Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Vidal, Enrico (2012) Near-Infrared Spectroscopy e monitoraggio continuo real-time della perfusione renale post-trapianto. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
2081Kb

Abstract (inglese)

Introduction. Near-infrared spectroscopy (NIRS) is a non-invasive technique designed to study regional oxygenation (rSO2) by measuring absorption of chromophores (hemoglobin, cytochrome c oxidase). It has been validated for cerebral perfusion monitoring in neonates but few data exist on splanchnic perfusion evaluation. The assessment of adequate organ perfusion both in children and in adults is commonly based on clinical parameters, as well as invasive measures requiring central venous and/or arterial catheter access. Additionally, most of these data are acquired intermittently, and thus may only represent a delayed picture of oxygen delivery and consumption.
Aim of the study. The purpose of our study was to investigate the role of NIRS in real-time monitoring for kidney graft perfusion in the first 72 hrs post-transplantation, a vulnerable phase when a significant risk of ischemic insult exists.
Materials and Methods. Consecutive children undergoing living related or deceased donor kidney transplantation were prospectively enrolled between April 2010 and August 2011. NIRS probe was applied in operatory room upon surgical suture. Renal rSO2 values have been continuously registered for 3 days and were correlated with the following markers of perfusion:
- hourly urine output;
- serum creatinine and urinary neutrophil gelatinase-associated lipocalin (U-NGAL), both collected every 12 hrs;
- daily color flow and power Doppler ultrasound to assess global renal perfusion and intra-renal resistive index.
Results. Twenty-four children were included, 6 underwent living related kidney transplantation and 18 deceased donor kidney transplantation. Median age was 12.5 yrs (range 1.0-17.8) and median weight was 37 kg (range 9.5-72). Immunosuppression was induced with basiliximab; thereafter, the immunosuppressive regimen consisted of prednisone with tacrolimus and mycophenolate mofetil. Four patients experienced delayed graft function. Power and color Doppler US showed normal vascularisation patterns and normal intra-renal resistive indexes (median value 0.63) in all children. Mean basal renal rSO2 value was 69.84+11.95%, significantly lower than the end-of-period result (82.92+8.17%; p<0.0001). The oxygenation pattern revealed by NIRS was similar both in living related or deceased donor kidney transplants, in spite of different ischemia times. During the whole post-transplant NIRS monitoring, renal rSO2 values showed a significant correlation with both serum creatinine (r=-0.58; p<0.05) and creatinine clearance (r=0.54; p<0.05). It has not shown an association between rSO2 and diuresis. An increase in renal oxygenation was found also in the patients who experienced a delayed graft function. U-NGAL exhibited a trend of decrease from baseline and a significant negative correlation with rSO2 occurred both in deceased donor (r=-0.96; p<0.05) and living related (r=-0.89; p<0.05) kidney transplantations.
Conclusions. Our results suggest that NIRS monitoring could became a useful non-invasive tool for a real-time evaluation of kidney graft perfusion during the first hours after transplantation, a tricky phase when an ischemic insult could benefit from prompt medical or surgical treatment.

Abstract (italiano)

Introduzione. La near-infrared spectroscopy è una tecnica non invasiva che misura in modo continuo la saturazione regionale (rSO2) analizzando lo stato di ossigenazione dei cromofori (emoglobina e citocromo ossidasi). Il suo utilizzo è stato validato nel monitoraggio della perfusione cerebrale specie nei bambini sottoposti a interventi cardiochirurgici, mentre sono scarse le applicazioni nella valutazione della perfusione degli organi splancnici.
Scopo dello studio. Lo scopo di questo studio prospettico è stato di valutare il ruolo della NIRS nel monitoraggio della perfusione del rene trapiantato nelle prime 72 ore dal trapianto stesso, una fase critica in cui la precoce identificazione di complicanze vascolari può consentire l’attuazione di un tempestivo intervento medico e/o chirurgico.
Materiali e metodi. Sono stati inclusi tutti i pazienti pediatrici sottoposti a trapianto renale da donatore vivente o non-vivente nel periodo compreso tra aprile 2010 ed agosto 2011, cui il sensore NIRS è stato applicato già in sala operatoria in corrispondenza della proiezione cutanea del rene trapiantato. Sono stati analizzati i trend di rSO2 e la loro correlazione con markers di perfusione/ossigenazione renale:
- clinici: diuresi oraria;
- biochimici: creatininemia ed urinary neutrophil gelatinase-associated lipocalin (U-NGAL);
- strumentali: ecografia color e power Doppler per la valutazione della perfusione renale globale e Doppler pulsato per il calcolo degli indici resistivi intraparenchimali.
I parametri clinici e biochimici sono stati analizzati ogni 12 ore, mentre i rilievi strumentali sono stati eseguiti ogni 24 ore per 3 giorni consecutivi.
Risultati. Nello studio sono stati inclusi 24 pazienti, 6 sottoposti a trapianto da vivente e 18 da donatore non-vivente. Al momento del trapianto, la mediana dell’età era di 12.5 anni (range 1.0-17.8) e la mediana del peso era di 37 kg (range 9.5-72). L’immunosoppressione è stata indotta con steroidi e basiliximab, e proseguita nel mantenimento con steroidi, tacrolimus e micofenolato mofetile. Quattro pazienti hanno mostrato una ritardata ripresa di funzione dell’organo trapiantato. In tutti i pazienti, l’ecografia renale eseguita quotidianamente ha mostrato vascolarizzazione ed indici di resistività normali (valore mediano: 0.63). La rSO2 basale media è risultata di 69.84+11.95%, significativamente più bassa rispetto al valore rilevato al termine del periodo di monitoraggio (82.92+8.17%; p<0.0001). Nonostante i diversi tempi di ischemia fredda, non sono emerse rilevanti differenze tra i pattern di ossigenazione documentati dalla NIRS nei trapianti da donatore vivente e non-vivente. Durante le 72 ore di monitoraggio, l’andamento della rSO2 ha mostrato una correlazione significativa con creatininemia (r=-0.58; p<0.05) e clearance della creatinina (r=0.54; p <0.05), mentre non è stata dimostrato un’associazione con la diuresi. Nei 4 pazienti con ritardata ripresa di funzione dell’organo trapiantato, la NIRS ha consentito di dimostrare un trend in aumento della rSO2 indipendentemente da mancata ripresa della diuresi e mancato calo della creatininemia. In tutti i casi, l’U-NGAL ha mostrato un trend in riduzione dal valore basale, correlando in modo significativo con la rSO2 sia nei trapianti da donatore non-vivente (r=-0.96; p<0.05) che in quelli da donatore vivente (r=-0.89; p<0.05).
Conclusioni. I nostri risultati indicano che la NIRS rappresenta un metodo adeguato ed affidabile di monitoraggio continuo della perfusione renale nelle prime ore post-trapianto d’organo, quando è fondamentale assicurare al graft un apporto ematico regolare e soddisfacente.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Murer, Luisa
Dottorato (corsi e scuole):Ciclo 24 > Scuole 24 > MEDICINA DELLO SVILUPPO E SCIENZE DELLA PROGRAMMAZIONE > MALATTIE RARE, GENETICA, BIOLOGIA E BIOCHIMICA
Data di deposito della tesi:26 Gennaio 2012
Anno di Pubblicazione:26 Gennaio 2012
Parole chiave (italiano / inglese):Near-infrared spectroscopy, kidney transplantation, children
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/38 Pediatria generale e specialistica
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Pediatria
Codice ID:4533
Depositato il:26 Ott 2012 13:13
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Mussap M, Degrandi R, Fravega M, Fanos V. Acute kidney injury in critically ill infants: the role of urine Neutrophil Gelatinase-Associated Lipocalin (NGAL). The Journal of Maternal-Fetal and Neonatal Medicine 2010; 23(S3):70-72. Cerca con Google

2. Devarajan P. Review: Neutrophil Gelatinase-Associated Lipocalin: a troponin-like biomarker for human acute kidney injury. Nephrology (Carlton) 2010;15:419-428. Cerca con Google

3. Haase M, Bellomo R, Devarajan P, Schlattmann P, Hasse-Fielitz A. Accuracy of Neutrophil Gelatinase-Associated Lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. American Journal of Kidney Diseases 2009;54(6):1012-1024. Cerca con Google

4. Ronco C. NGAL: diagnosing AKI as soon as possible. Critical Care 2007;11:173. Cerca con Google

5. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Boros CHJ, Devarajan P. Indentification of neutrophil gelatinase-associated lipocalin as a novel early biomarker for ischemic renal injury. J Am Soc Nephrol 2003;14:2534-2543. Cerca con Google

6. Mishra J, Mori K, Ma Q, Kelly C, Barasch J, Devarajan P. Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cysplatin nephrotoxicity. Am J Nephrol 2004;24:307-315. Cerca con Google

7. Schmidt-Ott KM, Mori K, Kalandadze A, Li JY, Paragas N, Nicholas T, Devarajan P, Barasch J. Neutrophil gelatinase-associated lipocalin-mediated iron traffic in kidney epithelia. Curr Opin Nephrol Hypertens 2006 Jul;15(4):442-9. Cerca con Google

8. Devarajan P. Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 2006;17:1503-1520. Cerca con Google

9. Supavekin S, Zhang W, Kucherlapali R, Kasel FJ, Moore LC, Devarajan P. Differential gene expression following early renal ischemia/reperfusion. Kidney Int 2003;63:1714-1724. Cerca con Google

10. Gwira JA, Wei F, Ishibe S, Ueland JM, Barasch J, Cantley LG. Expression of neutrophil gelatinase-associated lipocalin regulates epithelial morphogenesis in vitro. J Biol Chem 2005 Mar 4;280(9):7875-8. Cerca con Google

11. Borregaard N, Cowland JB. Neutrophil Gelatinase-Associated Lipocalin, a siderophore-binding eukaryotic protein. Biometals 2006;19:211-215. Cerca con Google

12. Cowland JB, Borregaard N. Molecular characterization and pattern of tissue expression of the gene for Neutrophil Gelatinase-Associated Lipocalin from humans. Genomics 1997;45:17-23. Cerca con Google

13. Soni SS, Cruz D, Bobek I, Chionh CY, Nalesso F, Lentini P, de Cal M, Corradi V, Virzi G, Ronco C. NGAL: a biomarker of acute kidney injury and other systemic conditions. Int Urol Nephrol 2010;42:141-150. Cerca con Google

14. Hollmen ME, Kyllonen LE, Inkinen KA, Lalla MLT, Salmela KT. Urine neutrophil gelatinase-associated lipocalin is a marker of graft recovery after kidney transplantation. Kidney Int 2011;79:89-98. Cerca con Google

15. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005;365:1231-1238. Cerca con Google

16. Baxter GM. Ultrasound of renal transplantation. Clin Radiol 2001 Oct;56(10):802-18. Cerca con Google

17. Burgos Revilla FJ, Marcen Letosa R, Pascual Santos J, López Fando L. The usefulness of ultrasonography and Doppler ultrasound in renal transplantation. Arch Esp Urol 2006 May;59(4):343-52. Cerca con Google

18. Cosgrove DO, Chan KE. Renal transplants: what ultrasound can and cannot do. Ultrasound Q 2008 Jun;24(2):77-87. Cerca con Google

19. Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977;198:1264-1267. Cerca con Google

20. Brazy JE, Lewis DV. Changes in cerebral blood volume and cytochrome aa3 during hypertensive peaks in preterm infants. J Pediatr 1986;108:983-987. Cerca con Google

21. Austin EH 3rd, Edmonds HL Jr, Auden SM, Seremet V, Niznik G, Sehic A, Sowell MK, Cheppo CD, Corlett KM. Benefit of neurophysiologic monitoring for pediatric cardiac surgery. J Thorac Cardiovasc Surg 1997;114:707-715; discussion 715-716. Cerca con Google

22. Meek JH, Tyszczuk L, Elwell CE, Wyatt JS. Low cerebral blood flow is a risk factor for severe intraventricular haemorrhage. Arch Dis Child Fetal Neonatal Ed 1999;81:F15-F18. Cerca con Google

23. Pichler G, Urlesberger B, Muller W. Impact of bradycardia on cerebral oxygenation and cerebral blood volume during apnea in preterm infants. Physiol Meas 2003;24:671-680. Cerca con Google

24. Greeley WJ, Bracey VA, Ungerleider RM, Greibel JA, Kern FH, Boyd JL, Reves JG, Piantadosi CA. Recovery of cerebral metabolism and mitochondrial oxidation state is delayed after hypothermic circulatory arrest. Circulation 1991;84(5 Suppl):III 400-406. Cerca con Google

25. Daubeney PE, Smith DC, Pilkington SN, Lamb RS, Monro JL, Tsang VT, Livesey SA, Webber SA. Cerebral oxygenation during pediatric cardiac surgery: identification of vulnerable periods using near infrared spectroscopy. Eur J Cardiothorac Surg 1998;13:370-377. Cerca con Google

26. Hoffman GM, Stuth EA, Jaquiss RD, Vanderwal PL, Staudt SR, Troshynski TJ, Ghanayem NS, Tweddell JS. Changes in cerebral and somatic oxygenation during stage 1 palliation of hypoplastic left heart syndrome using continuous regional cerebral perfusion. J Thorac Cardiovasc Surg 2004;127:223-233. Cerca con Google

27. Amigoni A, Mozzo E, Brugnaro L, Tiberio I, Pittarello D, Stellin G, Bonato R. Four-side near-infrared spectroscopy measured in a paediatric population during surgery for congenital heart disease. Interact Cardiovasc Thorac Surg 2011 May;12(5):707-12. Epub 2011 Feb 19. Cerca con Google

28. Marimón GA, Dockery WK, Sheridan MJ, Agarwal S. Near-infrared spectroscopy cerebral and somatic (renal) oxygen saturation correlation to continuous venous oxygen saturation via intravenous oximetry catheter. J Crit Care 2011 Dec 13 [Epub ahead of print]. Cerca con Google

29. Možina H, Podbegar M. Near-infrared spectroscopy for evaluation of global and skeletal muscle tissue oxygenation. World J Cardiol 2011 Dec 26;3(12):377-82. Cerca con Google

30. Hoffman GM, Ghanayem NS, Mussatto KA, Musa N. Perioperative perfusion assessed by somatic NIRS predicts postoperative renal dysfunction. Anesthesiology 2005;103:A1327. Cerca con Google

31. Haase-Fielitz A, Haase M, Bellomo R. Instability of urinary NGAL during long-term storage. Am J Kid Dis 2009;53(3):564-565. Cerca con Google

32. Thorniley MS, Lane NJ, Manek S, Green CJ. Non-invasive measurement of respiratory chain dysfunction following hypothermic renal storage and transplantation. Kidney Int 1994;45(5):1489-96. Cerca con Google

33. Vaughan DL, Wickramasinghe YA, Russell GI, Thorniley MS, Houston RF, Ruban E, Rolfe P. Near Infrared Spectroscopy: blood and tissue oxygenation in renal ischemia-reperfusion injury in rats. Int J Angiology 1995;4:25-30. Cerca con Google

34. Perico N, Cattaneo D, Sayegh MH, Remuzzi G. Delayed graft function in kidney transplantation. Lancet 2004;364:1814-1827. Cerca con Google

35. Paller MS, Hoidal JR, Ferris TF. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest 1984;74:1156-1164 Cerca con Google

36. Sabbatini M, Sansone G, Uccello F, De Nicola L, Giliberti A, Sepe V, Magri P, Conte G, Andreucci VE. Functional versus structural changes in the pathophysiology of acute ischemic renal failure in aging rats. Kidney Int 1994;45:1355-1361. Cerca con Google

37. Daemen MA, van’t Veer C, Denecker G, Heemskerk VH, Wolfs TG, Clauss M, Vandenabeele P, Buurman WA. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J Clin Invest 1999;104: 541-549. Cerca con Google

38. Gianello P, Fishbein J, Besse T, Gustin T, Chatzopoulos C, Ketelslegers JM, Lambotte L, Squifflet JP. Measurement of vasoconstrictive substances endothelin, angiotensin II, and thromboaxane B2, in cold storage solution can reveal previous renal ischemic insults. Transplant Int 1994;7:11. Cerca con Google

39. Alejandro VS, Nelson WJ, Huie P, Sibley RK, Dafoe D, Kuo P, Scandling JD, Meyers BD. Postischemic injury, delayed function and Na+/K+-ATPase distribution in the transplanted kidney. Kidney Int 1995;48:1308. Cerca con Google

40. Yamada K, Gunji Y, Hishikawa E, Kashiwabara H, Sakamoto K, Arita S, Yokoyama T. Possible involvement of endothelin in post-transplant acute tubular necrosis. I: studies in renal transplant patients. Transplantation 1994;57:1137. Cerca con Google

41. Bretan PN, Lobo E, Chang JA, Dumitrescu O, Miller B, Yen TSB. Assessment of preservation induced reperfusion injury via intraoperative renal transplant blood flow and endothelin concentration studies. J Urol 1997;158:714-718. Cerca con Google

42. Takahashi K, Nammour TM, Fukunaga M, Ebert J, Morrow JD, Roberts LJ, Hoover RL, Badr KF. Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2 alpha, in the rat. Evidence for interaction with thromboxane A2 receptors. J Clin Invest 1992;90(1):136–141. Cerca con Google

43. Ojo AO, Wolfe RA, Held PJ, Port FK, Schmouder RL. Delayed graft function: risk factors and implications for renal allograft survival. Transplantation 1997;63:1620-1628. Cerca con Google

44. Lu CY, Penfield JG, Kielar ML, Vasquez MA, Jeyarajah DR. Hypothesis: is renal allograft rejection initiated by the response to injury during the transplant process? Kidney Int1999;51:2157-2163. Cerca con Google

45. Sabbatini M, Santillo M, Pisani A, Paternò R, Uccello F, Serù R, Matrone G, Spagnuolo G, Andreucci M, Serio V, Esposito P, Cianciaruso B, Fuiano G, Avvedimento EV. Inhibition of Ras/ERK1/2 signaling protects against post-ischemic renal injury. AJP-Renal Physiol 2006;290(6):F1408-1415. Cerca con Google

46. Doi K, Suzuki Y, Nakao A, Fujita T, Noiri E. Radical scavenger edaravone developed for clinical use ameliorates ischemia/reperfusion injury in rat kidney. Kidney Int 2004;65:1714-1723. Cerca con Google

47. Liano F, Pascual J. Predictive factors and scoring. In: Acute renal failure, edited by Molitoris BA and Finn WA, Philadelphia, WB Saunders, 2001, pp507-518. Cerca con Google

48. Molitoris BA. Transitioning to therapy in ischemic acute renal failure. J Am Soc Nephrol 2003;14:265-267. Cerca con Google

49. Yang J, Goetz D, Li JY, Wang W, Mori K, Setlik D, Du T, Erdjument-Bromage H, Cerca con Google

Tempst P, Strong R, Barasch J. An iron delivery pathway mediated by a lipocalin. Mol Cell 2002 Nov;10(5):1045-56. Cerca con Google

50. Mishra J, Ma Q, Kelly C, Mitsnefes M, Mori K, Barasch J, Devarajan P. Kidney NGAL is a novel early marker of acute injury following transplantation. Pediatr Nephrol 2006;21:856-863. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record