Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Pretto, Paolo (2008) The perception and production of speed during self-motion: evidence for non-optimal compensation mechanisms. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
2782Kb

Abstract (inglese)

The thesis describes a series of studies on the perception of speed of self-motion in realistically simulated environments. We carried out several experiments in order to explore from both the behavioral and the perceptual point of view how visual changes in the environment lead to a misperception of self-speed. More specifically, we investigated the issues of image contrast reduction, gaze direction and field-of-view and their influence on the perceived and produced speed of self-motion. Virtual environments technology was employed to display visual motion for both driving and walking speeds. Given the first results obtained from the implementation of a realistic contrast reduction in a driving simulation we formulate the hypothesis that changes in the perceived and produced speed are due to a non-optimal combination of the retinal angular velocities during self-motion. Indeed, the retinal projection of the environment during forward self-motion consists of expanding optic-flow patterns in which the angular velocities of the objects on the scene vary gradually according to their position and speed relatively to the moving observer. Objects very far away appear as moving slowly in the centre of the field-of-view, while the proximal regions appear as moving faster at the periphery of the visual field. The second part of the thesis is then dedicated to a systematic investigation on how the angular velocities from central and peripheral regions of the field-of-view contribute to the generation of the percept of a unique speed of forward translation.
In Chapter 1 we present a brief overview of the principal aspects of visual motion processing. We report some psychophysical and physiological findings that have been produced in the last decades of research, together with some models that try to describe the functional aspects of motion and speed processing. Moreover, we introduce and explain the theme of the visual speed of self-motion. Finally, we describe the technical and methodological tools that have been adopted to implement and execute the experiments of the following chapters.
In Chapter 2 experiments are described in which we address the question how image contrast reduction affects the driving behavior. We put particular emphasis to a naturalistic implementation of contrast reduction, namely fog. We show that a realistically simulated fog causes drivers to reduce the driving speed. We provide experimental evidence that this effect has a perceptual origin, due to the increased perceived speed while driving in fog. The behavioral effect of simulated fog is consistent through different experimental setups. Moreover, we show that the effect of an increased perceived speed is enhanced accordingly to the fog density. We hypothesize an explanation for these results based on the fact that the motion signals within the visual field are selectively masked. In fact, the three-dimensional spatial distribution of the exponential fog model used in our experiments reduces mainly the visibility of the lower velocity signals, situated in the distal region of the environment, centrally in the visual field. Furthermore, we compare the effect of simulated fog to the effect of a type of contrast reduction that attenuates the visibility uniformly all over the visual field, independently of the three-dimensional structure of the environment. We demonstrate that the perception of both the driving and walking speed is independent of a spatially uniform contrast reduction and of the region within the visual field in which this reduction is applied (central or peripheral).
The experiments of Chapter 3 show that during self-motion the estimation of the self-speed relies on retinal angular velocities that are likely to be combined in a non-optimal solution. We provide evidence that the speed estimate is biased towards the available motion signals from the environment, both in the driving and in the walking speeds domain. When the visibility of the central region of the field-of-view is precluded the perceived speed is higher, and conversely, when the peripheral region is not visible, the perceived speed is lower. This suggests that the speed estimation process takes into account the velocity signals from both central and peripheral areas of the visual field. However, we provide also evidence that the central area is necessary and nearly sufficient to build a correct speed estimate, even in large field-of-view virtual environments. Finally, we report also that the speed estimate depends on the gaze direction and can be impaired when the vertical field-of-view is limited.
Summary of the results and general discussion are presented in Chapter 4.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Roncato, Sergio
Dottorato (corsi e scuole):Ciclo 19 > Corsi per il 19simo ciclo > PERCEZIONE E PSICOFISICA
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Parole chiave (italiano / inglese):motion perception, speed perception, self-motion, optic-flow, virtual environments
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/01 Psicologia generale
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia Generale
Codice ID:454
Depositato il:12 Set 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America. A, Optics and image science, 2, 284-99. Cerca con Google

2. Adelson, E. H., & Movshon, J. A. (1982). Phenomenal coherence of moving visual patterns. Nature, 300, 523-5. Cerca con Google

3. Albright, T. D., & Stoner, G. R. (1995). Visual motion perception. Proceedings of the National Academy of Sciences of the United States of America, 92, 2433-40. Cerca con Google

4. Anderson, S. J., & Burr, D. C. (1991). Spatial summation properties of directionally selective mechanisms in human vision. Journal of the Optical Society of America. A, Optics and image science, 8, 1330-9. Cerca con Google

5. Anderson, S. J., Burr, D. C., & Morrone, M. C. (1991). Two-dimensional spatial and spatial-frequency selectivity of motion-sensitive mechanisms in human vision. Journal of the Optical Society of America. A, Optics and image science, 8, 1340-51. Cerca con Google

6. Anstis, S. (2003). Moving objects appear to slow down at low contrasts. Neural Networks, 16, 933-938. Cerca con Google

7. Ascher, D., & Grzywacz, N. M. (2000). A bayesian model for the measurement of visual velocity. Vision research, 40, 3427-34. Cerca con Google

8. Banton, T., Stefanucci, J., Durgin, F., Fass, A., & Proffitt, D. (2005). The perception of walking speed in a virtual environment. Presence: Teleoper. Virtual Environ, 14, 394-406. Cerca con Google

9. Bardy, B. G., Warren, W. H., & Kay, B. A. (1999). The role of central and peripheral vision in postural control during walking. Perception & psychophysics, 61, 1356-68. Cerca con Google

10. Barfield, W., Rosenberg, C., & Furness TA 3rd. (1995). Situation awareness as a function of frame of reference, computer-graphics eyepoint elevation, and geometric field of view. The International journal of aviation psychology, 5, 233-56. Cerca con Google

11. Barlow, H. B., & Hill, R. M. (1963). Evidence for a Psysiological Explanation of the Waterfall Phenomenon and Figural After-Effects. Nature, 200, 1345-7. Cerca con Google

12. Bartmann, A., Spijkers, W., & Hess, M. (1991). Street environment, driving speed and field of vision. In Vision in Vehicles III. Amsterdam. Cerca con Google

13. Baumberger, B., Fluckiger, M., & Roland, M. (2000). Walking in an environment of moving ground texture. Japanese Psychological Research, 42, 238-250. doi: doi:10.1111/1468-5884.00151 Cerca con Google

14. Beardsley, S. A., & Vaina, L. M. (1998). Computational modelling of optic flow selectivity in MSTd neurons. Network (Bristol, England), 9, 467-93. Cerca con Google

15. Beardsley, S. A., & Vaina, L. M. (2005). Psychophysical evidence for a radial motion bias in complex motion discrimination. Vision research, 45, 1569-86. Cerca con Google

16. Benton, C. P., & Johnston, A. (2001). A new approach to analysing texture-defined motion. Proceedings. Biological sciences / The Royal Society, 268, 2435-43. Cerca con Google

17. Benton, C. P. (2002). Gradient-based analysis of non-Fourier motion. Vision research, 42, 2869-77. 109 Cerca con Google

18. Berthoz, A., Jeannerod, M., Vital-Durand, F., & Oliveras, J. L. (1975). Development of vestibulo-ocular responses in visually deprived kittens. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale, 23, 425-42. Cerca con Google

19. Berthoz, A., Pavard, B., & Young, L. R. (1975a). Perception of linear horizontal self-motion induced by peripheral vision (linearvection) basic characteristics and visual-vestibular interactions. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale, 23, 471-89. Cerca con Google

20. Berthoz, A., Pavard, B., & Young, L. R. (1975b). Perception of linear horizontal self-motion induced by peripheral vision (linearvection) basic characteristics and visual-vestibular interactions. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale, 23, 471-89. Cerca con Google

21. Bex, P. J., Metha, A. B., & Makous, W. (1998). Psychophysical evidence for a functional hierarchy of motion processing mechanisms. Journal of the Optical Society of America. A, Optics, image science, and vision, 15, 769-76. Cerca con Google

22. Bex, P. J., & Makous, W. (1997). Radial motion looks faster. Vision Research, 37, 3399-3405. Cerca con Google

23. Bex, P. J., Metha, A. B., & Makous, W. (1999). Enhanced motion aftereffect for complex motions. Vision Research, 39, 2229-2238. Cerca con Google

24. Biocca, F., & Delaney, B. (1995). Immersive virtual reality technology. In Communication in the Age of Virtual Reality (pp. 57-124). Hillsdale NJ: Lawrence Erlbaum Associates. Cerca con Google

25. Blakemore, M. R., & Snowden, R. J. (1999). The effect of contrast upon perceived speed: a general phenomenon? Perception, 28, 33-48. Cerca con Google

26. Blakemore, M. R., & Snowden, R. J. (2000). Textured backgrounds alter perceived speed. Vision research, 40, 629-38. Cerca con Google

27. Brandt, Dichgans, & Koenig. (1973). Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Experimental Brain Research, 16, 476-491. doi: 10.1007/BF00234474 Cerca con Google

28. Brandt, T., Dichgans, J., & Koenig, E. (1973). Differential effects of central verses peripheral vision on egocentric and exocentric motion perception. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale, 16, 476-91. Cerca con Google

29. Brookhuis, Volkerts, & O?Hanlon. (1990). Repeated dose effects of lormetazepam and flurazepam upon driving performance. European Journal of Clinical Pharmacology, 39, 83-87. doi: 10.1007/BF02657065 Cerca con Google

30. Brookhuis, K. A., Vries, G. D., & Waard, D. D. (1993). Acute and subchronic effects of the H1-histamine receptor antagonist ebastine in 10, 20 and 30 mg dose, and triprolidine 10 mg on car driving performance. British Journal of Clinical Pharmacology, 36. Cerca con Google

31. Brooks, K. (2001). Stereomotion speed perception is contrast dependent. Perception, 30, 725-31. Cerca con Google

32. Bruggeman, H., Zosh, W., & Warren, W. H. (2007). Optic flow drives human visuo-locomotor adaptation. Current biology : CB, 17, 2035-40. Cerca con Google

33. Casey, S. M., & Lund, A. K. (1987). Three field studies of driver speed adaptation. Human factors, 29, 541-550. Cerca con Google

34. Champion, R. A., Hammett, S. T., & Thompson, P. G. (2007). Perceived direction of plaid motion is not predicted by component speeds. Vision research, 47, 375-83. Cerca con Google

35. Clifford, C. W., Beardsley, S. A., & Vaina, L. M. (1999). The perception and discrimination of speed in complex motion. Vision research, 39, 2213-27. Cerca con Google

36. Conchillo, A., Nunes, L., Ruiz, T., & Recarte, M. A. (1997). Effect of the retinal size and peripheral field restriction on speed perception of an automobile in a video scene. In Vision in Vehicles VII (pp. 93-100). Amsterdam: Elsevier Science. 111 Cerca con Google

37. Conchillo, A., Recarte, M. A., Nunes, L., & Ruiz, T. (2006a). Comparing speed estimations from a moving vehicle in different traffic scenarios: absence versus presence of traffic flow. The Spanish journal of psychology, 9, 32-7. Cerca con Google

38. Conchillo, A., Recarte, M. A., Nunes, L., & Ruiz, T. (2006b). Comparing speed estimations from a moving vehicle in different traffic scenarios: absence versus presence of traffic flow. The Spanish journal of psychology, 9, 32-7. Cerca con Google

39. Cox, E. M., & Dyre, B. P. Control of Egospeed: Influence of Discontinuity Rate and Global Optical Flow Rate. Cerca con Google

40. Crowell, J. A., & Banks, M. S. (1993). Perceiving heading with different retinal regions and types of optic flow. Perception & psychophysics, 53, 325-37. Cerca con Google

41. Cruz-Neira, C., Sandin, D. J., & DeFanti, T. A. (1993). Surround-screen projection-based virtual reality: the design and implementation of the CAVE. Proceedings of the 20th annual conference on Computer graphics and interactive techniques, 135-142. Cerca con Google

42. Culham, J., He, S., Dukelow, S., & Verstraten, F. A. (2001). Visual motion and the human brain: what has neuroimaging told us? Acta psychologica, 107, 69-94. Cerca con Google

43. Culham, J. C., Verstraten, F. A., Ashida, H., & Cavanagh, P. (2000). Independent aftereffects of attention and motion. Neuron, 28, 607-15. Cerca con Google

44. Cutting, J. E., Springer, K., Braren, P. A., & Johnson, S. H. (1992). Wayfinding on Foot From Information in Retinal, Not Optical, Flow. Journal of Experimental Psychology: General, 121, 41-72. Cerca con Google

45. Cynader, M., & Regan, D. (1978). Neurones in cat parastriate cortex sensitive to the direction of motion in three-dimensional space. The Journal of physiology, 274, 549-69. Cerca con Google

46. Durgin, F. H., Gigone, K. & Scott, R., (2005). Perception of visual speed while moving. Journal of Experimental Psychology: Human Perception and Performance, 31, 339-353. Cerca con Google

47. De Valois, K. K., & Switkes, E. (1980). Spatial frequency specific interaction of dot patterns and gratings. Proceedings of the National Academy of Sciences of the United States of America, 77, 662-5. Cerca con Google

48. Del Viva, M. M., & Morrone, M. C. (1998). Motion analysis by feature tracking. Vision research, 38, 3633-53. Cerca con Google

49. Denton, G. G. (1980). A Subjective Scale of Speed when Driving a Motor Vehicle. Cerca con Google

50. Derrington, A. M., & Badcock, D. R. (1992). Two-stage analysis of the motion of 2-dimensional patterns, what is the first stage? Vision research, 32, 691-8. Cerca con Google

51. Derrington, A. M., Lennie, P., & Wright, M. J. (1979). The mechanism of peripherally evoked responses in retinal ganglion cells. The Journal of physiology, 289, 299-310. Cerca con Google

52. Derrington, A. M., Allen, H. A., & Delicato, L. S. (2004). Visual mechanisms of motion analysis and motion perception. Annual review of psychology, 55, 181-205. Cerca con Google

53. Deyo, R., Briggs, J. A., & Doenges, P. (1988). Getting graphics in gear: graphics and dynamics in driving simulation. SIGGRAPH Comput. Graph, 22, 317-326. Cerca con Google

54. Dichgans, J., & Brandt, T. (1978). Handbook of sensory physiology (Held, H.W. Leibowitz and H.L. Teuber). Heidelberg: Springer. Cerca con Google

55. Distler, H. K., & Buelthoff, H. H. (1996). Velocity perception in 3D environments. Perception, 25 ECVP Abstract Supplement. Cerca con Google

56. Distler, H. K., Gegenfurtner, K. R., van Veen, H. A., & Hawken, M. J. (2000). Velocity constancy in a virtual reality environment. Perception, 29, 1423-35. Cerca con Google

57. van Doorn, A. J., Koenderink, J. J., & van de Grind, W. A. (1985). Perception of movement and correlation in stroboscopically presented noise patterns. Perception, 14, 209-24. Cerca con Google

58. Duffy, C. J., & Wurtz, R. H. (1991a). Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. Journal of neurophysiology, 65, 1329-45. Cerca con Google

59. Duffy, C. J., & Wurtz, R. H. (1991b). Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. Journal of neurophysiology, 65, 1346-59. Cerca con Google

60. Durgin, F., Gigone, K., & Scott, R. (2005). Perception of visual speed while moving. Journal of Experimental Psychology: Human Perception and Performance, 31, 339-53. Cerca con Google

61. Durlach, N. I., & Mavor, A. S. (1995). Virtual reality: Scientific and Technological challenges. Washington, DC: National Academy Press. Cerca con Google

62. Dyre, B. P., Schaudt, W. A., & Lew, R. T. (2005). Contrast gradients increase apparent egospeed while moving through simulated fog [Abstract]. Journal of Vision, 5, 335. Cerca con Google

63. Edwards, M., & Badcock, D. R. (1993). Asymmetries in the sensitivity to motion in depth: a centripetal bias. Perception, 22, 1013-23. Cerca con Google

64. Edwards, M., & Ibbotson, M. R. (2007). Relative sensitivities to large-field optic-flow patterns varying in direction and speed. Perception, 36, 113-24. Cerca con Google

65. Ellis, S. R. Origins and elements of virtual environments. Ellis, S. R. (1995). Origins and elements of virtual environments. In Virtual environments and avanced interface design (pp. 14-57). New York: Oxford University Press. Cerca con Google

66. Epstein, W., & Cody, W. J. (1980). Perception of relative velocity: a revision of the hypothesis of relational determination. Perception, 9, 47-60. Cerca con Google

67. Epstein, W. (1965). Perceptual Invariance in the Kinetic Depth-Effect. The American Journal of Psychology, 78, 301-303. Cerca con Google

68. van Erp, J. B. F., & Padmos, P. (2003). Image parameters for driving with indirect viewing systems. Ergonomics, 46, 1471-99. Cerca con Google

69. Evans, L. (1991). Airbag effectiveness in preventing fatalities predicted according to type of crash, driver age, and blood alcohol concentration. Accident; analysis and prevention, 23, 531-41. Cerca con Google

70. Felleman, D. J., & Van Essen, D. C. (1987). Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. Journal of neurophysiology, 57, 889-920. Cerca con Google

71. Fennema, C. L., & Thompson, W. B. (1979). Velocity determination in scenes containing several moving objects. Computer Graphics and Image Processing, 9, 301-315. Cerca con Google

72. Ferrera, V. P., & Wilson, H. R. (1987). Direction specific masking and the analysis of motion in two dimensions. Vision research, 27, 1783-96. Cerca con Google

73. Fildes, B., & Lee, S. (1993). The Speed Review: Road Environment, Behaviour, Speed Limits, Enforcement and Crashes. Federal Office of Road Safety, Report CR127, Department of Transport and Communications, Canberra. Cerca con Google

74. Flach, J. M., Junaid, A. A., & Warren, R. Judgments of Speed of Self-Motion: Modeling the Relative Effects of Speed and Altitude Change. Cerca con Google

75. Flückiger, M., & Baumberger, B. (1988). The perception of an optical flow projected on the ground surface. Perception, 17, 633-45. Cerca con Google

76. Foster, K. H., Gaska, J. P., Nagler, M., & Pollen, D. A. (1985). Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. The Journal of physiology, 365, 331-63. Cerca con Google

77. Freeman, T. C., & Harris, M. G. (1992). Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure. Vision Research, 32, 81-87. Cerca con Google

78. Gaudry, K. S., & Reinagel, P. (2007). Benefits of contrast normalization demonstrated in neurons and model cells. The Journal of neuroscience : the official journal of the Society for Neuroscience, 27, 8071-9. Cerca con Google

79. Geesaman, B. J., & Qian, N. (1996). A novel speed illusion involving expansion and rotation patterns. Vision research, 36, 3281-92. Cerca con Google

80. Geesaman, B. J., & Qian, N. (1998). The effect of complex motion pattern on speed perception. Vision research, 38, 1223-31. Cerca con Google

81. Gegenfurtner, K. R., Mayser, H., & Sharpe, L. T. (1999). Seeing movement in the dark. Nature, 398, 475-6. Cerca con Google

82. Gibson, J. J. (1950). Perception of the Visual World. Boston: Houghton Mifflin. Cerca con Google

83. Graziano, M. S., Yap, G. S., & Gross, C. G. (1994). Coding of visual space by premotor neurons. Science (New York, N.Y.), 266, 1054-7. Cerca con Google

84. Green, P., Lin, B., & Bagian, T. (1993). Effect of Road Geometry on Driving Workload: A Pilot Experiment (Technical Report UMTRI-93-39, GLCTTR 22-91/01), Ann Arbor, MI: The University of Michigan Transportation Research Institute. Cerca con Google

85. van de Grind, W. A., Koenderink, J. J., & van Doorn, A. J. (1986). The distribution of human motion detector properties in the monocular visual field. Vision research, 26, 797-810. Cerca con Google

86. van de Grind, W. A., Koenderink, J. J., & van Doorn, A. J. (1987). Influence of contrast on foveal and peripheral detection of coherent motion in moving random-dot pattterns. Journal of the Optical Society of America, 4, 1643-1652. Cerca con Google

87. van de Grind, W. A., Koenderink, J. J., & van Doorn, A. J. (2000). Motion detection from photopic to low scotopic luminance levels. Vision research, 40, 187-99. Cerca con Google

88. Grzywacz, N. M., & Yuille, A. L. (1990). A model for the estimate of local image velocity by cells in the visual cortex. Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain), 239, 129-61. Cerca con Google

89. Grzywacz, N. M., Watamaniuk, S. N., & Mckee, S. P. (1995). Temporal coherence theory for the detection and measurement of visual motion. Vision Research, 35, 3183-3203. Cerca con Google

90. Haag, J., Denk, W., & Borst, A. (2004). Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. Proceedings of the National Academy of Sciences of the United States of America, 101, 16333-8. Cerca con Google

91. Habak, C., Casanova, C., & Faubert, J. (2002). Central and peripheral interactions in the perception of optic flow. Vision research, 42, 2843-52. Cerca con Google

92. Hammett, S. T., Thompson, P. G., & Bedingham, S. (2000). The dynamics of velocity adaptation in human vision. Current biology : CB, 10, 1123-6. Cerca con Google

93. Hammett, S. T., Champion, R. A., Morland, A. B., & Thompson, P. G. (2005). A ratio model of perceived speed in the human visual system. Proceedings. Biological sciences / The Royal Society, 272, 2351-6. Cerca con Google

94. Hammett, S. T., Champion, R. A., Thompson, P. G., & Morland, A. B. (2007). Perceptual distortions of speed at low luminance: evidence inconsistent with a Bayesian account of speed encoding. Vision research, 47, 564-8. Cerca con Google

95. Harris, M. (1986). The perception of moving stimuli: A model of spatiotemporal coding in human vision. Vision Research, 26, 1281-1287. Cerca con Google

96. Hawken, M. J., Gegenfurtner, K. R., & Tang, C. (1994). Contrast dependence of colour and luminance motion mechanisms in human vision. Nature, 367, 268-70. Cerca con Google

97. Heeger, D. J. (1987a). Model for the extraction of image flow. Journal of the Optical Society of America. A, Optics and image science, 4, 1455-71. Cerca con Google

98. Heeger, D. J. (1987b). Model for the extraction of image flow. Journal of the Optical Society of America. A, Optics and image science, 4, 1455-71. Cerca con Google

99. von Helmholtz, H. (1924). Treatise on physiological optics (J. P. C. Southall). Ithaca: Optical Society of America. Cerca con Google

100. Hogervorst, M. A., Glennerster, A., & Eagle, R. A. (2003). Pooling speed information in complex tasks: Estimation of average speed and detection of nonplanarity. Journal of Vision, 3, 464-485. Cerca con Google

101. Horberry, T., Anderson, J., & Regan, M. A. (2006). The possible safety benefits of enhanced road markings: A driving simulator evaluation. Transportation Research Part F: Traffic Psychology and Behaviour, 9, 77-87. Cerca con Google

102. Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of physiology, 195, 215-43. Cerca con Google

103. Hubel, D. H., & Wiesel, T. N. (1977). Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain), 198, 1-59. Cerca con Google

104. Hürlimann, F., Kiper, D. C., & Carandini, M. (2002). Testing the Bayesian model of perceived speed. Vision research, 42, 2253-7. Cerca con Google

105. Jia, Z., Jia, Z., & Balasuriya, A. (2005). Motion Based Image Segmentation with Unsupervised Bayesian Learning. Motion and Video Computing, 2005. WACV/MOTIONS '05 Volume 2. IEEE Workshop on, 2, 2-7. Cerca con Google

106. Johnston, A., McOwan, P. W., & Buxton, H. (1992). A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells. Proceedings. Biological sciences / The Royal Society, 250, 297-306. Cerca con Google

107. Kaiser, M. K., & Hecht, H. (1995). Time-to-passage judgments in nonconstant optical flow fields. Perception and Psychophysics, 57, 817-825. Cerca con Google

108. Kalawsky, R. S. (1993). The Science of Virtual Reality and Virtual Environments. Wokingham: Addison-Wesley. Cerca con Google

109. Kemeny, A., & Panerai, F. (2003). Evaluating perception in driving simulation experiments. Trends Cogn Sci, 7, 31-37. Cerca con Google

110. Khuu, S. K., & Badcock, D. R. (2002). Global speed processing: evidence for local averaging within, but not across two speed ranges. Vision research, 42, 3031-42. Cerca con Google

111. Kleinschmidt, A., Thilo, K. V., Büchel, C., Gresty, M. A., Bronstein, A. M., & Frackowiak, R. S. J. (2002). Neural correlates of visual-motion perception as object- or self-motion. NeuroImage, 16, 873-82. Cerca con Google

112. Koenderink, J. J. (1986). Optic flow. Vision research, 26, 161-79. Cerca con Google

113. Koenderink, J. J., & van Doorn, A. J. (1986a). Dynamic shape. Biological cybernetics, 53, 383-96. Cerca con Google

114. Koenderink, J. J., & van Doorn, A. J. (1986b). Depth and shape from differential perspective in the presence of bending deformations. Journal of the Optical Society of America. A, Optics and image science, 3, 242-9. Cerca con Google

115. Koffka, K. (1935). Principles of Gestalt Psychology (1 edition). New York: Harcourt. Cerca con Google

116. Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian adaptive estimation of psychometric slope and threshold. Vision research, 39, 2729-37. Cerca con Google

117. Koschmieder, H. (1924). Theorie der horizontalen Sichweite. Beitr. Phys. Freien Atmos., 12, 33-53; 171-181. Cerca con Google

118. Land, M. F., & Lee, D. N. (1994a). Where we look when we steer. Nature, 369, 742-744. doi: 10.1038/369742a0 Cerca con Google

119. Land, M. F., & Lee, D. N. (1994b). Where we look when we steer. Nature, 369, 742-744. doi: 10.1038/369742a0 Cerca con Google

120. Land, M., & Horwood, J. (1995). Which parts of the road guide steering? Nature, 377, 339-340. doi: 10.1038/377339a0 Cerca con Google

121. Lankheet, M. J. M., van Doorn, A. J., Bouman, M. A., & van de Grind, W. A. (2000). Motion coherence detection as a function of luminance level in human central vision. Vision Research, 40, 3599-3611. Cerca con Google

122. Lappe, Bremmer, & van den Berg AV. (1999). Perception of self-motion from visual flow. Trends Cogn Sci, 3, 329-336. Cerca con Google

123. Lappe, M., & Duffy, C. J. (1999). Optic flow illusion and single neuron behaviour reconciled by a population model. The European journal of neuroscience, 11, 2323-31. Cerca con Google

124. Lappe, M., & Rauschecker, J. P. (1994). Heading detection from optic flow. Nature, 369, 712-3. Cerca con Google

125. Lappe, M., & Rauschecker, J. P. (1995a). Motion anisotropies and heading detection. Biological cybernetics, 72, 261-77. Cerca con Google

126. Lappe, M., & Rauschecker, J. P. (1995b). An illusory transformation in a model of optic flow processing. Vision research, 35, 1619-31. Cerca con Google

127. Larisch, J. F., & Flach, J. M. (1990). Sources of optical information useful for perception of speed of rectilinear self-motion. Journal of Experimental Psychology: Human Perception and Performance, 16, 295-302. Cerca con Google

128. Lee, D. N. (1976). A theory of visual control of braking based on information about time-to-collision. Perception, 5, 437-59. Cerca con Google

129. Lee, W. A. (1980). Anticipatory control of postural and task muscles during rapid arm flexion. Journl of Motor Behavior, 12, 185-196. Cerca con Google

130. Lenne, M. G., Dietze, P., Rumbold, G. R., Redman, J. R., & Triggs, T. J. (2003). The effects of the opioid pharmacotherapies methadone, LAAM and buprenorphine, alone and in combination with alcohol, on simulated driving. Drug and Alcohol Dependence, 72, 271-278. Cerca con Google

131. Levitt, H. (1971). Transformed up-down methods in psychoacoustics. Journal of Acustical Society of America, 49, 467-477. Cerca con Google

132. Logothetis, N. K. (1999). Vision: a window on consciousness. Scientific American, 281, 69-75. Cerca con Google

133. Loomis, J. M., Blascovich, J. J., & Beall, A. C. (1999). Immersive virtual environment technology as a basic research tool in psychology. Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc, 31, 557-64. Cerca con Google

134. Lorenceau, J. (1998). Veridical perception of global motion from disparate component motions. Vision research, 38, 1605-10. Cerca con Google

135. Lu, Z. L., & Sperling, G. (1995a). Attention-generated apparent motion. Nature, 377, 237-9. Cerca con Google

136. Lu, Z. L., & Sperling, G. (1995b). The functional architecture of human visual motion perception. Vision research, 35, 2697-722. Cerca con Google

137. Lu, Z. L., & Sperling, G. (2001). Three-systems theory of human visual motion perception: review and update. Journal of the Optical Society of America. A, Optics, image science, and vision, 18, 2331-70. Cerca con Google

138. Mather, G. (1988). Temporal properties of apparent motion in subjective figures. Perception, 17, 729-36. Cerca con Google

139. Maunsell, J. H., & van Essen, D. C. (1983). The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. The Journal of neuroscience : the official journal of the Society for Neuroscience, 3, 2563-86. Cerca con Google

140. Maunsell, J. H., & Van Essen, D. C. (1983a). Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. Journal of neurophysiology, 49, 1127-47. Cerca con Google

141. Maunsell, J. H., & Van Essen, D. C. (1983b). Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. Journal of neurophysiology, 49, 1148-67. Cerca con Google

142. McKee, S. P., & Nakayama, K. (1984). The detection of motion in the peripheral visual field. Vision research, 24, 25-32. Cerca con Google

143. McKee, S. P., Silverman, G. H., & Nakayama, K. (1986). Precise velocity discrimination despite random variations in temporal frequency and contrast. Vision research, 26, 609-19. Cerca con Google

144. McKee, S. P., & Welch, L. (1989). Is there a constancy for velocity? Vision research, 29, 553-61. Cerca con Google

145. Mingolla, E., & Todd, J. T. (1986). Perception of solid shape from shading. Biological cybernetics, 53, 137-51. Cerca con Google

146. Moradi, F., & Shimojo, S. (2004). Suppressive effect of sustained low-contrast adaptation followed by transient high-contrast on peripheral target detection. Vision Research, 44, 449-460. Cerca con Google

147. Morgan, M. J. (1980). Analogue models of motion perception. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 290, 117-35. Cerca con Google

148. Morrone, M. C., Burr, D. C., Di Pietro, S., & Stefanelli, M. A. (1999). Cardinal directions for visual optic flow. Current biology : CB, 9, 763-6. Cerca con Google

149. Morrone, M. C., Burr, D. C., & Vaina, L. M. (1995). Two stages of visual processing for radial and circular motion. Nature, 376, 507-9. Cerca con Google

150. Moulden, B., Kingdom, F., & Gatley, L. F. (1990). The standard deviation of luminance as a metric for contrast in random-dot images. Perception, 19, 79-101. Cerca con Google

151. Movshon, J. A., Adelson, Gizzi, M. S., & Newsome, W. T. (1985). The analysis of moving visual patterns. In Pattern Recognition Mechanisms (pp. 117-151). Pontificiae Academiae Scientiarum Scripta Varia. Rome: Vatican Press. Cerca con Google

152. Müller, R., & Greenlee, M. W. (1994a). Effect of contrast and adaptation on the perception of the direction and speed of drifting gratings. Vision research, 34, 2071-92. Cerca con Google

153. Müller, R., & Greenlee, M. W. (1994b). Effect of contrast and adaptation on the perception of the direction and speed of drifting gratings. Vision research, 34, 2071-92. Cerca con Google

154. Muller, R., & Greenlee, M. W. (1994). Effect of contrast and adaptation on the perception of the direction and speed of drifting gratings. Vision Research, 34, 2071-2092. Cerca con Google

155. Nakayama, K. (1985). Biological image motion processing: a review. Vision research, 25, 625-60. Cerca con Google

156. Nakayama, K., & Loomis, J. M. (1974). Optical velocity patterns, velocity-sensitive neurons, and space perception: a hypothesis. Perception, 3, 63-80. Cerca con Google

157. Ohta, H., & Komatsu, H. (1991). Speed perception in driving. Comparison with T.V. observation. In: A.G. Gale, I.D. Brown, C.M. Haslegrave, I. Moordhead and S. Taylor, Editors, Vision in vehicles Vol. II, North Holland, Amsterdam (1991). In Vision in Vehicles II. Amsterdam. Cerca con Google

158. Orban, G. A., Lagae, L., Verri, A., Raiguel, S., Xiao, D., Maes, H., et al. (1992). First-order analysis of optical flow in monkey brain. Proceedings of the National Academy of Sciences of the United States of America, 89, 2595-9. Cerca con Google

159. Osaka, N. (1988). Speed estimation through restricted visual field during driving in day and night: naso-temporal hemifield differences. In Vision in Vehicles II (pp. 45-55). North-Holland: Elsevier Science. Cerca con Google

160. Owen, D. H., Wolpert, L., & Warren, R. (1984). Effects of optical flow acceleration, edge acceleration and viewing time on the perception of egospeed acceleration. Cerca con Google

161. Panerai, F. (2001). Speed and safety distance control in truck driving: comparison of simulation and real-world environment. Proc. Driving Simulation Conf. DSC 2000. Cerca con Google

162. Perrone, J. A. (1992). Model for the computation of self-motion in biological systems. Journal of the Optical Society of America, 9, 177-194. Cerca con Google

163. Perrone, J. A. (2005). Economy of scale: a motion sensor with variable speed tuning. Journal of vision, 5, 28-33. Cerca con Google

164. Pretto, P., & Chatziastros, A. (2006a). Changes in optic-flow and scene contrast affect the driving speed. DSC 2006 Europe - Driving Simulation Conference, 263-272. Cerca con Google

165. Pretto, P., & Chatziastros, A. (2006b). The role of scene contrast and optic-flow on driving speed. Vision in Vehicles XI. Cerca con Google

166. Pretto, P., Vidal, M., & Chatziastros, A. (2008). Why fog increases the perceived speed. DSC 2008 Europe - Driving Simulation Conference. Cerca con Google

167. Prokop, T., Schubert, M., & Berger, W. (1997). Visual influence on human locomotion. Modulation to changes in optic flow. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale, 114, 63-70. Cerca con Google

168. Readinger, W. O., Chatziastros, A., Cunningham, D. W., & Buelthoff, H. H. (2001). Driving effects of retinal-flow properties associated with eccentric gaze. Perception, 30 ECVP Abstract Supplement. Cerca con Google

169. Recarte, M. A., & Nunes, L. (1996). Perception of Speed in an Automobile: Estimation and Production. Journal of Experimental Psychology: Applied, 2, 291-304. Cerca con Google

170. Regan, D., & Beverly, K. I. (1982). How do we avoid confounding the direction we are looking and the direction we are moving? Science, 215, 194-196. Cerca con Google

171. Regan, D., & Beverley, K. (1978). Looming detectors in the human visual pathway. Vision Research, 18, 415-421. Cerca con Google

172. Regan, D., & Beverley, K. (1983). Visual fields for frontal plane motion and for changing size. Vision Research, 23, 673-676. Cerca con Google

173. Reichardt, W. (1961). Autocorrelation, a principle for evaluation of sensory information by the central nervous system. In Principles of Sensory Communications (pp. 303-317). New York: John Wiley. Cerca con Google

174. Reichardt, W., & Varju, D. (1959). [Transmission features in the evaluation system for optokinetics. (Conclusions from experiments on the beetle Chlorophanus viridis)]. Zeitschrift für Naturforschung. Teil B: Chemie, Biochemie, Biophysik, Biologie, 14B, 674-89. Cerca con Google

175. Rheingold, H. (1991). Virtual Reality. New York: Summit. Rogers, B., & Koenderink, J. Monocular aniseikonia: a motion parallax analogue of the disparity-induced effect. Nature, 322, 62-3. Cerca con Google

176. Royden, C. S., Crowell, J. A., & Banks, M. S. (1994). Estimating heading during eye movements. Vision research, 34, 3197-214. Cerca con Google

177. Rudin-Brown, C. M. (2006). The effect of driver eye height on speed choice, lane-keeping, and car-following behavior: results of two driving simulator studies. Traffic injury prevention, 7, 365-72. Cerca con Google

178. Salvatore, S. (1968). The estimation of vehicular velocity as a function of visual stimulation. Human factors, 10, 27-31. Cerca con Google

179. Salvatore, S. (1969). Effect of removing acceleration cues on sensing vehicular velocity. Perceptual and motor skills, 28, 615-22. Cerca con Google

180. van Santen, J. P., & Sperling, G. (1984). Temporal covariance model of human motion perception. Journal of the Optical Society of America. A, Optics and image science, 1, 451-73. Cerca con Google

181. van Santen, J. P., & Sperling, G. (1985). Elaborated Reichardt detectors. Journal of the Optical Society of America. A, Optics and image science, 2, 300-21. Cerca con Google

182. Schiff, W., & Detwiler, M. L. (1979). Information used in judging impending collision. Perception, 8, 647-58. Cerca con Google

183. Schrater, P. R., Knill, D. C., & Simoncelli, E. P. (2001). Perceiving visual expansion without optic flow. Nature, 410, 816-9. Cerca con Google

184. Schwartz, O., & Simoncelli, E. P. (2001). Natural signal statistics and sensory gain control. Nature neuroscience, 4, 819-25. Cerca con Google

185. Shrivastava, A., Hayhoe, M. M., Pelz, J. B., & Mruczek, R. (2005). Influence of optic flow field restrictions and fog on perception of speed in a virtual driving environment [Abstract]. Journal of Vision, 5, 139. Cerca con Google

186. Smith, A. T., Snowden, R. J., & Milne, A. B. (1994). Is global motion really based on spatial integration of local motion signals? Vision research, 34, 2425-30. Cerca con Google

187. Smith, A., & Edgar, G. (1994). Antagonistic comparison of temporal frequency filter outputs as a basis for speed perception. Vision Research, 34, 253-265. Cerca con Google

188. Snowden, R. J., Stimpson, N., & Ruddle, R. A. (1998). Speed perception fogs up as visibility drops. Nature, 392, 450. Cerca con Google

189. Snowden, R. J., & Braddick, O. J. (1991). The temporal integration and resolution of velocity signals. Vision Research, 31, 907-914. Cerca con Google

190. Snowden, R. J., & Milne, A. B. (1997). Phantom motion aftereffects - evidence of detectors for the analysis of optic flow. Current Biology, 7, 717-722. Cerca con Google

191. Stocker, A. A., & Simoncelli, E. P. (2006). Noise characteristics and prior expectations in human visual speed perception. Nature neuroscience, 9, 578-85. Cerca con Google

192. Stone, L. S., & Thompson, P. (1992). Human speed perception is contrast dependent. Vision Research, 32, 1535-1549. Cerca con Google

193. Takeuchi, T., & De Valois, K. K. (2000). Velocity discrimination in scotopic vision. Vision research, 40, 2011-24. Cerca con Google

194. Tanaka, K., & Saito, H. (1989). Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. Journal of Neurophysiology, 62, 626-641. Cerca con Google

195. Thompson, P. (1982). Perceived rate of movement depends on contrast. Vision research, 22, 377-80. Cerca con Google

196. Thompson, P. G., Stone, L. S., & Brooks, K. (1995). Speed perception in the fovea is not always independent of contrast. Perception, 24. Cerca con Google

197. Thompson, P. (1981). Velocity after-effects: The effects of adaptation to moving stimuli on the perception of subsequently seen moving stimuli. Vision Research, 21, 337-345. Cerca con Google

198. Thompson, P., Brooks, K., & Hammett, S. T. (2006). Speed can go up as well as down at low contrast: implications for models of motion perception. Vision research, 46, 782-6. Cerca con Google

199. Tinsley, C. J., Webb, B. S., Barraclough, N. E., Vincent, C. J., Parker, A., & Derrington, A. M. (2003). The nature of V1 neural responses to 2D moving patterns depends on receptive-field structure in the marmoset monkey. Journal of neurophysiology, 90, 930-7. Cerca con Google

200. Todd, J. T. (1981). Visual information about moving objects. Journal of Experimental Psychology: Human Perception and Performance, 7, 795-810. Cerca con Google

201. Banton, Stefanucci, Durgin, Fass, & Proffitt. (2006). The Perception of Walking Speed in a Virtual Environment. Cerca con Google

202. Tootell, R. B., Reppas, J. B., Dale, A. M., Look, R. B., Sereno, M. I., Malach, R., et al. (1995). Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature, 375, 139-41. Cerca con Google

203. Triggs, T. J., & Berenyi, J. S. (1982). Estimation of automobile speed under day and night conditions. Human factors, 24, 111–114. Cerca con Google

204. Ullman, S. (1979). The interpretation of structure from motion. Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain), 203, 405-26. Cerca con Google

205. Ullman, S. (1986). The optical flow of planar surfaces. Spatial vision, 1, 263-76. Cerca con Google

206. Uttal, W. R., Spillmann, L., Sturzel, F., & Sekuler, A. B. (2000). Motion and shape in common fate. Vision Research, 40, 301-310. Cerca con Google

207. Wallach, H., & O'Connell, D. N. (1953). The kinetic depth effect. Journal of experimental psychology, 45, 205-17. Cerca con Google

208. Wallach, H., O'Connell, D. N., & Neisser, U. (1953). The memory effect of visual perception of three-dimensional form. Journal of experimental psychology, 45, 360-8. Cerca con Google

209. Warren, W. H., & Hannon, D. J. (1988). Direction of selfmotion is perceived from optical flow. Nature, 336, 162-163. Cerca con Google

210. Warren, W. H., & Kurtz, K. J. (1992). The role of central and peripheral vision in perceiving the direction of self-motion. Perception & psychophysics, 51, 443-54. Cerca con Google

211. Warren, W. H., Morris, M. W., & Kalish, M. (1988). Perception of translational heading from optical flow. Journal of experimental psychology. Human perception and performance, 14, 646-60. Cerca con Google

212. Warren, W. H., Kay, B. A., Zosh, W. D., Duchon, A. P., & Sahuc, S. (2001). Optic flow is used to control human walking. Nat Neurosci, 4, 213-216. doi: 10.1038/84054 Cerca con Google

213. Watamaniuk, S. N., & Duchon, A. (1992). The human visual system averages speed information. Vision research, 32, 931-41. Cerca con Google

214. Watamaniuk, S. N., & Sekuler, R. (1992). Temporal and spatial integration in dynamic random-dot stimuli. Vision research, 32, 2341-7. Cerca con Google

215. Watamaniuk, S. N., Sekuler, R., & Williams, D. W. (1989). Direction perception in complex dynamic displays: The integration of direction information. Vision Research, 29, 47-59. Cerca con Google

216. Watson, A. B., & Ahumada, A. J. (1985). Model of human visual-motion sensing. Journal of the Optical Society of America. A, Optics and image science, 2, 322-41. Cerca con Google

217. Weiss, Y., Simoncelli, E. P., & Adelson, E. H. (2002). Motion illusions as optimal percepts. Nature neuroscience, 5, 598-604. Cerca con Google

218. Wertheim, A. H. (1994). Ethics, capital punishment, and pseudoscience. Perception, 23, 1097-100. Cerca con Google

219. Wexler, M., Lamouret, I., & Droulez, J. (2001). The stationarity hypothesis: an allocentric criterion in visual perception. Vision Research, 41, 3023-3037. Cerca con Google

220. Williams, D. W., & Sekuler, R. (1984). Coherent global motion percepts from stochastic local motions. Vision Research, 24, 55-62. Cerca con Google

221. Yuille, A., Grzywacz, N., Processing, M., Watanabe, T., & chapter, E. (1996). A theoretical framework for visual motion. Retrieved January 23, 2008, from http://citeseer.ist.psu.edu/yuille96theoretical.html Vai! Cerca con Google

222. Zhang, T., Heuer, H. W., & Britten, K. H. (2004). Parietal Area VIP Neuronal Responses to Heading Stimuli Are Encoded in Head-Centered Coordinates. Neuron, 42, 993-1001. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record