Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Musolino, Paolo (2012) Singular perturbation and homogenization problems in a periodically perforated domain. A functional analytic approach. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
2894Kb

Abstract (english)

This Dissertation is devoted to the singular perturbation and homogenization analysis
of boundary value problems in the periodically perforated Euclidean space. We investigate the behaviour of the solutions of boundary value problems for the Laplace, the Poisson, and the Helmholtz equations, as parameters related to diameter of the holes or the size of the periodicity cells tend to 0.

The Dissertation is organized as follows.

In Chapter 1, we present two known constructions of a periodic analogue of the fundamental solution of the Laplace equation and we introduce the periodic layer and volume potentials for the Laplace equation and some basic results of periodic potential theory. Chapter 2 is devoted to singular perturbation and homogenization problems for the Laplace and the Poisson equations with Dirichlet and Neumann boundary conditions. In Chapter 3 we consider the case of (linear and nonlinear) Robin boundary value problems for the Laplace equation, while in Chapter 4 we analyze (linear and nonlinear) transmission problems. In Chapter 5 we apply the results of Chapter 4 in order to prove the real analyticity of the effective conductivity of a periodic dilute composite. Chapter 6 is dedicated to the construction of a periodic analogue of the fundamental solution of the Helmholtz equation and of the corresponding periodic layer potentials. In Chapter 7 we collect some results of spectral theory for the Laplace operator in periodically perforated domains. In Chapter 8 we investigate singular perturbation and homogenization problems for the Helmholtz equation with Neumann boundary conditions. In Chapter 9 we consider singular perturbation and homogenization problems with Dirichlet boundary conditions for the Helmholtz equation, while in Chapter 10 we study (linear and nonlinear) Robin boundary value problems. Chapter 11 is devoted to the study of periodic layer potentials for general second order differential operators with constant coefficients. At the end of the Dissertation we have enclosed some Appendices with some results that we have exploited.

Abstract (italian)

Questa Tesi è dedicata all'analisi di problemi di perturbazione singolare e omogeneizzazione nello spazio Euclideo periodicamente perforato. Studiamo il comportamento delle soluzioni di problemi al contorno per le equazioni di Laplace, di Poisson e di Helmholtz al tendere a 0 di parametri legati al diametro dei buchi o alla dimensione delle celle di periodicità.

La Tesi è organizzata come segue.

Nel Capitolo 1, presentiamo due costruzioni note di un analogo periodico della soluzione fondamentale dell'equazione di Laplace, e introduciamo potenziali di strato e di volume periodici per l'equazione di Laplace e alcuni risultati basilari di teoria del potenziale periodica. Il Capitolo 2 è dedicato a problemi di perturbazione singolare e omogeneizzazione per le equazioni di Laplace e Poisson con condizioni al bordo di Dirichlet e Neumann. Nel Capitolo 3 consideriamo il caso di problemi al contorno di Robin (lineari e nonlineari) per l'equazione di Laplace, mentre nel Capitolo 4 analizziamo problemi di trasmissione (lineari e nonlineari). Nel Capitolo 5 applichiamo i risultati del Capitolo 4 al fine di provare l'analiticità della conduttività effettiva di un composto periodico. Il Capitolo 6 è dedicato alla costruzione di un analogo periodico della soluzione fondamentale dell'equazione di Helmholtz e dei corrispondenti potenziali di strato. Nel Capitolo 7 raccogliamo alcuni risultati di teoria spettrale per l'operatore di Laplace in domini periodicamente perforati. Nel Capitolo 8 studiamo problemi di perturbazione singolare e di omogeneizzazione per l'equazione di Helmholtz con condizioni al contorno di Neumann. Nel Capitolo 9 consideriamo problemi di perturbazione singolare e di omogeneizzazione con condizioni al contorno di Dirichlet per l'equazione di Helmholtz, mentre nel Capitolo 10 studiamo problemi al contorno di Robin (lineari e nonlineari). Il Capitolo 11 è dedicato allo studio di potenziali di strato periodici per operatori differenziali generali del secondo ordine a coefficienti costanti. Alla fine della Tesi abbiamo incluso delle Appendici con alcuni risultati utilizzati.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Lanza de Cristoforis, Massimo
Ph.D. course:Ciclo 24 > Scuole 24 > SCIENZE MATEMATICHE > MATEMATICA
Data di deposito della tesi:25 January 2012
Anno di Pubblicazione:25 January 2012
Key Words:periodic boundary value problems, singularly perturbed domain, periodically perforated domain, singular perturbation, homogenization, Laplace equation, Helmholtz equation, real analytic continuation in Banach space
Settori scientifico-disciplinari MIUR:Area 01 - Scienze matematiche e informatiche > MAT/05 Analisi matematica
Struttura di riferimento:Dipartimenti > Dipartimento di Matematica
Codice ID:4503
Depositato il:07 Nov 2012 12:54
Simple Metadata
Full Metadata
EndNote Format

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record