Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Crivellaro, Alan (2012) Wood, bark and pith structure in trees and shrubs of Cyprus: anatomical descriptions and ecological interpretation. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
38Mb

Abstract (inglese)

The dissertation deals with wood, bark and pith anatomy of trees and shrubs of Cyprus. It consist of three parts: (1) the anatomical description of stem wood, twig bark and pith of the endemic and indigenous trees and shrubs species belonging to the flora of the island, (2) the ecological wood and bark anatomies interpretation and (3) a study focused on conductive vs. mechanical tradeoff in climbers vs. subshrubs.
Original samples for each species were collected during 3 field trips on Cyprus. About 270 species were collected, and 600 double stained (astra blue and safranin) slides were prepared. New lists of anatomical features were developed for the specific needs of this research, especially for bark and pith anatomy. The described species represent almost the entire woody flora of the island. A great number of them have never been anatomically described before. The anatomical descriptions are a perfect base for wood anatomists interested to wood structure of single species or the range of anatomical patterns within the Eastern Mediterranean region, and also for archeologist and palaeobotanists who determine wood remains, and for wood technologist who compare structures with physical wood properties.
In the ecological wood anatomy analysis we observed wood diffuse porous structure associated to woody chamaephytes. We detected semi-ring and ring porous xylems related to nanophanerophytes and phanerophytes. Rays features seem to be associate to space filling in wood, and the rays dimensional features seems to be constrained by vessels. In fact, rays became larger moving from woody chamaephytes to phanerophytes, and the numbers of rays per millimeter decrease moving from woody chamaephytes to phanerophytes, maybe allowing vessels to be greater in taller life forms. Raylessness is clearly associated to woody chamaephytes. Rays composition vary from homogeneous in woody chamaephytes, to heterogeneous in nanophanerophytes and phanerophytes. The axial parenchyma was rare in woody chamaephytes, apotracheal in nanophanerophytes and mainly paratracheal in phanerophytes. Endemic species showed absence of axial parenchyma, raylessness, homogeneous rays, and did not show association to tension wood. We recorded a predominance of diffuse porous species in dry/hot site, and the presence of ring porous species in wet/cold sites. Diffuse porous structures were associated to rocky and sandy sites, and semi-ring porous woods to forest and shrublands habitats. Thick walled fibers species were associated to moist and ruderal habitats, thin walled fibers to forest and shrubland species. A clear trend was observed in fiber wall thickness vs. wood density: greater in the fiber wall thickness, greater is the wood density.
The bark anatomical features describe sieve tube morphology and distribution, sclerenchyma presence and arrangement, rays, phellem, phelloderm, crystals, secretory structures, and appearance under polarized light. Sieve tubes were typically arranged tangentially in nanophanerophytes but not in woody chamaephytes. Bark ray dilatation was noted in moist site species but lacking in endemic, shrubland, and forest species. Sclerenchyma tended to be lacking in woody chamaephytes, and in endemic and dry site species. The tangential arrangement of fibers tended to be lacking in woody chamaephytes and Mediterranean species. The presence of prismatic crystals was associated with nanophanerophytes and phanerophytes, but not with endemic, shrubland, or forest species. Phloem homogeneity was associated with endemic species. Phellem homogeneity was associated with climbers, phanerophytes, and species of moist habitats. The association of sclerenchyma with life form suggests a biomechanical role, especially for young twigs. The level of endemism and the species' habitat were strongly linked to a number of bark features opening new fields of ecophyletic and ecophysiological investigation.
In the third part of the dissertation the all sampled woody climbers (10 species) and most of the woody subshrubs (25 species) of Cyprus were characterized by their vessel and fiber anatomies relative to mechanical and hydraulic function. Consistent with their lower need for self-support, on average the climbers had lower wood density than did the subshrubs, and had a lower proportion of their cross-section devoted to fibers. Consistent with climbers’ need for higher hydraulic conductance and total plant height, climbers had vessel sizes and frequencies closer to the theoretical packing limit than did subshrubs.

Abstract (italiano)

La tesi si occupa di anatomia del legno, della corteccia e del midollo di alberi e arbusti appartenenti alla flora dell'isola di Cipro. Si compone di tre parti: (1) la descrizione anatomica del legno del tronco, e di corteccia e midollo dei rametti, (2) l'interpretazione ecologica dell'anatomia del legno e della corteccia e (3) uno studio focalizzato sul compromesso delle funzioni di conduzione e di sostegno meccanico in liane a piccoli arbusti.
Nel corso di 3 campionamenti a Cipro sono stati raccolti campioni per circa 270 specie. Da questi sono stati realizzati 600 preparati anatomici a doppia colorazione (astra blu e safranina). Nuove liste codificate per la descrizione delle caratteristiche anatomiche della corteccia e del midollo sono state sviluppate appositamente per gli scopi di questa ricerca. Le specie descritte rappresentano quasi l’intera flora legnosa dell’isola. Un gran numero di specie sono qui descritte prima dal punto di vista anatomico. Le descrizioni anatomiche sono una base perfetta per anatomisti legno interessati alla struttura in legno di singole specie o allo studio della gamma di modelli anatomici nella regione del Mediterraneo orientale, e anche per archeologi e paleobotanici che hanno la necessità di identificare reperti legnosi, e anche per tecnologi del legno che confrontano le strutture anatomiche con le proprietà fisiche e meccaniche del legno.
Le indagini di ecologia del legno hanno rilevato relazioni statisticamente significative tra legno a porosità diffusa e camefite legnose, mentre le porosità semi diffusa e anulare sono legate alle nanofanerofite e alla fanerofite arboree rispettivamente. Le caratteristiche dei raggi sembrano associate al riempimento dello spazio nel legno e le dimensioni dei raggi in sezione trasversale sembrano limitate dai vasi. Infatti i raggi sono più larghi nelle fanerofite arboree che nelle camefite legnose e il numero di raggi per millimetro diminuisce passando da fanerofite arboree, a nanofanerofite fino alle camefite legnose, consentendo così alla forme biologiche con altezza maggiore di avere vasi più grandi. L'assenza di raggi è una caratteristica tipica delle camefite legnose. La composizione dei raggi varia da omogenea nelle camefite legnose a eterogenea in nanofanerofite e fanerofite arboree. Il parenchima assiale è raro o difficilmente osservabile nelle camefite legnose, tipicamente apotracheale nelle nanofanerofite e principalmente paratracheale nelle fanerofite arboree. Le specie endemiche a Cipro sono caratterizzate dall'assenza di parenchima assiale, dall'assenza di raggi o dalla presenza di raggi omogenei e non mostrano alcuna relazione significativa con la presenza di legno di tensione. È stata riscontrata una netta predominanza di specie a porosità diffusa nei siti caldi e secchi, e di specie a porosità anulare in siti umidi e freddi. Legni a porosità diffusa appartengono a specie che vivono in siti rocciosi e sabbiosi, la porosità anulare è associata ad habitat forestali e di macchia mediterranea. Le fibre a parete spessa risultano legate a a siti umidi, fibre a pareti sottili ad habitat forestali e di macchia mediterranea. Un chiaro trend lega proporzionalmente lo spessore delle fibre con la densità del legno.
Le caratteristiche anatomiche analizzate per la corteccia descrivono morfologia e distribuzione dei tubi cribrosi, la presenza e la disposizione di tessuti sclerenchimatici, i raggi, il sughero, il felloderma, i cristalli, le strutture di secrezione e la visibilità in luce polarizzata. I tubi cribrosi sono tipicamente disposti in bande tangenziali nelle nanofanerofite, ma non nelle camefite legnose. L'allargamento dei raggi nel felloderma è legato a specie che vegetano in siti midi, non è presente nelle specie endemiche, in quelle tipiche di macchia mediterranea a negli habitat forestali. I cristalli sono associati alle nanofanerofite e alle fanerofite arboree, non alle specie endemiche, di macchia e di ambiente forestale. L'omogeneità del felloderma è stata riscontrata nelle fanerofite lianose, in quelle arboree e alle specie di ambienti umidi. L'associazione di tessuti sclerenchimatici con le forme biologiche suggerisce un ruolo biomeccanico di questo tessuto, soprattutto nei giovani rametti. Il livello di endemico e l'habitat delle specie sono fortemente legati a diverse caratteristiche anatomiche della corteccia offrendo nuove possibilità di studio nel campo dell'ecologia e dell'ecofisiologia.
Nella terza parte che costituisce la tesi tutte le 10 specie di fanerofite lianose campionate e la maggior parte delle camefite legnose (25 specie) sono state caratterizzate per quanto riguarda le caratteristiche anatomiche di vasi e fibre che hanno ripercussioni importanti nelle funzioni di conduzione e di sostegno meccanico del legno. In accordo con la loro inferiore necessita di auto-sostegno, le fanerofite lianose hanno una densità basale inferiore rispetto alle camefite legnose. Inoltre, le liane presentano una inferiore proporzione di sezione trasversale destinata a fibre. In accordo con le maggiori necessità conduttive e in relazione alla loro altezza, le liane hanno un diametro e una frequenza dei vasi che le colloca più vicine al funzione "packing limit" rispetto alle camefite legnose.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Urso, Tiziana
Correlatore:Schweingruber, Fritz H.
Dottorato (corsi e scuole):Ciclo 24 > Scuole 24 > TERRITORIO, AMBIENTE, RISORSE E SALUTE > ECOLOGIA
Data di deposito della tesi:25 Gennaio 2012
Anno di Pubblicazione:25 Gennaio 2012
Parole chiave (italiano / inglese):anatomia del legno, anatomia della corteccia, anatomia del midollo, flora mediterranea, identificazione legno, ecological wood anatomy, ecological bark anatomy, Mediterranean flora, wood identification
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/06 Tecnologia del legno e utilizzazioni forestali
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:4471
Depositato il:05 Nov 2012 12:02
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abbate Edlmann M.L., De Luca L. & S. Lazzeri. 1994. Atlante anatomico degli alberi ed arbusti della macchia mediterranea. Firenze (IT) Istituto Agronomico per l'Oltremare. Cerca con Google

Aloni R. & M.H. Zimmermann. 1983. The control of vessels size and density along the plant axis: a new hypothesis. Differentiation. 24: 203-208. Cerca con Google

Alziar G. 1985. Contribution a l’histoire naturelle de l’ile de Chypre. La flore. Biocosme Mésogéen. 2: 1-20. Cerca con Google

Alziar G. 1986. Contribution a l’histoire naturelle de l’ile de Chypre. La flore. 2e partie. Biocosme Mésogéen. 3: 49--57. Cerca con Google

Alziar G. 1995. Généralités sur la flore de l’île de Chypre. Quelques données quantitatives. Ecol. Medit. 21: 47-52. Cerca con Google

Alziar G. 1999. Compte rendu du 4ème Iter Mediterraneum. Bocconea 11: 5--83. Cerca con Google

Arroyo M.T.K. & C. Von Bohlen. 1994. Distribution patterns of endemic species in the Mediterranean-type flora of Chile. Noticiero Biol. 2, 12. Cerca con Google

Baas P. 1973. The wood anatomical range in Ilex (Aquifoliaceae) and its ecological and phylogenetic significance. Blumea 21: 193. Cerca con Google

Baas P. 1976. Some functional ad adaptive aspects of vessel member morphology. In: Baas P., Bolton A.J. & D.M. Catling. (eds.), Wood structure in biological and technological research. Leiden Botanical Series 3: 157-181. Leiden University Press. Leiden. Cerca con Google

Baas P. 1982. Systematic, phylogenetic and ecological wood anatomy - history and perspectives. - In: Baas P. (ed.), New perspectives in wood anatomy: 23-58. Nijhoff / Junk, The Hague. Cerca con Google

Baas P. 1986. Ecological patterns in xylem anatomy. In: Givnish J. (ed.), On the economy of plant form and functions: 327-352. Cambridge University Press. Cambridge. Cerca con Google

Baas P. 2001. Leeuwenhoek's observation on the anatomy of bark. Holzforschung. 55:123-127. Cerca con Google

Baas P & S. Carlquist. 1985. A comparation of the ecological wood anatomy of the floras of southern California and Israel. IAWA Bulletin 6(4): 349-354. Cerca con Google

Bass P. & R.B. Miller. 1985. Functional and ecological wood anatomy. Some introductory comments. IAWA Bulletin 6(4): 281-282. Cerca con Google

Baas P. Werker E. & A. Fahn. 1983. Some ecological trends in vessel characters. IAWA Bull. 4(2-3): 141-159. Cerca con Google

Bamber I.W. 1984. Wood anatomy of some Australian rainforest vines. In: Sudo S. (ed.), Proceeding of Pacific regional wood anatomy conference. Wood technology division of the forestry and forest products research institute. Ibaraki, Japan. Cerca con Google

Barber I. & A. Valles. 1995. Contribution to the knowledge of the bioclimate and vegetation of the island of Cyprus. Post Diploma Course in Forestry. Nicosia: Cyprus Forestry College, 37 pp. Cerca con Google

Barnard H.R. & M.G. Ryan. 2003. A test of the hydraulic limitation hypothesis in fast-growing Eucalyptus saligna. Plant Cell and Environment. 26(8): 1235-1246. Cerca con Google

Blondel J. & J. Aronson. 1999. Biology and wildlife of the Mediterranean region. Oxford University Press Cerca con Google

Brullo S. Pavone P. & C. Salmeri. 1993. Three new species of Allium (Alliaceae) from Cyprus. Condollea. 48: 279-290. Cerca con Google

Carlquist S. 1958. Wood anatomy of Heliantheae (Compositae). Trop. Woods. 108: 1-30. Cerca con Google

Carlquist S. 1966. Wood anatomy of Compositae: a summary, with comments on factors controlling wood evolution. Aliso. 6: 25-44. Cerca con Google

Carlquist S. 1974. Island biology. Columbia University Press: New York and London. 660 pp. Cerca con Google

Carlquist S. 1975. Ecological strategies in xylem evolution. University of California Press. Los Angeles, London. 259 pp. Cerca con Google

Carlquist S. 1985. Observation on functional wood histology of vines and lianas: vessels dimorphism, tracheids, vasicentric tracheids, narrow vessels, and parenchyma. Aliso. 11(2): 139-157. Cerca con Google

Carlquist S. 1991. Anatomy of vine and liana stems: a review and synthesis. In: Putz F.E. & H.A. Mooney (ed.), The biology of vines: 53-71. Cambridge University Press. Cambridge. Cerca con Google

Carlquist S. 1992a. Wood anatomy of Lamiaceae. A survey: with comments on vascular and vasicentric tracheids. Aliso. 13: 309-338 Cerca con Google

Carlquist S 1992b. Wood, bark and pith anatomy of old world species of Ephedra and summary for the genus. Aliso. 13(2): 255-295 Cerca con Google

Carlquist S. 2001. Comparative wood anatomy. Systematic, ecological, and evolutionary aspects of dicotyledonous wood. Springer Verlag, Berlin. Cerca con Google

Carlquist S. & D.A. Hoekman. 1985. Ecological wood anatomy of the woody southern California flora. IAWA Bulletin 6(4): 319-348 Cerca con Google

Chang Y. 1954. Bark structure of north American conifers. Forest Products Laboratory. Technical bulletin no. 1095. Cerca con Google

Chapman E.F. 1949. Cyprus Trees and Shrubs. Nicosia. Cerca con Google

Chiu S.T. & F.W. Ewers. 1992. Xylem structure and water transport in a twiner, a scrambler, and a shrub of Lonicera (Caprifoliaceae). Trees. 6: 216-224. Cerca con Google

Chrtek J. & B. Slavík. 1981. Contribution to the flora of Cyprus. Preslia. 53: 45-65. Cerca con Google

Chrtek J. & B. Slavík. 1993. Contribution to the flora of Cyprus. 2. Flora Medit. 3: 239-259. Cerca con Google

Chrtek J. & B. Slavík. 1994. Contribution to the flora of Cyprus. 3. Flora Medit. 4: 9-20. Cerca con Google

Chrtek J. & B. Slavík. 2000. Contribution to the flora of Cyprus. 4. Flora Medit. 10: 235-259. Cerca con Google

Chrtek J. & B. Slavík. 2001. Contribution to the flora of Cyprus. 5. Acta Univ. Carol. Biol. 45: 267-293. Cerca con Google

Chudnoff M. 1956. Minute anatomy and identification of the woods of Israel. Cerca con Google

Cody M.L. 1986. Diversity, rarity and conservation in Mediterranean-climate regions. In: M.E. Soule (ed), Conservation Biology. The science of scarcity and diversity. Oxford University Press. pp. 122—152. Cerca con Google

Cowling R.M., Holmes P.M. & A.M. Robelo. 1992. Plant diversity and endemism. In: Cowling R.M. (ed.). The ecology of finbos. nutrients, fire and diversity. Oxford University press. pp.62-112. Cerca con Google

Cowling R.M., Rundel P.W. B.B. Lamont, M.K. Arroyo & M. Arianoutsou. 1996. Plant diversity in Mediterranean-climate regions. Tree. 11: 362-366. Cerca con Google

Crivellaro A. 2012 (expected). Wood, bark and pith structure of trees and shrubs of Cyprus: anatomical descriptions and ecological interpretation. PhD thesis. Cerca con Google

Darwin C. 1865. On the movements and habits of climbing plants. Botanical Journal of the Linnean Society. 9: 1-118. Cerca con Google

Day M.E., Greenwood M.S. & C. Diaz-Sala. 2002. Age- and size-related trends in woody plant shoot development: regulatory pathways and evidence for genetic control. Tree Physiology. 22: 507-513. Cerca con Google

Della A. & G. Iatrou. 1995. New plant records from Cyprus. Kew Bull. 50: 387-396. Cerca con Google

di Martino A. & F.M. Raimondo. 1979. Biological and chorological survey of the Sicilian flora. Webbia. 34: 309-35. Cerca con Google

Enquist, B.J., West G.B. & J.H. Brown. 2000. Quarter-power allometric scaling in vascular plants: functional basis and ecological consequences. In: Brown J.H. & G.B. West (eds.), Scaling in biology: 167-198. Oxford University Press. Oxford. Cerca con Google

Evert R.F. 2006. Esau’s plant anatomy. Meristems, cells, and tissues of the body: they structure, function, and development. John Wiley & Sons, Inc. New Jersey. Cerca con Google

Ewers F.W. & J.B. Fisher. 1989. Variation in vessel length and diameter in stem of six tropical and subtropical lianas. American Journal of Botany. 76(10): 1452-1459. Cerca con Google

Ewers F.W., Fisher J.B. & K. Fichtner. 1991. Water flux and xylem structures in wine. In: Putz F.E. & H.A. Mooney (eds.), The biology of vines. 127-160. Cambridge University Press. Cambridge. Cerca con Google

Ewers F.W., Fisher J.B. & S.T. Chiu. 1990. A survey of vessel dimensions in stems of tropical lianas and other growth forms. Oecologia. 84(4): 544-552. Cerca con Google

Fahn A. Werker E. & P. Baas. 1986. Wood anatomy and identification of trees and shrubs from Israel and adjacent regions. The Academy of Science and Humanities. Jerusalem. Cerca con Google

Gallenmüllen F., Müller U., Rowe N. & T. Speck. 2001. The growth form of Croton pullei (Euphorbiaceae) – Functional morphology and biomechanics of a neotropical liana. Plant Biology. 3: 50-61. Cerca con Google

Gallenmüllen F., Rowe N. & T. Speck. 2004. Development and growth form of the neotropical liana Croton nuntians: the effect of light and mode of attachement on the biomechanics of the stem. Journal of plant growth regulation. 23: 83-97. Cerca con Google

Gartner B.L. 1991a. Stem hydraulic properties of vines vs. shrubs of western poison oak, Toxicodendron diversilobum. Oecologia. 87: 180-189. Cerca con Google

Gartner B.L. 1991b. Structural stability and architecture of vines vs. shrubs of poison oak, Toxicodendron diversilobum. Ecology. 72: 2005—2015. Cerca con Google

Gartner B.L., Bullock S.H., Mooney H.A., Brown V.B. & J.L. Whitbeck. 1990. Water transport properties of vine and tree stems in a tropical deciduous forest. American Journal of Botany. 77: 742-749. Cerca con Google

Georgiadis T. & G. Hadjikyriakou. 1993. Centaurea akamantis (Compositae), a new species from Cyprus. Willdenowia. 23: 157-162. Cerca con Google

Gómez-Campo C. (ed.). 1985. Plant Conservation in the Mediterranean area. Geobotany 7. Dordrecht, The Netherlands: Dr. W. Junk. Cerca con Google

Guilaine J. & F. Briois. 2003. Parekklisha Shillourokambos: periodization et aménagements domestique. In J. Guilaine & A. Le Brun (eds). Le Néolithique de Cypre. BCH Supplement 43. Athens: Ècole Francaise d’Athènes, pp 3-14. Cerca con Google

Haberlandt G. 1914. Physiological plant anatomy. Translated for the 4th German edition by M. Drummond. Macmillan & Co., Ltd. London. Cerca con Google

Hadjikyriacou G. 2005. Cyprus. In: Merlo M. & Croitoru L. (eds.), Valuing Mediterranean forests: towards total economic value. Wallingford, United Kingdom: CABI Publishing. Cerca con Google

Hadjikyriakou G. & G. Alziar. 1999. Erysimum kykkoticum (Brassicaceae), a new species from Cyprus. Biocosme Mésogéen 15: 243-251. Cerca con Google

Hadjikyriakou G. & G. Alziar. 2006. Peucedanum kyriakae (Apiaceae), a new species from Cyprus. Biocosme Mésogéen 22: 177-183. Cerca con Google

Hadjikyriakou G. & R. Hand. 2006. Solenopsis antiphonitis sp. nova. In: R. Hand (ed), Supplementary notes to the flora of Cyprus V. Willdenowia. 36 (2): 781-785. Cerca con Google

Hadjikyriakou G., Makris C., Christofides Y. & G. Alziar. 2004. Additions to the flora of Cyprus. Journal de Botanique de la Société Botanique de France. 27: 31-46. Cerca con Google

Hand R. (ed.). 2000. Contributions to the flora of Cyprus I. Willdenowia 30: 53-65. Cerca con Google

Hand R. (ed.). 2001. Supplementary notes to the flora of Cyprus II. Willdenowia 31: 383-409. Cerca con Google

Hand R. (ed.). 2003. Supplementary notes to the flora of Cyprus III. Willdenowia 33: 305-325. Cerca con Google

Hand R. (ed.). 2004. Supplementary notes to the flora of Cyprus IV. Willdenowia 34: 427-456. Cerca con Google

Hand R. (ed.). 2006. Supplementary notes to the flora of Cyprus V. Willdenowia 36: 761-809. Cerca con Google

Holmboe J. 1914. Studies on the vegetation of Cyprus based upon researches during the spring and summer 1905. Bergens Museums Skrifter ny Raekke. 1(2): 1-344. Cerca con Google

Howard E.T. 1977. Bark structure of the Southern Upland Oaks. Wood and Fiber. 9: 172-183. Cerca con Google

Hubbard R.M., Bond B.J., Senock R.S. & M.G. Ryan. 2002. Effects of branch height on leaf gas exchange, branch hydraulic conductance and branch sap flux in open-grown ponderosa pine. Tree Physiology. 22(8): 575-582. Cerca con Google

Huber B. & C. Rouschal. 1954. Mikrophotographischer Atlas meriterraner Holzer. Fritz Haller VErlag, Berlin Cerca con Google

Isnard S. & W.K. Silk. 2009. Moving climbing plants from Charles Darwin’s time into the 21st century. American Journal of Botany. 96(7): 1205-1221. Cerca con Google

Ives E. 2001. A guide to wood microtomy. Making quality microslides of wood sections. Cerca con Google

Jacobsen A.L., Pratt R.B., Ewers F.W. & S.D. Davis. 2007. Cavitation resistance among 26 chaparral species of southern California. Ecological Monographs. 77: 99-115. Cerca con Google

Jacobsen A.L., Ewers F.W., Pratt R.B., Paddock III W.A. & S.D. Davis. 2005. Do fibers affect vessel cavitation resistance? Plant Physiology. 139: 546-556. Cerca con Google

Junikka L. 1994. Survey of English macroscopic bark terminology. IAWA Journal 15: 3-45. Cerca con Google

Kollmann F.F. & W.A. Côte. 1968. Principles of wood science and technology. Springler Verlag, Berlin. Cerca con Google

Ley-Yadun S. 1991. Terminology used in bark anatomy: Additions and comments. IAWA Bulletin. 12: 207–209. Cerca con Google

Machado R.S., Marcati C.R., Lange de Morretes B. & V. Angyalossy. 2005. Comparative bark anatomy of root and stem in Styrax camporum (Styracaceae). IAWA Journal. 26(4): 477-487. Cerca con Google

Manwiller H.G. 1972. Wood and bark properties of Spruce Pine. USDA Forest Service. Research paper SO-78. Cerca con Google

Martínez-Cabrera H.I., Cynthia S.J., Espino S. & H.J. Schenk. 2009. Wood anatomy and wood density in shrubs: responses to varying aridity along transcontinental transects. American Journal of Botany. 96(8): 1388-1398. Cerca con Google

McCulloh K., Sperry J.S., Lachenbruch B., Meinzer F.C., Reich P.B. & S. Voelker. 2010. Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests. New Phytologist. 186: 439-450. Cerca con Google

McCulloh K.A., Johnson D.M., Meinzer F.C., Voelker S.L., Lachenbruch B. & J.C. Domec. 2012. Hydraulic architecture of two species differing in wood density: opposing strategies in co-occurring tropical pioneer species. Plant, Cell & Environment. 35(1): 116–125 Cerca con Google

McDowell N.G., Phillips N., Lunch C., Bond B.J. & M.G. Ryan. 2002. An investigation of hydraulic limitation and compensation in large, old Douglas-fir trees. Tree Physiology. 22(11): 763—774. Cerca con Google

Médail F. & R. Verlaque. 1997. Ecological characteristics and rarity of endemic plants from southern France and Corsica: implication for biodiversity conservation. Biolobical conservation. 80: 269—281. Cerca con Google

Meikle R.D. 1977 & 1985. Flora of Cyprus. 2 vols. Royal Botanic Gardens. London. Cerca con Google

Meinzer F.C., Lachenbruch B. & T.E. Dawson (eds.). 2011. Size- and age-related changes in tree structure and function. Springer Verlag, Berlin. Cerca con Google

Meinzer F.C., Campanello P.I., Domec J-C., Gatti M.G., Goldstein G., Villalobos-Vega R. & D.R. Woodruff. 2008. Constraints on physiological function associated with branch architecture and wood density in tropical forest trees. Tree Physiology. 28: 1609-1617. Cerca con Google

Metcalfe C.R. & L. Chalk. 1950. Anatomy of the dicotyledons. London: Oxford University Press. Cerca con Google

Meyer D., Zeileis A. & K. Hornik. 2003. Visualizing independence using extended association plots. Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003). March 20–22, Vienna, Austria. Cerca con Google

Mencuccini M., T. Holtta & J. Martinez-Vilalta. 2011. Comparative criteria for Models of the vascular transport systems of tall trees. In: Meinzer F.C. Lachenbruch B. & T.E. Dawson (eds.), Size- and age-related changes in tree structure and function. Springer Verlag, Berlin. Cerca con Google

Mittermeier R.A., Robles Gil P., Hoffman M., Pilgrim J., Brooks T., Goettsch Mittermeier C., Lamoreux J. & G.A.B. da Fonseca. 2004. Hotspots Revisited: Earth’s Biologically Richest and Most Threatened Terrestrial Ecoregions. Conservation International, Washington, D.C., USA. 390 pp. Cerca con Google

Miles P.D. & Smith W.B. 2009. Specific gravity and other properties of wood and bark for 156 tree species found in north America. US Dept. of Agriculture. Research note NRS-38. Cerca con Google

Niklas K.J. 1992. Plant Biomechanics. An engineering approach to plant form functions. The University of Chicago Press. Cerca con Google

Olson D. & E. Dinnerstein. 1998. The Global 200: A representative approach to conserving the Earth's most biologically valuable ecoregions. Conservation Biology 12:502-515. Cerca con Google

Pantelas V., Papachristophorou T. & P. Christodoulou. 1993. Cyprus flora in colour. The endemics. Lefkosia (Nicosia). Cerca con Google

Peltenburg E.J. 2003. Identifying settlement of the Xth-IXth millennium B.P. in Cyprus from the content of Kissonerga-Mylouthkia wells. In: Guilaine J. & A. Le Brun (eds), Le Néolithique de Cypre. BCH Supplement 43. Athens: Ècole Francaise d’Athènes, pp 3-14. Cerca con Google

Peltenburg E.J., Colledge S., Croft P., Jackson A., McCartney C. & M.A. Murray. 2000. Agro-pastoralists colonization of Cyprus in the 10th millennium B.C.: initial assessments. Antiquity. 74: 844-853. Cerca con Google

Piccioli L. 1919. Tecnologia del legno. Torino. UTET Cerca con Google

Putz F.E. 1983. Liana biomass and leaf area of a “tierra firme” forest in the Rio Negro Basin, Venezuela. Biotropica. 15: 185-189. Cerca con Google

Putz F.E. 1990. Liana stem diameter growth and mortality rates on Barro Colorado Island, Panama. Biotropica. 22: 103-105. Cerca con Google

Putz F.E. & N.M. Holbrook. 1991. Biomechanical studies of vines. In: Putz F.E. & H.A. Mooney (eds), The biology of vines: 73—97. Cambridge University Press. Cerca con Google

Quezel P. 1988. Esquisse phytogéographique de la vegetation climacique potentielle des grandes iles Mèditerranèennes. Bull. Ecol. 19(2-3): 121-127. Cerca con Google

R Development Core Team. 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org. Vai! Cerca con Google

Raus T. & H. Scholz. 2004: Contribution to the flora of Cyprus: a new species of Crypsis (Poaceae). Willdenowia. 34: 457-462. Cerca con Google

Richter H.G., Grosser D., Heinz I. & P.E. Gasson. 2004. IAWA list of microscopic features for softwood identification. IAWA Journal (25)1: 1-70. Cerca con Google

Rowe N. & T. Speck. 2005. Plant tree growth forms: an ecological and evolutionary perspective. New Phytologist. 166: 61—72. Cerca con Google

Ryan M.G. & B.J. Yoder. 1997. Hydraulic limits to tree height and tree growth. Bioscience. 47: 235—242. Cerca con Google

Savage V.M., Bentley L.P., Enquist B.J.,Sperry J.S., Smith D.D., Reich P.B. & E.I. von Allmen. 2010. Hydraulic trade-off and space filling enable better predictions of vascular structure and functions in plants. Proceeding of the National Academy of Science. 107(52): 22722—22727. Cerca con Google

Schweingruber F.H. 1978. Microscopic wood anatomy: structural variability of stems and twigs in recent and subfossil woods from Central Europe. Birmensdorf: Eidgenossische Anstalt fur das forstliche Versuchswesen. 226p. Cerca con Google

Schweingruber F.H. 1990. Anatomy of European woods. Verlag Paul Haupt: Bern & Stuttgart. 800 pp. Cerca con Google

Schweingruber F.H. 2006. Anatomical characteristics and ecological trends in the xylem and phloem of Brassicaceae and Resendaceae. IAWA Journal. 27(4): 419-442. Cerca con Google

Schweingruber F.H. 2007 Wood structure and environment. (Springer Series in Wood Science.). Berlin, Heidelberg: Springer-Verlag 279 pp. Cerca con Google

Schweingruber F.H., Börner A. & E.D. Schulze. 2008. Atlas of woody plant stems. Evolution, structure and environmental modifications. Springer Verlag, Berlin. Cerca con Google

Schweingruber F.H. & P. Poschlod. 2005. Growth rings in herbs and shrubs: life span, age determination and stem anatomy. Forest, Snow and Landscape Research. 79(3): 195—415. Cerca con Google

Schweingruber F.H., Börner A. & E.D. Schulze. 2011. Atlas of stem anatomy in herbs, shrubs and trees. Springer Verlag, Berlin. Cerca con Google

Thompson J.D., Lavergne S., Affre L., Gaudeul M. & M. Debussche. 2005. Ecological differentiation of Mediterranean endemic plants. Taxon. 54(4): 967–976 Cerca con Google

Tibbetts T.J. & F.W. Ewers. 2000. Root pressure and specific conductivity in temperate lianas: exotic Celastrus orbiculatus (Celestracea) vs. native Vitis riparia (Vitaceae). American Journal of Botany. 87: 1272—1278. Cerca con Google

Tsintides T. 1998. The endemic plants of Cyprus. Nicosia. Cerca con Google

Tsintides T., Christodoulou C.S., Delipetrou P. & K. Georghiou (eds.). 2007. The Red Data Book of the flora of Cyprus. Nicosia. Cerca con Google

Tsintides T., Hadjikyriakou G. N. & C.S. Christodoulou. 2002. Trees and shrubs in Cyprus. Nicosia. Cerca con Google

Trochenbrodt M. 1990. Survey on discussion of the terminology used in bark anatomy. IAWA Bull. 11:141-166 Cerca con Google

Vaucher H. 2003. Tree bark. Timber Press. Portland, Oregon, USA. Cerca con Google

Warton D.I., Wright J.I., Falster D.S. & M. Westoby. 2006. Bivariate line-fitting methods for allometry. Biological Reviews. 81(2): 259—291. Cerca con Google

Wheeler E.A., Baas P. & P.E. Gasson (eds.). 1989. IAWA List of microscopic features for hardwood identification. IAWA Bull. 10(3): 219—332. Cerca con Google

Zahur M.S. 1959. Comparative study of secondary phloem of 423 species of woody dicotyledons belonging to 85 families. Mem. Cornell Univ. Agric. Exp. Sta. 358: 1–160. Cerca con Google

Zanne A.E., Westoby M., Falster D.S., Ackerly D.D., Loarie S.R., Arnold S.E.J. & D.A. Coomes. 2010. Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany. 97:207–215. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record