Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Ferro, Stefania (2008) Effetto della struttura chimica del fotosensibilizzatore e del veicolante sulla fotoinattivazione di microorganismi patogeni mediante terapia fotodinamica. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

Photodynamic therapy (PDT) represents a well established therapeutic modality, which was originally developed and recently approved for the treatment of a variety of solid tumours. The technique involves the combination of a tumour-localized and intrinsically non-toxic photosensitiser with harmless visible light wavelengths, which are specifically absorbed by the photosensitising agent; as a result, some hyper-reactive oxygen species are generated, which induce the specific irreversible damage of malignant cells and tissues. A novel application of PDT has been made possible by the preparation of photosensitisers whose molecule is characterized by the presence of functional groups (e. g. positively charged quaternarized nitrogens), which promote a very fast interaction with bacterial cells, hence a highly preferential inactivation of such pathogenic agents in comparison with the main constituents of host tissues, such as fibroblasts and keratinocytes.
With an aim to expand the type of photosensitising dyes which can be efficaciously used as antimicrobial photodynamic agents, we decided to study the photosensitised inactivation of a well-known antibiotic-resistant Gram-positive bacterium, namely meticillin-resistant Staphylococcus aureus (MRSA), by using two non-cationic liposome-incorporated dyes, such as haematoporphyrin (HP) and chlorophyll (Chl).
Liposome-delivered photosensitisers have been often adopted in anti-tumour PDT and proven to yield a higher and more selective targeting of the neoplastic lesion. Thus, it appeared of interest to investigate the effect of liposomes as carriers of the photosensitising agent on its affinity for bacterial cells and the efficiency of photoinduced bacteria killing. Toward this purpose, we selected liposomal vesicles with a different degree of fluidity at the physiological temperature, as well as with different electric
charge or size.

HP delivered via DOTAP liposomes induced a marked enhancement in phototoxicity of bacteria, while Chl delivered via the same liposomes had no detectable effect on the survival of MRSA cells, independently of the released amount or the nature of the vesicles.
The cationic photosensitizer TDPyP used in the second part of this research was designed with the aim to increase the selectivity for bacterial cell membranes. This porphyrin was found to be efficiently incorporated into DOTAP vesicles in spite of its positive charge. Thus, when the cationic DOTAP phospholipid is used as the porphyrin carrier, an appreciable potentiation of the photocydal effect takes place.
TDPyP was also included in inclusion complexes made by cationic cyclodextrin (β-CD). The inactivation of MRSA was very successful and was found to be efficient against the Gram-negative strain.
The DOTAP-delivered porphyrin is recovered from the protoplasts in significantly larger amount as compared with the free TDPyP. That the plasma membrane represents a primary target of the TDPyP-photosensitised process is also in agreement with the finding that the activity of two typical marker enzymes of the MRSA plasma membrane, namely succinate and lactate dehydrogenase, is rapidly impaired during the early stages of the process photosensitised by DOTAP-delivered TDPyP.
It is reasonable to hypothesize that the DOTAP vesicles or cyclodextrin behave similarly with other polycationic systems, such as poly-lysine, which primarily act as a disorganizing agent for the native three-dimensional architecture of the bacterial wall, thereby enhancing its permeability to externally added chemical agents; these can thus more easily reach the bacterial plasma membrane, where several targets of the porphyrin-photosensitised processes are present.
Acanthamoeba species are responsible for opportunistic and non-opportunistic infections, which can be fatal or highly invalidating in humans and other animals, such as granulomatous amoebic encephalitis and cutaneous infections in immunocompromised individuals, and amoebic keratitis in immunocompetent individuals, respectively. The life cycle of Acanthamoeba consists of two stages, an actively feeding, dividing trophozoite and a dormant cyst. They encyst in response to adverse environmental conditions, such as food deprivation, desiccation, and changes in temperature and pH, forming a highly resistant stage endowed with a double wall containing cellulose as a major component. Antimicrobial therapy for these infections is generally empirical and patient recovery is often problematic, whereas some forms of combination therapy have proven to be more successful than single-drug therapies, because many drugs have amoebostatic but not amoebicidal activity. The development of alternative approaches in the medical and environmental control of such pathogenic protozoa is needed. Therefore we undertook a systematic investigation in order to assess the potential of PDT for the inactivation of protozoa in either the vegetative or cystic stage. In particular, our photosensitisation studies with A. palestinensis trophozoite cultures indicated the effectiveness of a tetracationic phthalocyanine (RLP068). We demonstrate that the RLP068 phthalocyanine, bearing four positively charged quaternary ammonium groups, exhibits a significant affinity for A. palestinensis even when the microorganism is in the cystic stage.
After irradiation there is an appreciable inactivation in both trophozoites and cysts; observations at the optical and electronic microscope demonstrated cytoplasmatic damages of vegetative stages and wall damages of cysts.
Thus, PDT appears to represent an efficient modality for the therapy of microbial infections and is characterized by a broad spectrum of action.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Jori, Giulio
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > BIOCHIMICA E BIOTECNOLOGIE > BIOCHIMICA E BIOFISICA
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):PDT; batteri; protozoi; fotosensibilizzatori; liposomi
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:446
Depositato il:06 Nov 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Allison, B.A., Pritchard, P.H. e Levy, J.G. 1994. Evidence for low-density lipoprotein receptor-mediated uptake of benzoporphyrin derivative. Br. J. Cancer 69: 833-839. Cerca con Google

2. Allison, B.A., Pritchard, P.H., Richter, A.M. e Levy, J.G. 1990. The plasma distribution of benzoporphyrin derivative and the effects of plasma lipoproteins on its distribution. Photochem. Photobiol. 52: 501- 507. Cerca con Google

3. Allison, B.A., Waterfield, E., Richter, A.M. e Levy, J.G. 1991. The effects of plasma lipoproteins on in vitro tumor cell killing and in vivo tumor photosensitization with benzoporphyrin derivative. Photochem. Photobiol. 54: 709-715. Cerca con Google

4. Arroy-Begovich, A., Cárabez-Trejo, A. e Ruíz-Herrera, J. 1980. Identification of the structural component in the cyst wall of Entamoeba invadens. J. Parasitol. 66: 735-741. Cerca con Google

5. Arroy-Begovich, A., Martínez-Palomo, A. e Sánchez-Pares, M.A. 1978. Formación de la pared cellular durante el enquistamiento de Entamoeba invadens. Arch. Invest. Med. (Mex) 9: 105-112. Cerca con Google

6. Asilian, A., Sadeghinia, A., Faghihi, G., e Momeni, A. 1991. Comparative study of the efficacy of combined cryotherapy and intralesional meglumine antimoniate (Glucantime) vs. cryotherapy and intralesional meglumine antimoniate (Glucantime) alone for the treatment of cutaneous leishmaniasis. Int. J. Dermatol. 43: 281-283. Cerca con Google

7. Atlante, A., Passarella, S., Quagliarello, E., Moreno, G. e Salet, G. 1989. Hematoporphyrin derivative (Photofrin II) photosensitization of isolated mithocondia: inhibition of ADP/ATP traslocation. J. Photochem. Photobiol., B: Biol, 4: 35-36. Cerca con Google

8. Ben Hur, E. e Rosenthal, I. 1986. Photohemolysis of human erythrocytes induced by aluminum phthalocyanine tetrasulfonate. Cancer Lett. 30: 321-327. Cerca con Google

9. Benchimo, M. 2004. The release of secretory vesicle in encysting Giardia lamblia. FEMS Microbiol. Lett. 235: 81-87. Cerca con Google

10. Bender, M.L. e Komiyama, M. 1978. Cyclodextrin Chemistry. Springer- Verlag. Berlin. Berg, K. 1996. Mechanisms of cell damage in photodynamic therapy. In: Fundamental Basis of Phototherapy, H. Honigsmann, G. Jori, A.E. Young (Eds.), OEMF, Milan, pp. 181–207. Cerca con Google

11. Bertoloni, G., Rossi, F., Valduga, G. e Jori, G. 1992. Photosensitizing activity of water- and lipid- soluble phthalocyanines on prokaryotic and eukaryotic microbial cells. Microbiol. 71: 33-46. Cerca con Google

12. Bertoloni, G., Salvato, B., Dall’Acqua, M., Vazzoler, M. e Jori, G. 1984. Haematoporphyrin-sensitized photoinactivation of Streptococcus faecalis. Photochem. Photobiol. 39: 811-816. Cerca con Google

13. Blanton, W.E. e Villemez, C.L. 1978. Molecular size and chain length distribution in Acanthamoeba cellulose. J. Protozool. 25: 264-267. Cerca con Google

14. Bonnet, R., Lambert, C., Land, E.J., Scourides, P.A., Sinclair, R.S. e Truscott, T.G. 1983. The triplet and radical species of hematoporphyrin and some of its derivatives. J. Photochem. Photobiol., B: Biol. 1: 93-101. Cerca con Google

15. Brewster M.E. e Loftsson, T. 2007. Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59: 645-666. Cerca con Google

16. Cambpell, R.B., Balasubramanian, S.V. e Straubinger, R.M. 2001. Phospholipid-cationic lipid interactions: influences on membrane and vesicles properties, Biochim. Biophys. Acta. 1512: 27-39. Cerca con Google

17. Chambers, J.A. e Tompson, J.E. 1972. A scanning electron microscopy study of excystment process of Acanthamoeba castellanii. Exp. Cell Res. 73: 415-421. Cerca con Google

18. Chávez-Munguìa, B., Cristóbal-Ramos, A.R., González-Robles, A., Tetsumi, V. e Martinez-Palomo, A. 2003. Ultrastructural study of Entamoeba invadens encystation and excystation. J. Submicrosc. Cytol. Pathol 35: 235-243. Cerca con Google

19. Chávez-Munguía, B., Omana-Molina, M., González-Lázaro, M., González- Robles, A., Bonilla, P. e Martnez-Palomo, A. 2005. Acanthamoeba castellanii encystation and excystation. J Eukariot. Microbiol. 52: 153- 158. Cerca con Google

20. Clare, N.T. 1956. Photodynamic action and its pathological effects. In: Radiation Biology. Hollaender, A. (Ed.) McGraw-Hill, New York, pp. 693- 723. Cerca con Google

21. Clark, I.A., Chaudhri, G. e Cowden, W.B. 1989. Some roles of free radicals in malaria. Free Rad. Biol. Med. 6: 315. Cerca con Google

22. Coppi, A. e Eichenger, D. 1999. Regulation of Entamoeba invadens encystations and gene expression with galactose and Nacetylglucosamine. Mol. Biochem. Parasitol. 102: 67-77. Cerca con Google

23. Darwent, J.R., Douglas, P., Harriman, A., Porter, G. e Richoux, M.C. 1982. Metal phthalocyanines and porphyrins as photosensitizers for reduction of water to hydrogen. Coord. Chem. Rev. 44: 83-126. Cerca con Google

24. Das, S. e Gill, F.D. 1991. Chitin syntase in encysting Entamoeba invadens. Biochem. J. 280: 641-647. Cerca con Google

25. Donohue, R. Mazzaglia, A., Ravoo, B.J. e Darcy, R. 2002. Cationic ?- cyclodextrin bilayer vesicles. Chem. Commun. 2864-2865. Cerca con Google

26. Dougherty, T.J. 1987. Photosensitizers: therapy and detection of malignant tumors. Photochem. Photobiol. 45: 879-889. Cerca con Google

27. Dutta, S., Ray, D., Kolli, B.K. e Chang, K. 2005. Photodynamic sensitization of Leishmania amazonensis in extracellular and intracellular stages with aluminium phthalocyanine chloride for photolysis in vitro. Antimicrob. Agents. Chemoter. 49: 4474-4484. Cerca con Google

28. Ehrenberg, B., Malik, Z. e Nitzan, Y. 1985. Fluorescence spectral changes of haematoporphyrin derivative upon binding to lipid vesicles, Staphylococcus aureus and Escherichia coli cells. Photochem. Photobiol. 41: 429-435. Cerca con Google

29. Ferro, S. A.A. 2000-2001. Strategie per ottimizzare l’efficienza e la selettività di fotoinattivazione di Staphylococcus aureus sensibilizzato da ftalocianine. Tesi di laurea. Cerca con Google

30. Ferro, S., Ricchelli, F., Mancini, G., Tognon, G. e Jori, G. 2006 A. Inactivation of methicillin-resistant Staphylococcus aureus (MRSA) by liposome-delivered photosensitising agents. J. Photochem. Photobiol., B:Biol. 83: 98-104. Cerca con Google

31. Ferro, S., Coppellotti, O., Roncucci, G., Ben Amor, T. e Jori, G. 2006 B. Photosensitised inactivation of Acanthamoeba palestinensis in the cystic stage. J. Appl.. Microbiol. 101: 206-212. Cerca con Google

32. Ferro, S., Ricchelli, F., Monti, D., Mancini, G. e Jori, G. 2007. Efficient photoinactivation of methicillin-resistant Staphylococcus aureus by a novel porphyrin incorporated into a poly-cationic liposome. Int. J. Biochem. Cell Biol. 39: 1026-1034. Cerca con Google

33. Frisardi, M., Ghosh, S.K., Field, J., Van Dellen, K., Rogers, R., Robins, P. e Samuelson, J. 2000. The most abundant glycoprotein of amoebic cyst walls (Jacob) is a lectin with five Cys-rich, chitin-binding domains. Infect. Immun. 68: 4217-4224. Cerca con Google

34. Galante, Y.M. e Hatefy, Y. 1978. Resolution of complex I and isolation of NADH dehydrogenase and an iron-sulfur protein. Methods Enzymol. Fleischer S. e Packer L. (Eds) Academic Press, New York, vol III, pp. 15-21. Cerca con Google

35. Gardlo, K., Horska, Z., Enk, C.D., Rauch, L., Megahed, M., Ruzicka, T. e Fritsch, C. 2003. Treatment of cutaneous leishmaniasis by photodynamic therapy. J. Am. Acad. Dermatol. 48: 893-896. Cerca con Google

36. Garvie, E.I: 1980. Bacterial lactate dehydrogenase. Microbiol. Rev. 44: 106-139. Cerca con Google

37. Gross, E., Ehrenberg, B. e Johnson, F.M. 1992. Singlet oxygen generation by porphyrins and the kinetics of 9,10-dimethylanthracene photosensitization in liposomes. Photochem. Photobiol. 57: 808-813. Cerca con Google

38. Grossweiner, L.I. e Smith, K.C. 1989. Photochemistry. In: The Science of Photobiology Smith K.C. (Ed) Plenum Press, New York, pp. 47-78. Cerca con Google

39. Hamblin, M.R. e Ortel, B. 2001. Future directions-photosensitizer targeting and new disease indications. In: Therapy and Fluorescent Diagnosis in Dermatology, Elsevier, Amsterdam, pp. 339-366. Cerca con Google

40. Hamblin, M. R., O’Donnell, D. A., Rajagopalan, K., Michaud, N., Sherwood, M. E. e Hasan, T. 2002. Polycationic photosensitiser conjugates: effects of chain length and gram classification on the photodynamic inactivation of bacteria. J. Antimicrob. Chemother. 49: 941–951. Cerca con Google

41. Ho, Y.K., Pandey, R.K., Missertand, J.R. e Dougherty, T.J. 1990. Some components of the tumor-localizing fraction of hematoporphyrin derivative. Photochem. Photobiol. 52: 1085-1088. Cerca con Google

42. Ishimaru, A. 1978. Wave propagation and scattering in random media. Academic Press, New York. Cerca con Google

43. Jori, G. e Spikes, J.D. 1984. Photobiochemistry of porphyrins. In: Topics in Photomedicine .Smith, K.C. (Ed.) Plenum Press, New York, pp. 183- 318. Cerca con Google

44. Jori, G. 1987. Photodynamic therapy of solid tumours. Radiat. Phys. Chem. 30: 375-380. Cerca con Google

45. Jori, G. e Brown, S.B. 2004. Photosensitised inactivation of microorganisms. Photochem. Photobiol. Sci. 3: 403–405. Cerca con Google

46. Jori, G., Fabris, C., Soncin, M., Ferro, S., Coppellotti, O., Dei, D., Fantetti, L., Chiti, G. e Roncucci, G. 2006. Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg. Med. 38: 468-481. Cerca con Google

47. Kassab, K., Dei, D., Roncucci, G., Jori, G. e Coppellotti, O. 2003. Phthalocyanine-photosensitized inactivation of the patogenic protozoa, Acanthamoeba palestinensis. Photochem. Photobiol. Sci. 2: 668-672. Cerca con Google

48. Kessel, D. 1977. Effects on photoactivated porphyrins at the cells surface of leukemia L1210 cells. Biochem. 16: 3443-3493. Cerca con Google

49. Kessel, D. 1986. Sites of photosensitization by derivatives of hematoporphyrin, Photochem. Photobiol. 44: 489–494. Cerca con Google

50. Khan, N.A. 2003. Pathogenesis of Acanthamoeba infections. Microb. Pathogen. 34: 277-285. Cerca con Google

51. Kremer, J.M., Esker, M.W., Pathmamanoharan, C. e Wiersema, P.H. 1977. Vesicles of variable diameter prepared by a modified injection method. Biochem. 16: 3932-3935. Cerca con Google

52. Krinsky, N.I. 1968. The protective function of carotenoid pigments. In: Photophysiology, Giese A.C., (Ed) Academic Press, New York, 3: 123- 139. Cerca con Google

53. Krinsky, N.I. 1982. Photobiology of carotenoid protection. In: The Science of Photomedicine. J.D. Regan e J.A. Parrish (Eds) Plenum Press, New York, pp. 397-407. Cerca con Google

54. Lambert, C.R., Reddi, E., Spikes, J.D., Rodgers, M.A. e Jori, G. 1986. The effects of porphyrin structure and aggregation state on photosensitized processes in aqueous and micellar media. Photochem. Photobiol. 44: 595-601. Cerca con Google

55. Lanfredi-Rangel, A., Attias, M.M., Reiner, D.S., Gillin, F.D. e De Souza, W. 2003. Structure of the biogenesis of Giardia lamblia encystation secretory vesicles. J. Struct. Biol. 143: 153-163, Cerca con Google

56. León, G., Fiori, C., Das, S., Moreno, M., Tovar, R., Sánchez-Salas, J.L. e Munoz, M.L. 1997. Electron probe analysis of electron-dense granules secreted by Entamoebna hystolitica. Mol. Biochem. Parasitol. 85: 233- 242. Cerca con Google

57. Maeda, H. e Ispida, N. 1967. Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener. J. Biochem. (Tokyo) 62: 276-278. Cerca con Google

58. Malik, Z., Gozhansky, S. e Nitzan, Y. 1982. Effects of photoactivated HPD on bacteria and antibiotic resistance. Microbiol. Lett. 21: 103-112. Cerca con Google

59. Malik, Z., Ladan, H. e Nitzan, Y. 1988. Mesosomal-structures and antimicrobial-induced by hemin-oxidation or porphyrin photodynamic sensitization in Staphylococci. Curr. Microbiol. 16: 321-328. Cerca con Google

60. Malik, Z., Ladan, H. e Nitzan, Y. 1992. Photodynamic inactivation of Gram-negative bacteria. Problems and possible solutions. J. Photochem. Photobiol., B: Biol. 14: 262-266. Cerca con Google

61. Marciano–Cabral, F. e Cabral, G. 2003. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 16: 273-307. Cerca con Google

62. Martinez, A. J e Visvesvara, J. S. 1997. Free-living, amphizoic, and opportunistic amoebas. Brain. Pathol. 70: 583-598. Cerca con Google

63. Martínez-Palomo, A., Meza, I., Chávez, B., Rosales-Encina, J.L., Munoz, M.L., González-Robles, A. e Rojkind, M. 1987. Entamoeba hystolitica: activation and release of membrane dense bodies. In: Host-parasite cellular and molecular interactions in protozoal infections. Chang, K.P. e Snary, D. (Ed.), NATO ASI Series. Springer-Verlag, Berlin, Heidelberg. H11: 371-376. Cerca con Google

64. Merchat, M., Spikes, J.D., Bertoloni, G. e Jori, G. 1996. Studies on the mechanism of bacteria photosensitization by meso-substituted cationic porphyrins. J. Photochem. Photobiol., B: Biol. 35: 149-157. Cerca con Google

65. Minnock, A., Vernon, D., Schofield, J., Parish, J.H. e Brown, S.B. 1996. Photoinactivation of bacteria. Use of a cationic zinc phthalocyanine to photoinactivate both Gram-negative and Gram-positive bacteria. J. Photochem. Photobiol., B: Biol. 32: 159-164. Cerca con Google

66. Moan, J. e Sommer, S. 1985. Oxygen dependence of photosensitizing effect of haematoporphyrin derivative in NHIK 3025 cells. Cancer Res. 45: 1608-1610. Cerca con Google

67. Neff, R.J. e Neff, R.H. 1969. The biochemistry of amoebic encystment. Symp. Soc. Exp. Biol., 23: 51-81. Cerca con Google

68. Nikaido, H. 1989. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob. Agents Chemother. 33: 1831-1836. Cerca con Google

69. Nitzan, Y., Gozhansky, S. e Malik, Z. 1983. Effect of photoactivated haematoporphyrin derivative on the viability of Staphylococcus aureus. Curr. Microbiol. 8: 279-284. Cerca con Google

70. Olvera, A., Pèrez-Casas, S. e Costas, M. 2007. Heat capacity contributions to the formation of inclusion complexes. J Phys. Chem., B: Biol. 111: 11497-11505. Cerca con Google

71. Osborn, M.J., Gander, J.E., Parisi, E. e Carson, J. 1972. Mechanism of assembly of the outer membrane of Salmonella typhimurium. J. Biol. Chem. 247: 3962-3972. Cerca con Google

72. Polo, L., Segalla, A., Bertoloni, G., Schaffer, K. e Reddi, E. 2000. Polylysine-porphycene conjugates as efficient photosensitiser for the inactivation of microbial pathogens. J. Photochem. Photobiol., B: Biol. 59: 152–158. Cerca con Google

73. Reddi, E., Jori, G., Rodgers, M.A.J. e Spikes, J.D. 1983. Flash photolysis studies of hemato- and copro-porphyrin in homogeneous and microheterogeneous aqueous dispersions. Photochem. Photobiol. 38: 639-645. Cerca con Google

74. Reddi, E. e Jori, G. 1988. Steady-state and time-resolved spectroscopic studies of photodynamic sensitizers: porphyrins and phthalocyanines Rev. Chem. Interm. 10: 241-268. Cerca con Google

75. Reddi, E., Zhou, C., Biolo, R., Menegaldo, E. e Jori, G. 1990. Liposomeor LDL-administred Zn(II)-phthalocyanine as a photodynamic agent for tumors. I. Pharmacokinetic properties and phototherapeutic efficiency. Br. J. Cancer 61: 407-411. Cerca con Google

76. Reddi, E., Ceccon, M., Valduga, G., Jori, G., Bommer, J. C. e Elisei, F. 2002. Photophysical properties and antibacterial activity of mesosubstituted cationic porphyrins. Photochem. Photobiol. 75: 462–470. Cerca con Google

77. Reeves, W.J. e Fimognari, G.M. 1966. L-lactic dehydrogenase: heart (H4). Methods Enzymol. Wood W.A. (Ed.), Academic Press, New York, vol IX, pp. 288-294. Cerca con Google

78. Reithinger, R.M., Mohsen, M., Wahid, M., Bismullah, R.J. Quinnel, C.R. Davies, J. Kolaczinsky e David, J. R. 2005. Efficacy of termotherapy to treat cutaneous leishmaniasis caused by Leishmania tropica in Kabul, Afghanistan: a randomized controlled trial. Clin. Infect. Dis. 40: 1148- 1155. Cerca con Google

79. Ricchelli, F., Jori, G., Gobbo, S. e Tronchin, M. 1991. Liposomes as models to study the distribution of porphyrins in cell membranes. Biochim. Biophys. Acta 1065: 42-48. Cerca con Google

80. Robberecht, R. 1989. Environmental Photobiology. In: The Science of Photobiology. Smith K.C (Ed) Plenum Press, New York, pp. 135-153. Cerca con Google

81. Rodanelli, E.G., Osculati, F., Gerna, G. e Fiori, G.P. 1965. Ricerche microelettroniche su Entamoeba invadens. Boll. Inst. Sieroter. Milan. 44: 218-239. Cerca con Google

82. Rodgers, M.A.J. 1985. Activated oxygen. In: Primary Photoprocesses in Biology and Medicine. Bensasson, R.V., Jori, G., Land, E.J. e Truscott, T.G. (Eds) NATO ASI Series, Plenum Press, New York, pp.181-195. Cerca con Google

83. Raab O. 1900. Uber die wirkung fluoriziender stoffe auf infusorien. Zeit Biol. 39: 524–546. Cerca con Google

84. Saenger, W. 1980. Cyclodextrin inclusion compounds in research and industry. Angew. Chem. Int. Ed. Engl. 19: 344-362. Cerca con Google

85. Santos, E. e Kaback, H.R. 1986. Monoclonal affinity purification of Dlactate dehydrogenase from Escherichia coli. Methods Enzymol. 126: 370-377. Cerca con Google

86. Sbota, A. 1985. Subplasmalemmal calcium-binding micro-regions in Acanthamoeba. J Cell Sci. 79: 217-235. Cerca con Google

87. Schardinger, F. 1903. Über thermophile bakterien aus verschiedenen Speisen und milch, sowie über einige Umsetzungsprodukte derselben in kohlenhydrathaltigen Nährlösungen, darunter krystallisierte polysaccharide (dextrine) aus stärke. Z. Untersuch. Nahr. u. Genussm. 6: 865-880. Cerca con Google

88. Schardinger, F. 1911. Bildung kristallisierter polysaccharide (dextrine) aus stärkekleister durch microben. Zentralbl. Bakteriol. Parasitenk. Abt. II 29: 188-197. Cerca con Google

89. Segalla, A., Fedeli, F., Reddi, E., Jori, G. e Cross, A. 1997. Effect of chemical structure and hydrophobicity on the pharmacokinetic properties of porphycenes in tumour-bearing mice. Int. J. Cancer 72: 329-336. Cerca con Google

90. Selman, S.H., Kreimer-Birnbaum, M. e Chandhuri, K. 1986. Photodynamic treatment of trasplantable bladder tumors in rodents after pretreatment with chloroaluminium tetrasulfophthalocyanine. J. Urol. 136: 141-145. Cerca con Google

91. Slavin, I., Saura, A., Carranza, P.G., Touz, M.G., Nores, M.J. e Luján, H.D. 2002. Dephosphorylation of cyst wall proteins by a secreted lysosomial acid phosphatase is essential for excystation of Giardia lamblia. Mol. Biochem. Parasitol. 122: 95-98. Cerca con Google

92. Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gortener, F.H., Provengano, M.D., Fijimoto, E.K., Goeke, N.M. Olson, B.J. e Klenk, D.C. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76-85. Cerca con Google

93. Smith, O.M., Dolan, S.A., Dvorak, J.A., Wellemes, T.E. e Sieber, F. 1992. Merocyanine 540-sensitized photoinactivation of human erythrocytes parasitized by Plasmodium falciparum. Blood 1: 21-24 Cerca con Google

94. Soncin, M., Polo, L., Reddi, E., Jori, G., Kenney, M.E. Cheng, G. e Rodgers, M.A. 1995. Effect of axial ligation and delivery system on the tumour-localising and –photosensitising properties of Ge(IV)- Cerca con Google

95. octabutoxy-phthalocyanines. Br. J. Cancer 71: 727-732. Cerca con Google

96. Soncin, M., Fabris, C., Busetti, A., Dei, D., Nistri, D., Roncucci, G. e Jori, G. 2002. Approaches to selectivity in the Zn(II)-phthalocyaninephotosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus. Photochem. Photobiol. Sci. 10: 815-819. Cerca con Google

97. Spikes, J.D. 1986. Phthalocyanines as photosensitizers in biological systems and photodynamic therapy. Photochem. Photobiol. 43: 691-699. Cerca con Google

98. Spikes, J.D. 1989. Photosensitization. In: The Science of Photobiology. Smith K.C. (Ed) Plenum Press, New York, pp. 79-110. Cerca con Google

99. Spikes, J.D. e Bommer, J.C. 1986. Zinc-tetrasulphophthalocyanine as a photodynamic sensitizer for biomolecules. Int. J. Radiat. Biol. 50: 41-45. Cerca con Google

100. Szöllõsi, J. 1994. Fluidity/viscosity of Biological Membranes, in: Mobility and Proximity in Biological Membranes, Damjanovich, S., Szöllõsi, J., Trón, J, Edidin, M. (Eds.), CRC Press, Boca Raton, 137- 208. Cerca con Google

101. Tomlinson, G. e Jones, E.A. 1962. Isolation of cellulose from the cyst wall of a soil amoeba. Biochim. Biophys. Acta 63: 194-200. Cerca con Google

102. Turro, N.J. 1978. Modern Molecular Photochemistry. The Benjamin/Cummings Publishing Co., Menlo Park, California. Cerca con Google

103. Tyrrel, R.M. e Keyse, S.M. 1990. The interaction of UV-A radiation with cultured cells. J. Photochem. Photobiol., B: Biol. 4: 349-361. Cerca con Google

104. Valduga, G., Nonell, S., Reddi, E., Jori, G. e Braslavsky, S. 1988. The production of singlet molecular oxygen by Zinc(II)-phthalocyanine in ethanol and in unilamellar vesicles. Chemical quenching and phosphorescence studies. Photochem. Photobiol. 48: 1-5 Cerca con Google

105. Valduga, G., Reddi, E., Jori, G., Cubeddu, R., Taroni, P. e Valentini, G. 1992. Steady state and time-resolved spectroscopic studies on zinc(II)- phthalocyanine in liposomes. J. Photochem. Photobiol., B: Biol. 16: 331- 340. Cerca con Google

106. von Tappeiner H. 1904. Zur kenntis der lichtwirkenden (fluoreszierenden) stoffe. Dtsch Med Wochen. 1: 579–580. Cerca con Google

107. Villiers, A. 1891. Sur la fermentation de la fècule par l’action du ferment butyrique. Comp. Rend. Acad. Sci. 112: 536-538. Cerca con Google

108. Wagner, J.R., Ali, H., Langlois, R., Brasseur, N. e Van Lier, J. 1987. Biological activities of phthalocyanines–VI. Photooxidation of Ltryptophan by selectively sulfonated gallium phthalocyanines: singlet oxygen yields and effect of aggregation. Photochem. Photobiol. 45: 587- 594. Cerca con Google

109. Whitten, D.G. 1978. Photochemistry of porphyrins and their metal complexes in solution and organized media, Rev. Chem. Intermed. 2: 107–138. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record