Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Bortolato, Andrea (2008) Rational Design of New Protein Kinases Inhibitors of Pharmaceutical Interest. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

Cells respond to externals cues thanks to several different signals cascade activated by transmembrane receptors as G coupled protein receptors and tyrosin kinase receptors. Signals are not simply transducted, but also amplified and propagated using a precise tuned elaborating system resulting in a well defined cell behaviour. In this contest, protein kinases are key enzymes for cell life, thanks to their signal transduction pathways control. A perturbation of their activity can in
fuence in an important way this essential equilibrium, resulting in several pathologies as cancer, diabetes and in
ammation. These enzymes act controlling substrates activity phosphoryling some specific residues of Serine, Threonine and Tyrosin, using an ATP molecule as phosphate donor. In this study have been studied principally two protein kinases, CK2 and Abl, implicated with the development and progression of several tumors. The first, know
also as Casein Kinase 2, is a pleiotropic, constitutively active protein demonstrated to be implicated in many physiological process and over-expressed in several cancer cell lines. On the other hand the protein tyrosin kinase Abelson (Abl), together with PDGFR and Kit enzymes, is the molecular cause of chronic
myelogenous Leukaemia and gastrointestinal stromal tumor.
Protein kinases are an interesting family of molecular targets for a new generation of antitumors drugs aiming the molecular mechanisms exploited by cancer to survive and develop. This study represents an attempt to reach this result by means of a rational approach to design new small organic molecules with a
potential antitumoral activity based on their inhibition of these protein kinases.
Methodologies used rely on the most advanced drug design computational techniques based on the threedimensional structure of the therapeutic target and they have been used only after a intense internal validation phase based on the
experimental data available in literature and on important collaborations with several research groups at national and international level.
Using these computational methodologies a complete study of CK2 ATP-binding pocket has been carried out, investiging its electrostatic features and creating several pharmacophoric hypothesis based on crystallographic structural data. These approaches helped us to evaluate from a qualitative point of
view the interactions crucials for the inhibitor-protein binding and to highlight the importance for the binding mode in the enzymatic pocket of some waters molecules. These informations have been the starting point for a quantitative Linear Interaction Energy (LIE) study of benzoimidazolic and coumarins derivatives. They have point out the key contribution of the hydrophobic effect to achieve a powerful inhibitor effect of CK2 and of van der Waals interactions with several apolar side chains characterizing the binding site of this kinase. On other hand the MM-PBSA approach has been used to analyze the different inhibition power, with important pharmacological implications on the selectivity, of the drug known as Gleevec (STI-571) and its similar analogue CGP-582 versus the protein kinase Abl. This method has been combined with success with the Colony Energy approach to improve the results robustness, diminishing the dependence of the free energy
of binding estimation from small conformational changes.
The key features knowledge for the inhibition is the first step for the drug discovery process based on biostructural information and the integrate computational protocol used in this study had allowed the comprehension of the chemical-physical peculiarities of therapeutical targets as well as ligands, allowing
the development of new inhibitors with potential antitumoral activity.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Moro, Stefano
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE MOLECOLARI > SCIENZE FARMACEUTICHE
Data di deposito della tesi:31 January 2008
Anno di Pubblicazione:31 January 2008
Key Words:Molecular Modelling, Drug Design, Protein Kinase, Structure based drug design, Linear Interaction Energy method, MM-PBSA
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/08 Chimica farmaceutica
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Scienze Farmaceutiche
Codice ID:453
Depositato il:10 Oct 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] G. Manning, D. B. Whyte, R. Martinez, T. Hunter, and S. Sudarsaxnam. The protein kinase complement of human genome. Science, 298:1912- 1934, 2002. Cerca con Google

[2] D. R. Robinson, Yi-Mi Wu, and Su-Fang Lin. The protein tyrosine kinase family of the human genome. Oncogene, 19:5548-5557, 2000. Cerca con Google

[3] R. Roskoski Jr. STI-571: an anticancer protein-tyrosine kinase inhibitor. Biochemical and Biophysical Research Communications, 309:709-717, 2003. Cerca con Google

[4] R. P. Araujo, L. A. Liotta, and E. F.Petricoin. Proteins, drug targets and the mechanisms they control: the simple truth about complex networks. Nature Reviews Drug Discovery, 6:871-880, 2007. Cerca con Google

[5] C. Ortutay, J. Väliaho, K. Stenberg, and M. Vihinen. KinMutBase: a registry of disease-causing mutations in protein kinase domains. Human Mutation, 25:435-442, 2005. Cerca con Google

[6] R. P. Bhattacharyya, A. Reményi, B. J. Yeh, and W. A. Lim. Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Annual Review Biochemistry, 75:655-80, 2006. Cerca con Google

[7] W. T. Miller. Determinants of substrate recognition in nonreceptor tyrosine kinases. Accounts of Chemical Research, 36:393-400, 2003. Cerca con Google

[8] T. Pawson and P. Nash. Protein-protein interactions define specificity in signal transduction. Genes & Development, 14:1027-1047, 2000. Cerca con Google

[9] R. M. Biondi and A. R. Nebreda. Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochemical Journal, 372:1-13, 2003. Cerca con Google

[10] T. Pawson and J. D. Scott. Signaling through scaffold, anchoring, and adaptor proteins. Science, 278:2075-2080, 1997. Cerca con Google

[11] S. R. Hubbard. Protein tyrosine kinase: autoregulation and smallmolecule inhibition. Current Opinion in Structural Biology, 12:735-741, 2002. Cerca con Google

[12] S. R. Hubbard. Juxtamembrane autoinhibition in receptor tyrosine kinase. Nature Reviews Molecular Cell Biology., 5:464-470, 2004. Cerca con Google

[13] S. F. Kingsmore. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nature Review Drug Discovery, 5:310-320, 2006. Cerca con Google

[14] K. Lundstrom. Latest development in drug discovery on G protein-coupled receptors. Current Protein and Peptide Science, 7:465-470, 2006. Cerca con Google

[15] N. Steeghs, J. W. Nortier, and H. Gelderblom. Small molecule tyrosine kinase inhibitors in the treatment of solid tumors: an update of recent developments. Annals of Surgical Oncology, 14:942-953, 2007. Cerca con Google

[16] B. Turk. Targeting proteases: successes, failures and future prospects. Nature Review Drug Discovery, 5:785-799, 2006. Cerca con Google

[17] J. Couzin. Cancer drugs. smart weapons prove tough to design. Science, 298:522-525, 2002. Cerca con Google

[18] T. J. Lynch, D. W. Bell, R. Sordella, S. Gurubhagavatula, R. A. Okimoto, B. W. Brannigan, P. L Harris, S. M Haserlat, J. G. Supko, F. G. Haluska, D. N. Louis, D. C. Christiani, J. Settleman, and D. A. Haber. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to Gefitinib. New England Journal, 350:2129-2139, 2004. Cerca con Google

[19] I. Kola and J. Landis. Can the pharmaceutical industry reduce attrition rates? Nature Review Drug Discovery, 3:711-715, 2004. Cerca con Google

[20] T. G. Roberts Jr., B. H. Goulart, L. Squitieri, S. C. Stallings, E. F. Halpern, B. A. Chabner, G. S. Gazelle, S. N. Finkelstein, and J. W. Clark. Trends in the risks and benefits to patients with cancer participating in phase 1 clinical trials. The Journal of American Medical Association, 292:2130-2140, 2004. Cerca con Google

[21] J. Dancey and E. A. Sausville. Issues and progress with protein kinase inhibitors for cancer treatment. Nature Review Drug Discovery, 2:296- 313, 2003. Cerca con Google

[22] T. Lahaye, B. Riehm, U. Berger, P. Paschka, M. C. Muller, S. Kreil, K. Merx, U. Schwindel, C. Schoch, R. Hehlmann, and A. Hochhaus. Response and resistance in 300 patients with BCR-ABL-positive leukemias Cerca con Google

treated with Imatinib in a single center: a 4.5-year follow-up. Cancer, 103:1659-69, 2005. Cerca con Google

[23] H. Daub, K. Specht, and A. Ullrich. Strategies to overcome resistance to targeted protein kinase inhibitors. Nature Review Drug Discovery, 3(12):1001-10, 2004. Cerca con Google

[24] J. Litz, G. S. Warshamana-Greene, G. Sulanke, K. E. Lipson, and G. W. Krystal. The multi-targeted kinase inhibitor SU5416 inhibits small cell lung cancer growth and angiogenesis, in part by blocking Kit-mediated VEGF expression. Lung Cancer, 46:283-91, 2004. Cerca con Google

[25] M. S. Saund, G. D. Demetri, and S. W. Ashley. Gastrointestinal stromal tumors (GISTs). Current Opinion Gastroenterology, 20:89-94, 2004. Cerca con Google

[26] A. M. S. Müller, U. M. Martens, S. C. Hofmann, L. Bruckner-Tuderman, R. Mertelsmann, and M. Lübbert. Imatinib mesylate as a novel treatment option for hypereosinophilic syndrome: two case reports and a comprehensive review of the literature. Annual Hematology, 85:1-16, 2006. Cerca con Google

[27] M. E. K. Olsten and D. W. Litchfield. Order or chaos? an evaluation of the regulation of protein kinase CK2. Biochemistry and Cell Biology, 82:681-693, 2004. Cerca con Google

[28] D. W. Litchfield. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochemical Journal, 369:1-15, 2003. Cerca con Google

[29] S. K. Hanks and T. Hunter. Protein kinases 6. the eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB Journal, 9:576-596, 1995. Cerca con Google

[30] L. K. Wilson, N. Dhillon, J. Thorner, and G. S. Martin. Casein kinase II catalyzes tyrosine phosphorylation of the yeast nucleolar immunophilin Fpr3. Journal of Biological Chemistry, 272:12961-12967, 1997. Cerca con Google

[31] M. Lasa, O. Marin, and L. A. Pinna. Rat liver Golgi apparatus contains a protein kinase similar to casein kinase of lactating mammary gland. European Journal of Biochemistry, 243:719-725, 1997. Cerca con Google

[32] R. D. Gietz, K. C. Graham, and D. W. Litchfield. Interactions between the subunits of casein kinase II. Journal Biological Chemistry, 270:13017- 13021, 1995. Cerca con Google

[33] L. A. Pinna and F. Meggio. Protein kinase CK2 (\casein kinase-2") and its implication in cell division and proliferation. Progress in Cell Cycle Research, 3:77-97, 1997. Cerca con Google

[34] K. C. Graham and D. W. Litchfield. The regulatory beta subunit of protein kinase CK2 mediates formation of tetrameric CK2 complexes. Journal Biological Chemistry, 275:5003-5010, 2000. Cerca con Google

[35] F. Meggio, B. Boldyre_, O. Marin, L. A. Pinna, and O. G. Issinger. Role of the beta subunit of casein kinase-2 on the stability and specificity of the recombinant reconstituted holoenzyme. European Journal of Biochemistry, 204:293-297, 1992. Cerca con Google

[36] P. Agostinis, J. Goris, L. A. Pinna, and W. Merlevede. Regulation of casein kinase 2 by phosphorylation/dephosphorylation. Biochemical Journal, 248:785-789, 1987. Cerca con Google

[37] D. W. Litchfield, F. J. Lozeman, M. F. Cicirelli, M. Harrylock, L. H. Ericsson, C. J. Piening, and E. G. Krebs. Phosphorylation of the beta subunit of casein kinase II in human A431 cells. identification of the autophosphorylation site and a site phosphorylated by p34cdc2. Journal of Biological Chemistry, 266:20380-20389, 1991. Cerca con Google

[38] C. S. Skjerpen, T. Nilsen, J. Wesche, and S. Olsnes. Binding of FGF- 1 variants to protein kinase CK2 correlates with mitogenicity. EMBO Journal, 21:4058-4069, 2002. Cerca con Google

[39] M. Faust, N. Schuster, and M. Montenarh. Specific binding of protein kinase CK2 catalytic subunits to tubulin. FEBS Letters, 462:51-56, 1999. Cerca con Google

[40] Y. Miyata and I. Yahara. Interaction between casein kinase II and the 90-kDa stress protein, HSP90. Biochemistry, 34:8123-8129, 1995. Cerca con Google

[41] P. T.Tuazon and J. A. Traugh. Casein kinase I and II-multipotential serine protein kinases: structure, function, and regulation. Advances in Second Messenger and Phosphoprotein Research, 23:123-164, 1991. Cerca con Google

[42] N. P. Pavletich. Mechanism of cyclin-dependent kinase regulation: structure of Cdks, their cyclin activators, and Cip and INK4 inhibitors. Journal of Molecular Biology, 287:821-828, 1999. Cerca con Google

[43] U. Munstermann, G. Fritz, G. Seitz, Y. P. Lu, H. R. Schneider, and O. G. Issinger. Casein kinase II is elevated in solid human tumours and rapidly proliferating non-neoplastic tissue. European Journal of Biochemistry, 189:251-257, 1990. Cerca con Google

[44] L. A. Pinna. Casein kinase 2: an \eminence grise" in cellular regulation? Biochimica et Biophysica Acta, 1054:267-284, 1990. Cerca con Google

[45] M. Faust and M. Montenarh. Subcellular localization of protein kinase CK2. a key to its function? Cell Tissue Research, 301:329-340, 2000. Cerca con Google

[46] C. V. Glover. On the physiological role of casein kinase II in Saccharomyces cerevisiae. Progress in Nucleic Acid Research and Molecular Biology, 59:95-133, 1998. Cerca con Google

[47] J. S. Duncan and D. W. Litchfield. Too much of a good thing: The role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochimica et Biophysica Acta, 2007. Cerca con Google

[48] S. Desagher, A. Osen-Sand, S. Montessuit, E. Magnenat, F. Vilbois, A. Hochmann, L. Journot, B. Antonsson, and J. C. Martinou. Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Molecular Cell, 8:601-611, 2001. Cerca con Google

[49] G. L. Russo, M. T. Vandenberg, I. J. Yu, Y. S. Bae, B. R. Franza, and D. R. Marshak. Casein kinase II phosphorylates p34cdc2 kinase in G1 phase of the HeLa cell division cycle. Journal of Biological Chemistry, Cerca con Google

267:20317-20325, 1992. Cerca con Google

[50] K. Block, T. G. Boyer, and P. R. Yew. Phosphorylation of the human ubiquitin-conjugating enzyme, CDC34, by casein kinase 2. Journal of Biological Chemistry, 276:41049-41058, 2001. Cerca con Google

[51] J. R. Daum and G. J. Gorbsky. Casein kinase II catalyzes a mitotic phosphorylation on threonine 1342 of human DNA topoisomerase IIalpha, which is recognized by the 3F3/2 phosphoepitope antibody. Journal Biological Chemistry, 273:30622-30629, 1998. Cerca con Google

[52] R. A. Faust, S. Tawfic, A. T. Davis, L. A. Bubash, and K. Ahmed. Antisense oligonucleotides against protein kinase CK2-alpha inhibit growth of squamous cell carcinoma of the head and neck in vitro. Head Neck, 22:341-346, 2000. Cerca con Google

[53] S. Yenice, A. T. Davis, S. A. Goueli, A. Akdas, C. Limas, and K. Ahmed. Nuclear casein kinase 2 (CK-2) activity in human normal, benign hyperplastic, and cancerous prostate. Prostate, 24:11-16, 1994. Cerca con Google

[54] G. Stalter, S. Siemer, E. Becht, M. Ziegler, K. Remberger, and O. G. Issinger. Asymmetric expression of protein kinase CK2 subunits in human kidney tumors. Biochemical and Biophysical Research Communications, Cerca con Google

202:141-147, 1994. Cerca con Google

[55] E. Landesman-Bollag, R. Romieu-Mourez, D. H. Song, G. E. Sonenshein, R. D. Cardiff, and D. C. Seldin. Protein kinase CK2 in mammary gland tumorigenesis. Oncogene, 20:3247-3257, 2001. Cerca con Google

[56] M. Daya-Makin, J. S. Sanghera, T. L. Mogentale, M. Lipp, J. Parchomchuk, J. C. Hogg, and S. L.Pelech. Activation of a tumor-associated protein kinase (p40TAK) and casein kinase 2 in human squamous cell carcinomas and adenocarcinomas of the lung. Cancer Research, 54:2262-2268, 1994. Cerca con Google

[57] D. C. Seldin, E. Landesman-Bollag, M. Farago, N. Currier, D. Lou, and I. Dominguez. CK2 as a positive regulator of Wnt signalling and tumourigenesis. Molecular Cell Biochemistry, 274:63-67, 2005. Cerca con Google

[58] S. F. Eddy, S. Guo, E. G. Demicco, R. Romieu-Mourez, E. Landesman- Bollag, D. C. Seldin, and G. E. Sonenshein. Inducible IkappaB kinase/ IkappaB kinase epsilon expression is induced by CK2 and promotes aberrant nuclear factor-kappaB activation in breast cancer cells. Cancer Research, 65:11375-11383, 2005. Cerca con Google

[59] K. Busset, M. Henriksson, J. M. Luscher-Firla_, and B. Luscher. Identification of casein kinase II phosphorylation sites in max: effectson DNAbinding kinetics of max homo and Myc/Max. Oncogene, 8:3211-3220, 1992. Cerca con Google

[60] A. Lin, J. Frost, T. Deng, T. Smeal, N. al Alawi, U. Kikkawa, T. Hunter, D. Brenner, and M. Karin. Casein kinase II is a negative regulator of c-Jun DNA binding and AP-1 activity. Cell, 70:777-789, 1992. Cerca con Google

[61] P. Channavajhala and D. C. Seldin. Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis. Oncogene, 21:5280-5288, 2002. Cerca con Google

[62] M. Oelgeschläger, J. Krieg, J. M. Lüscher-Firzlaff, and B. Lüscher. Casein kinase II phosphorylation site mutations in c-Myb affect DNA binding and transcriptional cooperativity with NF-M. Molecular Cell Biology, Cerca con Google

15:5966-5974, 1995. Cerca con Google

[63] J. Torres and R. Pulido. The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. implications for PTEN stability to proteasome-mediated degradation. Journal Biological Chemistry, Cerca con Google

276:993-998, 2001. Cerca con Google

[64] A. M. Oliveira, J. S. Ross, and J. A. Fletcher. Tumor suppressor genes in breast cancer: the gatekeepers and the caretakers. American Journal of Clincal Pathology, 124 Suppl:S16-S28, 2005. Cerca con Google

[65] M. Kapoor and G. Lozano. Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation. Proceedings of the National Academy of Sciences of the United States of America, Cerca con Google

95:2834-2837, 1998. Cerca con Google

[66] M. Sayed, S. O. Kim, B. S. Salh, O. G. Issinger, and S. L. Pelech. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase. Journal of Biological Chemistry, Cerca con Google

275:16569-16573, 2000. Cerca con Google

[67] P. P. Scaglioni, T. M. Yung, L. F. Cai, H. Erdjument-Bromage, A. J. Kaufman, B. Singh, J. Teruya-Feldstein, P. Tempst, and P. P. Pandolfi. A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cerca con Google

Cell, 126:269-283, 2006. Cerca con Google

[68] L. A. Pinna and F. Meggio. Protein kinase CK2 (\casein kinase-2") and its implication in cell division and proliferation. Progress in Cell Cycle Research, 3:77-97, 1997. Cerca con Google

[69] R. Zandomeni, M. C. Zandomeni, D. Shugar, and R. Weinmann. Casein kinase type II is involved in the inhibition by 5,6-dichloro-1-beta-Dribofuranosylbenzimidazole of specific RNA polymerase II transcription. Journal of Biological Chemistry, 261:3414-3419, 1986. Cerca con Google

[70] F. Meggio, D. Shugar, and L. A . Pinna. Ribofuranosyl-benzimidazole derivatives as inhibitors of casein kinase-2 and casein kinase-1. European Journal of Biochemistry, 187:89-94, 1990. Cerca con Google

[71] M. Andrzejewska, M. A. Pagano, F. Meggio, A. M. Brunati, and Z. Kazimierczuk. Polyhalogenobenzimidazoles: synthesis and their inhibitory activity against casein kinases. Bioorganic and Medicinal Chemistry, 11:3997-4002, 2003. Cerca con Google

[72] M. A. Pagano, M. Andrzejewska, M. Ruzzene, S. Sarno, L. Cesaro, J. Bain, M. Elliott, F. Meggio, Z. Kazimierczuk, and L. A. Pinna. Optimization of protein kinase CK2 inhibitors derived from 4,5,6,7- tetrabromobenzimidazole. Journal of Medicinal Chemistry, 47:6239-6247, 2004. Cerca con Google

[73] R. Battistutta, E. Moliner, S. Sarno, G. Zanotti, and L. A. Pinna. Structural features underlying selective inhibition of protein kinase CK2 by ATP site-directed tetrabromo-2-benzotriazole. Protein Science, 10:2200- Cerca con Google

2206, 2001. Cerca con Google

[74] Roberto Battistutta, Marco Mazzorana, Stefania Sarno, Zygmunt Kazimierczuk, Giuseppe Zanotti, and Lorenzo A Pinna. Inspecting the structure-activity relationship of protein kinase CK2 inhibitors derived from tetrabromo-benzimidazole. Chemistry and Biology, 12:1211-1219, 2005. Cerca con Google

[75] R. Battistutta, M. Mazzorana, L. Cendron, A. Bortolato, S. Sarno, Z. Kazimierczuk, G. Zanotti, S. Moro, and L. A. Pinna. The atp-binding site of protein kinase CK2 holds a positive electrostatic area and conserved water molecules. Chembiochem, 8:1804-1809, 2007. Cerca con Google

[76] S. Sarno, H. Reddy, F. Meggio, M. Ruzzene, S. P. Davies, A. Donella- Deana, D. Shugar, and L. A. Pinna. Selectivity of 4,5,6,7- tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 ('casein kinase-2'). FEBS Letters, 496:44-48, 2001. Cerca con Google

[77] M. A. Pagano, F. Meggio, M. Ruzzene, M. Andrzejewska, Z. Kazimierczuk, and L. A. Pinna. 2-Dimethylamino-4,5,6,7-tetrabromo-1Hbenzimidazole: a novel powerful and selective inhibitor of protein kinase Cerca con Google

CK2. Biochemical and Biophysical Research Communications, 321:1040- 1044, 2004. Cerca con Google

[78] A. G. Golub, O. Y. Yakovenko, A. O. Prykhod'ko, S. S. Lukashov, V. G. Bdzhola, and S. M. Yarmoluk. Evaluation of 4,5,6,7-tetrahalogeno- 1h-isoindole-1,3(2H)-diones as inhibitors of human protein kinase CK2. Cerca con Google

Biochim Biophys Acta, 2007. Cerca con Google

[79] M. A. Pagano, G. Poletto, G. Di Maira, G. Cozza, M. Ruzzene, S. Sarno, J. Bain, M. Elliott, S. Moro, G. Zagotto, F. Meggio, and L. A. Pinna. Tetrabromocinnamic acid (TBCA) and related compounds represent a Cerca con Google

new class of specific protein kinase CK2 inhibitors. Chembiochem, 8:129- 139, 2007. Cerca con Google

[80] S. Sarno, E. Moliner, M. Ruzzene, M. A. Pagano, R. Battistutta, J. Bain, D. Fabbro, J. Schoepfer, M. Elliott, P.Furet, F. Meggio, G. Zanotti, and L. A. Pinna. Biochemical and three-dimensional-structural study of the Cerca con Google

speci_c inhibition of protein kinase CK2 by [5-oxo-5,6-dihydroindolo-(1,2- a)quinazolin-7-yl]acetic acid (IQA). Biochemical Journal, 374:639-646. Cerca con Google

[81] R. Battistutta, S. Sarno, E. Moliner, E. Papinutto, G. Zanotti, and L. A. Pinna. The replacement of ATP by the competitive inhibitor emodin induces conformational modifications in the catalytic site of protein kinase CK2. Journal of Biological Chemistry, 275:29618-29622, 2000. Cerca con Google

[82] E. Moliner, S. Moro, S. Sarno, G. Zagotto, G. Zanotti, L. A. Pinna, and R. Battistutta. Inhibition of protein kinase CK2 by anthraquinonerelated compounds. a structural insight. Journal of Biological Chemistry, 278:1831-1836, 2003. Cerca con Google

[83] S. Sarno, S. Moro, F. Meggio, G. Zagotto, D. Dal Ben, P. Ghisellini, R. Battistutta, G. Zanotti, and L. A. Pinna. Toward the rational design of protein kinase casein kinase-2 inhibitors. Pharmacology and Therapeutics, Cerca con Google

93:159-168, 2002. Cerca con Google

[84] F. Meggio, M. A. Pagano, S. Moro, G. Zagotto, M. Ruzzene, S. Sarno, G. Cozza, J. Bain, M. Elliott, A. D. Deana, A. M. Brunati, and L. A. Pinna. Inhibition of protein kinase CK2 by condensed polyphenolic derivatives. Cerca con Google

an in vitro and in vivo study. Biochemistry, 43:12931-12936, 2004. Cerca con Google

[85] R. J. Nijveldt, E. van Nood, D. E. van Hoorn, P. G. Boelens, K. van Norren, and P. A. van Leeuwen. Flavonoids: a review of probable mechanisms of action and potential applications. American Journal of Clinical Cerca con Google

Nutrition, 74:418-425, 2001. Cerca con Google

[86] E. Middleton. Effect of plant avonoids on immune and inammatory cell function. Advances in Experimental Medicine and Biology, 439:175-182, 1998. Cerca con Google

[87] J. V. Formica and W. Regelson. Review of the biology of Quercetin and related bioavonoids. Food and Chemical Toxicology, 33:1061-1080, 1995. Cerca con Google

[88] G. Cozza, P. Bonvini, E. Zorzi, G. Poletto, M. A. Pagano, S. Sarno, A. Donella-Deana, G. Zagotto, A. Rosolen, L. A. Pinna, F. Meggio, and S. Moro. Identification of ellagic acid as potent inhibitor of protein kinase CK2: a successful example of a virtual screening application. Journal of Medicinal Chemistry, 49:2363-2366, 2006. Cerca con Google

[89] H. Madari and R. S. Jacobs. An analysis of cytotoxic botanical formulations used in the traditional medicine of ancient Persia as abortifacients. Journal of Natural Products, 67:1204-1210, 2004. Cerca con Google

[90] F. Borges, F. Roleira, N. Milhazes, L. Santana, and E. Uriarte. Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Current Medicinal Chemistry, 12:887-916, 2005. Cerca con Google

[91] A. Lacy and R. O'Kennedy. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Current Pharmaceutical Design, 10:3797-811, 2004. Cerca con Google

[92] D. Yim, R. P. Singh, C. Agarwal, S. Lee, H. Chi, and R. Agarwal. A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Cancer Research, 65:1035-44, 2005. Cerca con Google

[93] M. Kawase, H. Sakagami, K. Hashimoto, S. Tani, H. Hauer, and S. S. Chatterjee. Structure-cytotoxic activity relationships of simple hydroxylated coumarins. Anticancer Research, 23:3243-3246, 2003. Cerca con Google

[94] G. Finn, B. Creaven, and D. Egan. Modulation of mitogen-activated protein kinases by 6-nitro-7-hydroxycoumarin mediates apoptosis in renal carcinoma cells. European Journal of Pharmacology, 481:159-167, 2003. Cerca con Google

[95] A. Bortolato, G. Cozza, S. Zanatta, G. Poletto, G Zagotto, E. Uriarte, A. Guiotto, L. A. Pinna, F. Meggio, and S. Moro. Coumarin as attractive casein kinase 2 (CK2) inhibitor scaffold: an integrate approach to elucidated the putative binding motif and explain structure-activity relationships. Journal of Medicinal Chemistry, Accepted, 2008. Cerca con Google

[96] Z. Nie, C. Perretta, P. Erickson, S. Margosiak, R. Almassy, J. Lu, A. Averill, K. M. Yager, and S. Chu. Structure-based design, synthesis, and study of pyrazolo[1,5-a][1,3,5]triazine derivatives as potent inhibitors of protein kinase CK2. Bioorganic and Medicinal Chemistry Letters, 17:4191-4195, 2007. Cerca con Google

[97] Z. Nie, C. Perretta, P Erickson, S. Margosiak, J. Lu, A. Averill, R. Almassy, and S. Chu. Structure-based design and synthesis of novel macrocyclic pyrazolo[1,5-a] [1,3,5]triazine compounds as potent inhibitors of protein kinase CK2 and their anticancer activities. Bioorganic and Medicinal Chemistry Letters, 2007. Cerca con Google

[98] D. B. Kitchen, H. Decornez, J. R. Furr, and J. Bajorath. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Review Drug Discovery, 3:935-949, 2004. Cerca con Google

[99] H. M. Berman, T. Battistuz, T. N. Bhat, W. F. Bluhm, P. E. Bourne, K. Burkhardt, Z. Feng, G. L. Gilliland, L. Iype, S. Jain, P. Fagan, J. Marvin, D. Padilla, V. Ravichandran, B. Schneider, N. Thanki, H. Weissig, J. D. Westbrook, and C. Zardecki. The Protein Data Bank. Acta Crystallographica. Section D, Biological Crystallography, 58:899-907, 2002. Cerca con Google

[100] M. A. Miteva, W. H. Lee, M. O. Montes, and B. O. Villoutreix. Fast structure-based virtual ligand screening combining FRED, DOCK, and Surex. Journal of Medicinal Chemistry, 48:6012-22, 2005. Cerca con Google

[101] A Bortolato and S. Moro. In silico binding free energy predictability by using the linear interaction energy (LIE) method: bromobenzimidazole CK2 inhibitors as a case study. Journal of Chemical Information and Modeling, 47:572-582, 2007. Cerca con Google

[102] P. J. Hajduk, J. R. Huth, and S. W. Fesik. Druggability indices for protein targets derived from NMR-based screening data. Journal of Medicinal Chemistry, 48:2518-2525, 2005. Cerca con Google

[103] A. C. Pierce, G. Rao, and G. W. Bemis. BREED: Generating novel inhibitors through hybridization of known ligands. application to CDK2, p38, and HIV protease. Journal of Medicinal Chemistry, 47:2768-2775, Cerca con Google

2004. Cerca con Google

[104] B. J. Druker and N. B. Lydon. Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. The Journal of Clinical Investigation, 105:3-7, 2000. Cerca con Google

[105] R. Capdeville, E. Buchdunger, J. Zimmermann, and A. Matter. Glivec (STI571, Imatinib), a rationally developed, targeted anticancer drug. Nature Review Drug Discovery, 1:493-502, 2002. Cerca con Google

[106] T. Schindler, W. Bornmann, P. Pellicena, W. T. Miller, B. Clarkson, and J. Kuriyan. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science, 289:1938-1942, 2000. Cerca con Google

[107] B. Nagar, W. G. Bornmann, P. Pellicena, T. Schindler, D. R. Veach, W. T. Miller, B. Clarkson, and J. Kuriyan. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancerer Research, 62:4236-4243, 2002. Cerca con Google

[108] S. W. Cowan-Jacob, V. Guez, G. Fendrich, J. D. Griffin, D. Fabbro, P. Furet, J. Liebetanz, J. Mestan, and P. W. Manley. Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment. Mini Review in Medicinal Chemistry, 4:285-299, 2004. Cerca con Google

[109] S. R. Hubbard and J. H. Till. Protein tyrosine kinase structure and function. Annual Review in Biochemistry, 69:373-398, 2000. Cerca con Google

[110] C. D. Mol, D. R. Dougan, T. R. Schneider, R. J. Skene, M. L. Kraus, D. N. Scheibe, G. P. Snell, H. Zou, B. Sang, and K. P. Wilson. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. Journal of Biological Chemistry, 279:31655-31663, 2004. Cerca con Google

[111] E. Shtivelman, B. Lifshitz, R. P. Gale, and E. Canaani. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature, 315:550- 554, 1985. Cerca con Google

[112] Y. Ben-Neriah, G. Q. Daley, A. M. Mes-Masson, O. N. Witte, and D. Baltimore. The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science, 233:212-214, 1986. Cerca con Google

[113] B. J. Druker, F. Guilhot, S. G. O'Brien, I. Gathmann, H. Kantarjian, N. Gattermann, M. W. N. Deininger, R. T. Silver, J. M. Goldman, R. M. Stone, F. Cervantes, A. Hochhaus, B. L. Powell, J. L. Gabrilove, P. Rousselot, J. Reiffers, J. J. Cornelissen, T. Hughes, H. Agis, T. Fischer, G. Verhoef, J. Shepherd, G. Saglio, A. Gratwohl, J. L. Nielsen, J. P. Radich, B. Simonsson, K. Taylor, M. Baccarani, C. So, L. Letvak, and R. A. Larson. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. New England Journal of Medicine, 355:2408-2417, 2006. Cerca con Google

[114] A. Quintás-Cardama, H. Kantarjian, and J. Cortes. Flying under the radar: the new wave of BCR-ABL inhibitors. Nature Review Drug Discovery, 6:834-848, 2007. Cerca con Google

[115] B.P. Rubin, M. C. Heinrich, and C. L. Corless. Gastrointestinal stromal tumour. Lancet, 369:1731-1741, 2007. Cerca con Google

[116] E. Wardelmann, I. Losen, V. Hans, I. Neidt, N. Speidel, E. Bierhoff, T. Heinicke, T. Pietsch, R. Büttner, and S. Merkelbach-Bruse. Deletion of Trp-557 and Lys-558 in the juxtamembrane domain of the c-kit protooncogene is associated with metastatic behavior of gastrointestinal stromal tumors. International Journal of Cancer, 106:887-895, 2003. Cerca con Google

[117] M. C. Heinrich, C. L. Corless, A. Duensing, L. McGreevey, C. Chen, N. Joseph, S. Singer, D. J. Griffith, A. Haley, A. Town, G. D. Demetri, C. D. M. Fletcher, and J. A. Fletcher. PDGFRA activating mutations in gastrointestinal stromal tumors. Science, 299:708-710, 2003. Cerca con Google

[118] M. C. Heinrich, C. L. Corless, G. D. Demetri, C. D. Blanke, M. von Mehren, H. Joensuu, L. S. McGreevey, C. Chen, A. D. Van den Abbeele, B. J. Druker, B. Kiese, B. Eisenberg, P. J. Roberts, S. Singer, C. D. M. Fletcher, S. Silberman, S Dimitrijevic, and J. A. Fletcher. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. Journal Clinical Oncology, 21:4342-4349, 2003. Cerca con Google

[119] J. Gotlib, J. Cools, J. M. Malone, S. L. Schrier, D. G. Gilliland, and S. E. Coutré. The FIP1L1-PDGFRalpha fusion tyrosine kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia: implications for diagnosis, classification, and management. Blood, 103:2879-2891, 2004. Cerca con Google

[120] J. Score, C. Curtis, K. Waghorn, M. Stalder, M. Jotterand, F. H. Grand, and N. C. P. Cross. Identification of a novel imatinib responsive KIF5BPDGFRA fusion gene following screening for PDGFRA overexpression in patients with hypereosinophilia. Leukemia, 20:827-32, 2006. Cerca con Google

[121] J. Aqvist, C. Medina, and J. E. Samuelsson. A new method for predicting binding affinity in computer-aided drug design. Protein Engineering, 7:385-391, 1994. Cerca con Google

[122] T. Hansson and J. Aqvist. Estimation of binding free energies for HIV proteinase inhibitors by molecular dynamics simulations. Protein Engineering, 8:1137-1144, 1995. Cerca con Google

[123] B. O. Brandsdal, J. Aqvist, and A. O. Smalås. Computational analysis of binding of P1 variants to trypsin. Protein Science, 10:1584-1595, 2001. Cerca con Google

[124] M. Graffner-Nordberg, K. Kolmodin, J. Aqvist, S. F. Queener, and A. Hallberg. Design, synthesis, computational prediction, and biological evaluation of ester soft drugs as inhibitors of dihydrofolate reductase Cerca con Google

from Pneumocystis carinii. Journal of Medicinal Chemistry, 44:2391- 2402, 2001. Cerca con Google

[125] D. Huang and A. Caisch. Efficient evaluation of binding free energy using continuum electrostatics solvation. Journal of Medicinal Chemistry, 47:5791-5797, 2004. Cerca con Google

[126] K. B. Ljungberg, J. Marelius, D. Musil, P. Svensson, B. Norden, and J. Aqvist. Computational modelling of inhibitor binding to human thrombin. European Journal of Pharmaceutical Science, 12:441-446, 2001. Cerca con Google

[127] J. Wang, R. Dixon, and P. A. Kollman. Ranking ligand binding affinities with avidin: a molecular dynamics-based interaction energy study. Proteins, 34:69-81, 1999. Cerca con Google

[128] F. Osterberg and J. Aqvist. Exploring blocker binding to a homology model of the open hERG K+ channel using docking and molecular dynamics methods. FEBS Letters, 579:2939-2944, 2005. Cerca con Google

[129] A. Carlson and W. L. Jorgensen. An extended linear response method for determining free energies of hydration heather. Journal of Physical Chemistry, 99:10667-10673, 1995. Cerca con Google

[130] E. Gallicchio, L. Y. Zhang, and R. M. Levy. The SGB/NP hydration free energy model based on the surface generalized born solvent reaction field and novel nonpolar hydration free energy estimators. Journal of Cerca con Google

Computational Chemistry, 23:517-529, 2002. Cerca con Google

[131] B. A. Tounge and C. H. Reynolds. Calculation of the binding affinity of beta-secretase inhibitors using the linear interaction energy method. Journal of Medicinal Chemistry, 46:2074-2082, 2003. Cerca con Google

[132] P. Singh, A. M. Mhaka, S. B. Christensen, J. J. Gray, S. R. Denmeade, and J. T. Isaacs. Applying linear interaction energy method for rational design of noncompetitive allosteric inhibitors of the sarco- and endoplasmic reticulum calcium-ATPase. Journal of Medicinal Chemistry, 48:3005-3014, 2005. Cerca con Google

[133] K. Niefind, B. Guerra, I. Ermakowa, and O. G. Issinger. Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO Journal, 20:5320-5331, 2001. Cerca con Google

[134] Schrodinger LLC. Liaison, version 3.5. New York, NY, 2005. Cerca con Google

[135] Schrodinger LLC. Ligprep, version 1.6. New York, NY, 2005. Cerca con Google

[136] P. Pospisil, T. Kuoni, L. Scapozza, and G. Folkers. Methodology and problems of protein-ligand docking: case study of dihydroorotate dehydrogenase, thymidine kinase, and phosphodiesterase 4. Journal of Receptor Cerca con Google

Signal Transduction Research, 22:141-154, 2002. Cerca con Google

[137] Chemical Computing Group Inc. Molecular Operating Enviroment. 1255 University Street, Suite 1600, Montreal, Quebec, Canada H3B 3X3, 2005. Cerca con Google

[138] Wavefunctio Inc. Spartan'02. Irvine, CA, 2002. Cerca con Google

[139] C. C. Chambers, G. D. Hawkins, C. J. Cramer, and D. G. Truhlar. Model for aqueous solvation based on class IV atomic charges and first solvation shell effects. Journal of Physical Chemistry, 100:16385-16398, 1996. Cerca con Google

[140] J. A. Grant, B. T. Pickup, and A. Nicholls. A smooth permittivity function for Poisson-Boltzmann solvation methods. Journal of Computational Chemistry, 2001:608-640, 2001. Cerca con Google

[141] W. D. C. P. Cornell, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman. A second generation force field for the simulation of proteins, nucleic acids and organic molecules. Journal of Americal Chemistry Society, 117:5179- 5196, 1995. Cerca con Google

[142] S. Sarno, P. Vaglio, F. Meggio, O. G. Issinger, and L. A. Pinna. Protein kinase CK2 mutants defective in substrate recognition. purification and kinetic analysis. Journal of Biological Chemistry, 271:10595-10601, 1996. Cerca con Google

[143] Advanced Chemistry Development Inc. ACD/pka, version 10.0. Toronto ON, Canada., 2006. Cerca con Google

[144] P. A. Kollman, Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D. A. Case, and T. A. Cheatham III. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Accounts of Chemical Research, 33:889-897, 2000. Cerca con Google

[145] B. Nagar, W. G. Bornmann, P. Pellicena, T. Schindler, D. R. Veach, W. T. Miller, B. Clarkson, and J. Kuriyan. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 Cerca con Google

and imatinib (STI-571). Cancer Research, 62:4236-4243, 2002. Cerca con Google

[146] Tripos Inc. Sybyl 7.0. 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA, 2006. Cerca con Google

[147] M. J. Frisch et al. Gaussian98. Gaussian Inc., 1998. Cerca con Google

[148] C. I. Bayly, P. Cieplak, W. D. Cornell, and P. A. Kollman. A wellbehaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. Journal of Physical Chemistry, Cerca con Google

97:10269-10280, 1993. Cerca con Google

[149] D. A. Case, T. A. Darden, T. E. Cheatham III, C. L. Simmerling, J.Wang, R. E. Duke, R. Luo, K. M. Merz, D. A. Pearlman, M. Crowley, R. C. Walker, W. Zhang, B. Wang, S. Hayik, A. Roitberg, G. Seabra, K. F. Wong, F. Paesani, X.Wu, S. Brozell, V. Tsui, H. Gohlke, L. Yang, C. Tan, J. Mongan, V. Hornak, G. Cui, P. Beroza, D. H. Mathews, C. Schafmeister, W. S. Ross, and P. A. Kollman. Amber 9, University of California, San Francisco. 2006. Cerca con Google

[150] Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, and P. Kollman. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24:1999-2012, 2003. Cerca con Google

[151] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case. Development and testing of a general amber force field. Journal of Computational Chemistry, 25:1157-1174, 2004. Cerca con Google

[152] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein. Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physic, 79:926-935, 1983. Cerca con Google

[153] A. M. Ferrari, G. Degliesposti, M. Sgobba, and G. Rastelli. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors. Bioorganic and Medicinal Cerca con Google

Chemistry, 15:7865-77, 2007. Cerca con Google

[154] Z. Xiang, C. S. Soto, and B. Honig. Evaluating conformational free energies: the colony energy and its application to the problem of loop prediction. The Proceedings of the National Academy of Sciences of the United States of America, 99:7432-7437, 2002. Cerca con Google

[155] F. Fogolari and S. C. E. Tosatto. Application of MM/PBSA colony free energy to loop decoy discrimination: toward correlation between energy and root mean square deviation. Protein Science, 14:889-901, 2005. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record