1984). Riparian forests as nutrient filters in agricultural watersheds. Bioscience, 34, 374-377. Cerca con Google

Lowrance, R.R., Altier, L.S., Newbold, J.D., Schnabel, R.R., Groffman, P.M., Denver, J.M., Correll, D.L., Gilliam, J.W., Robinson, J.L., Brinsfield, R.B., Stave,r K.W., Lucas, W. and Todd, A.H. (1997). Water quality functions of riparian forest buffer systems in Chesapeake Bay Watersheds. Environmental Management, 21, 687-712. Cerca con Google

Magette, W.L., Brinsfield, R.B., Palmer, R.E. and Wood, J.D. (1989). Nutrient and sediment removal by vegetated filter strips, Transactions of ASAE, 32 (2), 663-667. Cerca con Google

Magnusson, T. (1993). Carbon dioxide and methane formation in forest mineral and peat soils during aerobic and anaerobic incubations. Soil Biology and Biochemistry, 7, 877-883. Cerca con Google

Malanson, G. P. (1993). Riparian landscapes. Cambridge, U.K.: Cambridge University Press. Cerca con Google

Mander, Ü., Lohmus, K., Kuusemets, V. and Ivask, M. (1997). The potential role of wet meadows and grey alder forests as buffer zones. In: Haycock, N.E., Burt, T.P., Goulding, K.W.T., Pinay, G. (Eds.), Buffer Zones, their Processes and Potential in Water Protection. Proceedings of the International Conference on Buffer Zones, September 1996. Part II. Oxford, Quest Environmental, Foundation for Water Research, pp. 35–46. Cerca con Google

Mariotti, A., Landreau, A. and Simon, B. (1988). 15N isotope biogeochemistry and natural denitrification process in groundwater. Application to the chalk aquifer of northern France. Geochim. Cosmochim. Acta, 52, 1869-1878. Cerca con Google

McGill, B.M., Sutton-Grier, A.E. and Wright, J.P. (2010). Plant trait diversity buffers variability in denitrification potential over changes in season and soil conditions. PLoSONE, 5, e11618. Cerca con Google

Mengis, M., Schiff, S.L., Harris, M., English, M.C., Aravena, R., Elgood, R.J. and MacLean, A., (1999). Multiple geochemical and isotopic approaches for assessing ground water NO3 – elimination in a riparian zone. Ground Water, 37, 448–457. Cerca con Google

Menyailo, O.V., Hungate, B.A. and Zech, W. (2002). The effect of a single tree species on soil microbial activity related to C and N cycling in the Siberian artificial afforestation experiment. Plant and Soil, 242, 183–196. Cerca con Google

Mitsch, W.J., Dorge, C.L. and Weimhoff, J.R. (1977). Forested Wetlands for Water Resource Management in Southern Illinois. Research Report Number 132, Univ. Illinois, Water Resources Center, Urbana, IL, pp. 275. Cerca con Google

Munch, J.C. and Velthof, G.L. (2007). Denitrification and Agriculture. In Biology of the Nitrogen Cycle. H. Bothe, S.J. Ferguson and W.E. Newton (Eds.). Elsevier B.V. Cerca con Google

Muscutt, A. D., Harris, G. L., Bailey, S. W., and Davies, D. B. (1993). Buffer zones to improve water quality: a review of their potential use in UK agriculture. Agricultural Ecosystem Environmental, 45, 59-77. Cerca con Google

Muyzer, G., de Waal, E. C. and Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol., 59, 695–700. Cerca con Google

Naiman, R. J., Carol, A.J. and Kelley J.C. (1988). Alteration of North American streams by beaver, Biscay, 38 (11), 753-762. Cerca con Google

Naiman, R. J., Decamps, H. and Pollock, M. (1993). The role of riparian corridors in maintaining regional biodiversity. Ecological Applications 3, 209-212. Cerca con Google

Nelson, D.W. and Sommers, L.E. (1982). Total carbon, organic carbon and organic matter, Met. 29-2 pages 542-553, Methods of soil analysis - Part 2 Chemical and Microbiological Properties, 2nd edition, ASA – SSSA. Cerca con Google

Odum, E.P., (1978). Opening address: Ecological importance of the riparian zone. Strategies for protection and management of flood plain wetlands and other riparian ecosystems. General Technical Report WO-12. Washington, DC, USA. Cerca con Google

Osborne, L.L. and Kovacic, D.A. (1993). Riparian vegetated buffer strips in water-quality restoration and stream management, Freshwater Biology, 29, 243-258. Cerca con Google

Parson, J.E., Gilliam J,W., Munoz-Carpena, R., Daniels, R.B., and Dillaha, T.A. (1994). Nutrients and sediment removal by grass and and riparian buffer, Second environmentally Sound Agricolture Conference, Porlando, Florida, April 22-24, Cerca con Google

Peterjohn, W.T. and Correll, D.L. (1984). Nutrient dynamics in an agricultural watershed: Observations on the role of a riparian forest. Ecology, 65, 1466-1475. Cerca con Google

Pfaff, J.D., Hautman, D.P. and Munch, D.J. (1997). Method 300.1: Determination of inorganic anions in drinking water by ion chromatography. Cincinnati, Ohio, USEPA, ORD, NERL. Cerca con Google

Philippot, L. and Hallin, S. (2006). Molecular analyses of soil denitrifying bacteria, in J.E. Cooper and J.R. Rao (Eds.) Moleculòa approaches to soil, rhyzosphere and plant microorganism analysis, CABI Publishing, Wallingforf, U.K., pp 146-165. Cerca con Google

Pielou, E. C. (1969). An Introduction to Mathematical Ecology. Wiley, New York, 286 pp. Cerca con Google

Pinay, G. and Décamps, H. (1988). The role of riparian woods in regulating nitrogen fluxes between the alluvial aquifer and surface water: A conceptual model. Regulating Rivers: Research Management, 2, 507-516. Cerca con Google

Pinay, G., Décamps, H., Arles, C. and Lacassin-Seres, M. (1989). Topographic influence on carbon and nitrogen dynamics in riverine woods. Arch. Hydrobiol., 114 (3), 401-414. Cerca con Google

Pinay, G., Fabre, A., and Vervier, P. (1992). Control of C, N, P distribution in soils of riparian forests. Landscape Ecology, 6 (3), 121-132. Cerca con Google

Pinay, G., Roques, L. and Fabre, A. (1993). Spatial and temporal patterns of denitrification in a riparian forest. Journal of Applied Ecology, 30, 581-591. Cerca con Google

Pinay, G., Ruffinoni, C. and Fabre, A. (1995). Nitrogen cycling in two riparian forest soils under different geomorphic conditions. Biogeochemistry, 30, 9-29. Cerca con Google

Pinay, G., Black, V.J., Planty-Tabacchi, A.M., Gumiero, B. and Décamps, H. (2000). Geomorphic control of denitrification in large river floodplain soils. Biogeochemistry, 30, 9-29. Cerca con Google

Pinay, G. and Burt, T. ( 2001). Nitrogen control by landscape structures. Final report, grant ENV4-CT97-0395, European Commission (DG XII), Brussels. Cerca con Google

Pinay, G., Burt, T.P. and Gumiero, B. (2006). Floodplains in river Ecosystems. In: Biological Monitoring of Rivers Ed. By G. Ziglio, M. Siligardi and G. Flaim John Wiley and Sons, Ltd. Cerca con Google

Pinay, G., Gumiero, B., Tabacchi, E., Gimenez, O., Tabacchi-Planty, A. M., Hefting M. M., Burt, T. P., Black, V. A., Nilsson, C., Iordache, V., Bureau, F., Vought, L., Petts, G. E. and Décamps, H. (2007). Patterns of denitrification rates in European alluvial soils under various hydrological regimes. Freshwater Biology, 52 (2), 252-266. Cerca con Google

Rahman, M.M. (2011). Microbial biodiversity in a wooded riparian zone specifically designed for enhancing denitrification process. PhD Thesis, Doctorate School of Crop Science, Cycle XXIII, Department of Agricultural Biotechnology, Univesity of Padua. Cerca con Google

Rich, J.J. and Myrold, D.D. (2004). Community composition and activities of denitrifying bacteria from adjacent agricultural soil, riparian soil, and creek sediment in Oregon, USA. Soil Biol .Biochem., 36, 1431–1441. Cerca con Google

Ruser, R., Flessa, H., Russow, R., Schmidt, G., Buegger, F. and Munch, J.C. (2006). Emission of N2O, N2 and CO2 from soil fertilized with nitrate: Effect of compaction, soil moisture and rewetting. Soil Biol. Biochem., 38, 263–274. Cerca con Google

Rutherford, J. C., Davies-Colley, R. J., Quinn, J. M., Stroud M. J. and Cooper, A. B. (1999). Stream shade: towards a restoration strategy. Department of Conservation, Wellington, New Zealand. Cerca con Google

Sabater, S., Butturini, A., Clement, J.C., Burt, T.P., Dowrick, D., Hefting, M.M., Maitre, V., Pinay, G., Postolache, C., Rzepecki, M. and. Sabater, F. (2003). Nitrogen removal by riparian buffers along a European climatic gradient: patterns and factors of variation. Ecosystems, 6, 20-30. Cerca con Google

Schimel J. (2001). Biogeochemical models: implicit versus explicit microbiology. In: E.D. Schulze, S.P. Harrison, M. Heimann, E.A. Holland, J.J. LLoyd, I.C. Prentice and D. Schimel, Editors, Global Biogeochemical Cycles in the Climate System, Academic Press (2001) 177–183 pp. Cerca con Google

Schipper, L.A., Cooper, A.B., Harfoot, C.G. and Dyck, W.J., (1993). Regulators of denitrification in an organic riparian soil. Soil Biology & Biochemistry, 25, 925-933. Cerca con Google

Schipper, L.A., Cooper, A.B., Harfoot C.G. and Dyck, W.J. (1994). An inverse relationship between nitrate and ammonium in an organic riparian soil. Soil Biology and Biochemistry, 26, 799-800. Cerca con Google

Schoonover, J. E., Lockaby, B. G. and Pan, S.(2005). Changes in chemical and physical properties of stream water across an urban-rural gradient in western Georgia. Urban Ecosystems , 8, 107-124. Cerca con Google

Sharma, S., Aneja, M.K., Mayer, J., Schloter, M. and Munch J.C. (2004). RNA fingerprinting of microbial community in the rhizosphere soil of grain legumes, FEMS Microbiol. Lett., 240, 181–186. Cerca con Google

Sinokrot, B. A., and Stefan H. G. (1993). Stream temperature dynamics: measurements and modelling, Water Resources Research, 29 (7), 2299-2312 Cerca con Google

Smalla, K., Wieland, G., Buchner, A., Zock, A., Parzy, J., Kaiser, S., Roskot, N., Heuer, H. and Berg, G. (2001). Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Applied Enviromental Microbiology, 67, 4742-4751. Cerca con Google

Smith, M.S. and Tiedje, J.M. (1979). Phases of denitrification following oxygen depletion in soil. Soil Biology and Biochemistry, 11, 261-267. Cerca con Google

van Spanning, R. J. M., de Boer, A. P. N., Reijnders, W. N. M., Westerhoff, H. V. and van der Oost, J. (1997). FnrP and NNR of Paracoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation. Mol. Microbiol., 23, 893-907. Cerca con Google

Spruill, T.B. (2004). Effectiveness of riparian buffers in controlling ground-water discharge of nitrate to streams in selected hydrogeologic settings of North Carolina Coastal Plain. Water Science and Technology, 49, 63-70. Cerca con Google

Staver, K. W. and Brinsfield, R. B. (1991). Effect of cereal grain winter cover crops on surface water pollutant transport from coastal plain corn production systems. Pp 50-52 in Hargrove W.L., ed. Cover Crops for Clean Water. Ankeny (IA): Soil and Water Conservation Society. Cerca con Google

Tabacchi, E., Correll, D.L., Hauer, R., Pinay, G., Planty-Tabacchi, A.M. and Wissmar, R.S. (1998). Development, maintenance and role of riparian vegetation in the river landscape, Freshwater Biology, 40, 497–516. Cerca con Google

Terry, R. E. and Duxbury, J. M. (1985). Acetylene decomposition in soils. Soil Science Society of America Journal, 49, 90-94. Cerca con Google

Theurer, F.D., Voos, K.A. and Miller, W.J. (1984). Instream water temperature model. Instream flow Inf. Pap. 16. U.S. Fish and Wildl. Serv. FWS/OBS-84/15. v.p. Cerca con Google

Throbäck, I., Enwall, K., Jarvis, Å. and Hallin, S. (2004). Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE, FEMS Microbiol. Ecol. 49 (2004), pp. 401–417. Cerca con Google

Tiedje, J. M. (1982). Denitrification. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties- Agronomy Monograph no. 9 (2nd Edition). ASA-SSSA, Madison, WI, USA. Cerca con Google

Tiedje, J. M., Simkins, S. and Groffman, P. M. (1989). Perspectives on measurement of denitrification in the field including recommended protocols for acetylene based methods. In Ecology of Arable Land. M. Clarholm and L. Bergstrom (eds). pp 217-240. Cerca con Google

Troer, F., and Thompson, M. (1993). Soils and soil fertility. 5th ed. New York Oxford, Oxford University Press. Cerca con Google

USDA SCS (1984). Procedures for collecting soil samples and methods of analysis for soil survey. Soil Survey Investigation Report No. 1. Cerca con Google

Valderrama J.C. (1981). The simultaneous analysis of total nitrogen and total phosphorus in natural waters, Marine Chemistry, 10, 109-122. Cerca con Google

VanRaalte, C. D. and Patriquin, D. G. (1979). Use of the “acetylene blockage” technique for assaying denitrification in a salt marsh. Marine Biology, 52, 315-320. Cerca con Google

Vidon, P. and Hill, A.R. (2004). Landscape controls on the hydrology of stream riparian zones. Journal of Hydrology, 292, 210-228. Cerca con Google

Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H. and Tilman, D.G. (1997). Human alternation of the global nitrogen cycle: sources and consequences. Ecological Applications, 7(3), 737-750. Cerca con Google

Vought, L.B.M., Dahl, J., Pedersen, C.L. and Lacoursiere, J.O. (1994). Nutrient retention in riparian ecotones. Ambio, 23 (6), 342-348. Cerca con Google

Wallenstein, M.D., Myrold, D.D., Firestone, M. and Voytek, M. (2006). Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecol. Appl., 16, 2143–2152. Cerca con Google

Wallenstein, M.D., Peterjohn, W.H. and Schlesinger, W.H. (2006). Nitrogen fertilization effects on denitrifying communities and denitrification rates in an aggrading forest. Ecological Applications, 16, 2168-2176. Cerca con Google

Walter, H. M., Keeney, D. R. and Fillery, I. R. (1979). Inhibition of nitrification by acetylene. Soil Science Society of America Journal, 43, 195-196. Cerca con Google

Wardle, D.A., Yeates, G.W.., Williamson, W. and Bonner, K.I. (2003). The response of a three trophic level soil food web to the identity and diversity of plant species and functional groups. Oikos, 102, 45–56. Cerca con Google

Weller, D. E., Correll, D. L. and Jordan, T. E. (1994). Denitrification in riparian forests receiving agricultural runoff. In Global Wetlands, ed. W. J. Mitsch, pp. 117-132. Elsevier, New York. Cerca con Google

Wenger, S. (1999). A review of the scientific literature on riparian buffer width, extent, and vegetation. University of Georgia, Institute of Ecology, Office of Public Service and Outreach, Athens, GA. Cerca con Google

Wenger, S. J. and Fowler, L. (2000). Protecting river and stream corridors: creating effective local riparian buffer ordinances. Carl Vinson Institute. University of Georgia, Athens. Cerca con Google

Wenhui, Z., Zucong, C., Lichu, Y. and He, Z. (2007). Effects of the long-term application of inorganic fertilizers on microbial community diversity in rice-planting red soil as studied by using PCR-DGGE. Acta Ecologica Sinica, 27 (10), 4011-4018. Cerca con Google

Wertz, S., Dandie, C.E., Goyer, C., Trevors, J.T. and Patten C.L. (2009). Diversity of nirK denitrifying genes and transcripts in an agricultural soil. Applied and Environmental Microbiology, 75 (23), 7365-7377. Cerca con Google

Wilbur, J.D., Ghosh J.K., Nakatsu C.H., Brouder S.M., and Doerge R.W. (2002). Variable selection in high-dimensional multivariate binary data with application to the analysis of microbial community DNA fingerprints. Biometrics, 58, 378–386. Cerca con Google

Yamada, T., Logsdon, S. D., Tomer, M. D. and Burkart, M. R. (2007). Groundwater nitrate following installation of a vegetated riparian buffer. Science of Total Environment, 385, 297-309. Cerca con Google

Yoshinari, T. and Knowles, R. (1976). Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochemical and Biophysical Research Communications, 69, 705–710. Cerca con Google

Zaimes, G.N., Schultz, R.C. and Isenhart, T.M. (2004). Stream bank erosion adjacent to riparian forest buffers, row-crop fields, and continuously-grazed pastures along bear creek in Central Iowa. Journal of Soil and Water Conservation, 59 (1), 19-27. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record