Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Florea, Ioana (2008) Pet parametric imaging of acetylcholine esterase activity without arterial blood sampling in normal subjects and patients with neurovegetative disease. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
5Mb

Abstract (inglese)

The development of a method for a reliable quantification of 11C-MP4A PET images without arterial input function at pixel level in order to study acetylcholine esterase activity (AChE) is of clinical interest for the diagnosis of dementia and memory disorders. Two groups of subjects, normal control group (4 subjects - NC group) and Alzheimer disease group (7 subjects - AD group) participated for the study.
AChE activity can be quantify by using a reference input function derived from region having a very high metabolism by AChE and a three-rate constant compartmental model. In order to obtain, at pixel level, accurate and precise estimates of model parameters in both low and moderate enzymatic expression regions, a novel method based on the use of the maximum a posteriori probability (MAP) Bayesian estimator has been developed. This method was compared to other approaches already published for quantification of AChE activity: 1) the method based on the use of a linear least squares (RLS) analysis; 2) the RRE method based on a simplification of the model structure; 3) the RRE_BF method which consider a basis function approach for RRE procedure; 4) the method R_NLLS based on a non linear least squares estimator. AChE activity was measured in terms of the rate constant for hydrolysis of 11C-MP4A, k3. Striatum (basal ganglia) was used as reference region based on its very high AChE activity. Parametric images of k3 obtained with MAP from areas with different levels of AChE activity were compared between groups and respect to the k3 estimates obtained with the other mathematical approaches. Despite the small group of subjects, the methods (RLS; RRE, RRE_BF, R_NLLS, MAP,) used to generate k3 parametric image were able to detect a reduction on AChE activity in neocortex of AD patients respect to NC. However, only MAP allows to quantify k3 in region with moderate enzyme expression like thalamus and brainstem. The different performance of the five estimation methods has an impact in the statistical significance of k3 differences. In fact, only the MAP method shows significant differences in thalamus and brainstem that are in good agreement with published study.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Cobelli, Claudio - Gilardi, Maria Carla
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > INGEGNERIA DELL'INFORMAZIONE > BIOINGEGNERIA
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Parole chiave (italiano / inglese):PET, Bayesian estimation, parametric images, compartmental modeling, non-invasive quantification
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/36 Diagnostica per immagini e radioterapia
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:450
Depositato il:30 Set 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1]. Irie T., Fusushi K., Akimoto Y., Tamagami H., Nozaki T., “Design and evaluation of radioactive acetylcholine analogs for mapping brain acetylcholinesterase (AchE) in vivo“ Nucl.Med.Biol (1994), 21:801-808. Cerca con Google

[2]. Irie T, Fusushi K, Namba H, Iyo M, et al, “Brain acetylcholinesterase activity: validation of a PET tracer in a rat model of Alzheimers disease”, J Nucl Med (1996), 37: 649-655. Cerca con Google

[3]. Namba H, Irie T., Fusushi K, Iyo M, “In vivo measurements of acetylcholinesterase activity in the brain with radioactive acetylcholine analog”, Brain.Res. (1994), 667:278-282. Cerca con Google

[4]. Kilbourn MR., Snyder SE., Sherman PS., Kuhl DE., “ In vivo studies of acetylcholinesterase activity using a labeled substrate N-[11C]methylpiperidin- 4-yl propionate ([11C]PMP)“, Synapse, (1996), 22 :123-131. Cerca con Google

[5]. Frey KA., Koeppe RA., Kilbourne MR., Snyder SE., Kuhl DE., “PET quantification of cortical acetylcholinesterase inhibition in monkey and human“, J. Nucl. Med., (1997), 38:146P. Cerca con Google

[6]. Koeppe RA., Frey KA., Snyder SE., Meyer P., Kilbourn MR., Kuhl DE., “ Kinetic modeling of N-[11C]methylpiperidin-4-yl propionate: alternatives for analysis of an irreversible PET tracer for measurment of acetylcholinesterase activity in human brain“, Cereb. Blood Flow Metab., (1999), 19:1150-1163. Cerca con Google

[7]. Iyo M, Namba H, Fukushi K, et al, “Measurement of acetylcholinesterase by positron emission tomography in the brains of healthy controls and patients with Alzheimer’s disease”, Lancet (1997), 349: 1805-1809. Cerca con Google

[8]. Namba H, Iyo M, Fusushi K, et al., “Human cerebral acetylcholinesterase activity measured with positron emission tomography: procedure, normal values and effect of age”, Eur.J Nucl Med (1999), 26:135-143. Cerca con Google

[9]. Kuhl DE, Koeppe RA, Minoshima S, et al.( Kuhl, D. E. MD; Koeppe, R. A. PhD; Minoshima, S. MD, PhD; Snyder, S. E. PhD; Ficaro, E. P. PhD; Foster, N. L. MD; Frey, K. A. MD, PhD; Kilbourn, M. R. PhD), “In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease”, Neurology (1999), 52(4): 691-699. Cerca con Google

[10]. Herholz K, Bauer B, Wienhard K, et al., “In vivo measurement of regional acethylcholine esterase activity in degenerative dementia: comparison with blood flow and glucose metabolism”, J Neural Transm (2000), 107: 1457-1468. Cerca con Google

[11]. Shinotoh H, Namba H, Fusushi K, Nagatsuka S, et al, “Progressive loss of cortical acetylcholinesterase activity in association with cognitive decline in Alzheimer’s disease: a positron emission tomography study”, Ann Neurol (2000), 48: 194-200. Cerca con Google

[12]. Nagatsuka S, Fukushi K, Shinotoh H, Namba H, et al., “Kinetic analysis of [11C]MP4A using a high-radioactivity brain region that represents an integrated input function for measurement of cerebral acethylcholinesterase activity without arterial blood sampling”, JCBFM (2001), 21: 1354-1366. Cerca con Google

[13]. Herholz K, Lercher M, Wienhard K, Bauer B, Lenz O, Heiss WD, “PET measurement of cerebral acethylcholine esterase activity without blood sampling“, Eur J Nucl Med (2001), 28:472-477. Cerca con Google

[14]. Zundorf G, Herholz K, Lercher M, Wienhard K, Bauer B, Weisenbach S, Heiss WD, “PET functional parametric images of acetylcholine esterase activity without arterial blood sampling” In Senda M et al (eds), Brain Imaging Using PET, Academic Press, San Diego, Ca, USA, pp 41-46, Proceedings for BrainPET2001. Cerca con Google

[15]. Namba H, Fukushi K, Nagatsuka S, Iyo M, Shinotoh H, Tanada S, Irie T. “Positron emission tomography: quantitative measurement of brain acetylcholinesterase activity using radiolabeled substrates.”, Methods (2002) Jul;27(3):242-50. Cerca con Google

[16]. Rinne JO, Kaasinen V, Jarvenpaa T, Nagren K, Roivainen A, Yu M, Oikonen V, Kurki T., “Brain acetylcholinesterase activity in mild cognitive impairment and early Alzheimer's disease.”, J Neurol Neurosurg Psychiatry (2003) Jan;74(1):113-5. Cerca con Google

[17]. Herholz K., “PET studies in dementia”, Ann Nucl Med. (2003) Apr;17(2):79-89. Cerca con Google

[18]. Shinotoh H, Fukushi K, Nagatsuka S, Irie T., “Acetylcholinesterase imaging: its use in therapy evaluation and drug design.”, Curr Pharm Des. (2004);10(13):1505-17. Cerca con Google

[19]. Herholz K, Weisenbach S, Zundorf G, Lenz O, Schroder H, Bauer B, Kalbe E, Heiss WD, “In vivo study of acetylcholine esterase in basal forebrain, amygdala, and cortex in mild to moderate Alzheimer disease.”, Neuroimage (2004) Jan;21(1):136-43. Cerca con Google

[20]. Ota T, Shinotoh H, Fukushi K, Nagatsuka S, Namba H, Iyo M, Aotsuka A, Tanaka N, Sato K, Shiraishi T, Tanada S, Arai H, Irie T., “A simple method for the detection of abnormal brain regions in Alzheimer's disease patients using [11C]MP4A: comparison with [123I]IMP SPECT.”, Ann Nucl Med. (2004) May;18(3):187-93. Cerca con Google

[21]. Tsukada H, Nishiyama S, Fukumoto D, Ohba H, Sato K, Kakiuchi T., “Effects of acute acetylcholinesterase inhibition on the cerebral cholinergic neuronal system and cognitive function: Functional imaging of the conscious monkey brain using animal PET in combination with microdialysis.”, Synapse. (2004 )Apr;52(1):1-10. Cerca con Google

[22]. Namba Hiroki et al, “Pixel-by-pixel Mapping of AChE Activity in Human Brain with 11C MP4A/PET”, In Senda M et al (eds), Brain Imaging Using PET, Academic Press, San Diego, Ca, USA, pp 55-61, Proceedings for BrainPET2001. Cerca con Google

[23]. Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD, “Basic Neurochemistry: molecular, cellular and medical aspects“, (Chapter 11), LippincottWilliams&Wilkins, sixth edition, (1999). Cerca con Google

[24]. http://wiz2.pharm.wayne.edu/biochem/enz.html, (2007). Vai! Cerca con Google

[25]. Tanaka N, Fukushi K, Shinotoh H, Nagatsuka S, Namba H, Iyo M, Aotsuka A, Ota T, Tanada S, Irie T., “Positron emission tomographic measurement of brain acetylcholinesterase activity using N-[(11)C]methylpiperidin-4-yl acetate without arterial blood sampling: methodology of shape analysis and its diagnostic power for Alzheimer's disease.”, J Cereb Blood Flow Metab. (2001) Mar;21(3):295-306. Cerca con Google

[26]. Walter, B., Blecker, C., Kirsch, P., Sammer, G., Schienle, A., Stark, R., & Vaitl, D., “MARINA: An easy to use tool for the creation of MAsks for Region of INterest Analyses” [abstract]. Presented at the 9th International Conference on Functional Mapping of the Human Brain, June 19-22, (2003), New York, NY. Available CD-Rom in NeuroImage, Vol. 19, No. 2. Cerca con Google

[27]. Sato K, Fukushi K, Shinitoh H, Nagatsuka S, Tanaka N, Aotsuka A, Ota T, Shinraishi T, Tanada S, Iyo M, Irie T, “Evaluation of simplified kinetic analysis for measurement of brain acetylcholinesterase activity using N-[11C]Methylpiperidin-4-yl propionate and positron emission tomography”, JCBFM, (2004), 24:600-611. Cerca con Google

[28]. Cobelli C, Carson E, Finkelstein L. “The mathematical Modeling of Metabolic and Endocrine System”. New York, Wiley (1983). Cerca con Google

[29]. http://en.wikipedia.org/wiki/Maximum_a_posteriori,(2007) Vai! Cerca con Google

[30]. Bertoldo, A., Sparacino, G., Cobelli, C., “Population approach improves parameter estimation of kinetic models from dynamic PET data”, IEEE Trans.Med.Im, (2004); 23(3):297-306. Cerca con Google

[31]. Sparacino, G., Tombolato, C., Cobelli, C, “Maximum Likelihood versus Maximum a posteriori parameter estimation of physiological system models:the C-peptide impulse response case study”., IEEE Trans.BioMed.Eng, (2000); 47(6):801-811. Cerca con Google

[32]. Callegari, T., Caumo A., Cobelli, C., “Generalization of Map estimation in SAAM II: validation against ADAPT II in a glucose model case study”, Ann.BioMed.Eng., (2002); 30:1-8. Cerca con Google

[33]. Florea I., Bertoldo A., Moresco RM, Carpinelli A, Panzacchi A, Garibotto V, Perani D, Gilardi MC, Fazio F, Cobelli C., “[11C] MP4A Bayesian quantification of AChE activity at pixel and ROI level in normals and Alzheimer patients.”, Proceedings of 2nd European Society of Molecular Imaging, Naples, Italy, 14 - 15 June (2007). Cerca con Google

[34]. Florea I., Bertoldo A., Pietra L., Moresco RM, Carpinelli A, Panzacchi A, Garibotto V, Perani D, Gilardi MC, Fazio F, Cobelli C., “Kinetic analysis of [11C]MP4A for measurement of cerebral acetylcholine esterase activity without arterial blood sampling.”, Proceedings for 6th International Symposium on Functional Neuroceptor Mapping, Copenhagen – Denmark, 6th - 8th July (2006). Cerca con Google

[35]. http:// en.wikipedia.org/wiki/Acetylcholine, (2007). Cerca con Google

[36]. http://www.pharmacorama.com/en/Sections/Acetylcholine.php, (2007). Vai! Cerca con Google

[37]. http://www.cnsforum.com/imagebank/section/Dementia_Cholinergic/default.aspx, (2007). Vai! Cerca con Google

[38]. www.dns.ed.ac.uk/teaching.html, (2007). Vai! Cerca con Google

[39]. http://www.mrothery.co.uk/studentswork/synapses%20and%20drugs.ppt#260, (2007). Vai! Cerca con Google

[40]. Purves, Dale; Augustine, George J.; Fitzpatrick, David; Katz, Lawrence C.; LaMantia, Anthony-Samuel; McNamara, James O.; Williams, S. Mark., Neuroscience Sunderland (MA): Sinauer Associates, Inc. ; (c2001). Cerca con Google

[41]. Herholz K., Heiss, W.D., “Positron Emission Tomography in Clinical Neurology”, Molecular Imag. Biol, (2004), 6(4):239-269. Cerca con Google

[42]. Carpinelli A, Magni F, Cattaneo A, Matarrese M, Turolla E, Todde S, Bosso N, Galli Kienle M, Fazio F., “Improved synthesis and radiolabeling of [11C]MP4A, a suitable ligand for the investigation of the cholinergic system using PET“, Appl Radiat Isot. (2006) Feb;64(2):182-6. Cerca con Google

[43]. Arai H., Kosaka k., Muramoto O., Moroji T., Iizuka R., ”A biochemical study of cholinergic neurons in the post mortem brains from the patient with alzheimer-type dementia.” Clin Neurol (Tokyo)(1984); 24:1128-1135. Cerca con Google

[44]. Eggers C, Szelies B, Bauer B, Wienhard K, Schroder H, Herholz K, Heiss WD., “Imaging of acetylcholine esterase activity in brainstem nuclei involved in regulation of sleep and wakefulness“, Eur J Neurol. (2007) Jun;14(6):690-3. Cerca con Google

[45]. Lammertsma A. and Hume S. P., “Simplified reference tissue model for pet receptor studies”, NeuroImage, ( 1996) 4, 153-58. Cerca con Google

[46]. Blumqvist G., “ On the construction of functional maps in positron emission tomography”, J. Cereb. Blood Flow Metab, (1984), 4:629-632 Cerca con Google

[47]. Carson E., Cobelli C “Modelling methodology for physiology and medicine”, Academis Press, San Diego, CA, USA, (2001). Cerca con Google

[48]. Koeppe RA, Frey KA, Snyder SE, Kuhl DE, “Kinetic modeling of N-[11C]methylpiperidin-4-yl propionate: alternatives for analysis of an irreversible positron emission tomography trace for measurement of acetylcholinesterase activity in human brain”, J Cereb Blood Flow Metab., (1999) ,19(10):1150-63. Cerca con Google

[49]. Mesulam MM, Geula C, “Acetylcholinesterase-rich neurons of the human cerebral cortex: cytoarchitectocnic and ontogenetic patterns of distribution”, J. Comp Neurol (1991), 306: 193-220. Cerca con Google

[50]. Mesulam MM, Geula C, “Overlap between acetylcholinesterase-rich and cholin acetyltransferase-positive (cholinergic) axons in human cerebral cortex”, Brain Res, (1992), 577: 112-120. Cerca con Google

[51]. Geula C, Mesulam MM, “Cholinergic systems and related neuropathological predilection patterns in Alzheimer disease”, in Terry RD, et al(eds) Alzheimer Disease, Raven Press, New York, (1994), pp 263-291. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record