Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Scarpa, Melania (2008) Ruolo del fattore di trascrizione Snail1
nel processo d'attivazione delle cellule stellate epatiche.
[Ph.D. thesis]

Full text disponibile come:

[img]
Preview
Documento PDF
4Mb

Abstract (english)

Liver fibrosis, the final consequence of several types of chronic hepatic injuries, results from chronic damage to the liver in conjunction with the accumulation of fibrillar collagens and ECM proteins, that alters the hepatic architecture. Hepatic stellate cells (HSC) play a pivotal role in the fibrogenic process. These perisinusoidal cells normally contribute to the maintenance of liver homeostasis by secreting growth factors, storing Vitamin A and regulating ECM turnover, and therefore play a key role to maintain the integrity of the space of Disse. Following liver injury, HSC undergo a process of activation, characterized by
morphological and functional changes and acquire a myofibroblast-like phenotype. Activated HSC proliferate and alter ECM composition both qualitatively and quantitatively. The
individuation of factors responsible for HSC transdifferentiation is therefore a fundamental step to understand the physiopathology of hepatic fibrosis.
Snail1 belongs to the Snail gene family of transcription factors, best known for its ability to trigger ephitelial-mesenchymal transition (EMT), converting epithelial cells into mesenchymal cells with migratory properties. Snail genes influence both tissue formation during embryonic development and the acquisition of invasive properties in epithelial tumors.
Snail1 is also a potent survival factor. A number of studies have reported Snail1 overexpression in several pathological conditions associated with the deposition of fibrotic tissue induced by TGF-beta, a potent Snail1 activator and profibrogenic cytokine for HSC. We therefore started examining Snail1 involvement in the hepatic fibrosis process.
To verify if HSC in vitro activation was associated to an increase of Snail1 expression, HSC purified from mice livers have been seeded on uncoated plastic and maintained in culture up to 10 days; mRNA levels of Snail1 and of the activation marker genes alpha-SMA and Col1alpha1 have been assessed by quantitative Real Time RT-PCR. This analysis evidenced that Snail1 expression augments proportionally to the activation state of HSC. Furthermore, we analysed Snail1 localization in HSC by immunocytochemistry, examining cells in culture up to 10 days: we could detect Snail1 nuclear translocation in cells in culture from at least 4 days. Next, we characterized Snail1 expression in vivo using CCl4 treatment as chronic liver injury model. Fibrosis progression has been evaluated by histology and quantitative Real Time RT-PCR
for alpha-SMA and Col1alpha1. Fibrosis development was associated to a significant increase of Snail1 mRNA. Double staining for Snail1 and alpha-SMA in fibrotic livers showed their colocalization in fibrotic septa, suggesting that activated HSC express Snail1 in vivo. Moreover, in in vivo activated HSC Snail1 resulted significantly up-regulated compared to quiescent
HSC, and immunocytochemistry analysis revealed a nuclear localization. Thus, we started functional studies by RNAi and we optimized Snail1 knockdown in primary cultures of HSC
with adenoviral vectors coding shRNA. The data obtained support the role of Snail1 in HSC activation process, since its silencing results in a decrease of mRNA levels of the activation
markers alpha-SMA and Col1alpha1 and of genes involved in the activation process such as ILK and MMP-9. Preliminary data highlight an increase of Snail1 specific transcripts in human fibrotic liver samples compared to healthy controls.
All in all, our data support a role for Snail1 in the development of hepatic fibrosis and evidence its involvement in HSC activation process.


Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Martines, Diego
Supervisor:Castagliuolo, Ignazio
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > BIOLOGIA E MEDICINA DELLA RIGENERAZIONE > SCIENZE EPATOLOGICHE E GASTROENTEROLOGICHE
Data di deposito della tesi:January 2008
Anno di Pubblicazione:January 2008
Key Words:fibrosi fegato cellule stellate epatiche snail1 attivazione
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/12 Gastroenterologia
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Scienze Chirurgiche Gastroenterologiche "Pier Giuseppe Cevese"
Codice ID:457
Depositato il:25 Sep 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115(2):209-218 Cerca con Google

2. Pinzani M, Rombouts K. Liver fibrosis: from the bench to clinical targets. Dig Liver Dis 2004; 36(4):231-42 Cerca con Google

3. Poynard T, Bedossa P, Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups. Lancet 1997; 349(9055):825-32 Cerca con Google

4. Pinzani M, Romanelli RG, Magli S. Progression of fibrosis in chronic liver diseases: time to tally the score. J Hepatol 2001; 34(5):764-7 Cerca con Google

5. Bataller R, North KE, Brenner DA. Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal. Hepatology 2003; 37:493-503 Cerca con Google

6. Friedman SL. Liver fibrosis - from bench to bedside. J Hepatol 2003; 38 Suppl 1:S38-53 Cerca con Google

7. Gressner OA, Weiskirchen R, Gressner AM. Biomarkers of liver fibrosis: clinical translation of molecular pathogenesis or based on liver-dependent malfunction tests. Clin Chim Acta 2007; 381(2):107-13 Cerca con Google

8. Sandrin L, Fourquet B, Hasquenoph JM, Yon S, Fournier C, Mal F, Christidis C, Ziol M, Poulet B, Kazemi F, Beaugrand M, Palau R. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 2003; Cerca con Google

29(12):1705-13 Cerca con Google

9. Friedman SL. The cellular basis of hepatic fibrosis. N Engl J Med 1993; 328:1828-1835 Cerca con Google

10. Bissell DM, Friedman SL, Maher JJ, Roll FJ. Connective tissue biology and hepatic fibrosis: report of a conference. Hepatology 1990; 11:488-498 Cerca con Google

11. Burgenson RE. New collagens, new concenpts. Ann Rev Cell Biol 1988; 4:551-577 Cerca con Google

12. Rojkind M, Giambrone MA, Biempica L. Collagen types in normal and cirrhotic liver. Gastroenterology 1979; 76:710-719 Cerca con Google

13. Bissell DM. Cell-matrix interaction and hepatic fibrosis. Prog Liver Dis 1990; 9:143-155 Cerca con Google

14. McGuire RF, Bissell DM, Boyles J, Roll FJ. Role of extracellular matrix in regulating fenestrations of sinusoidal endothelial cells isolated from normal rat liver. Hepatolgy 1992; 15:989-997 Cerca con Google

15. Benyon RC, Arthur MJ. Extracellular matrix degradation and the role of hepatic stellate cells. Semin Liver Dis 2001; 21:373-384 Cerca con Google

16. Arthur MJ. Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2000; 279(2): G245-G249 Cerca con Google

17. Iredale JP, Goddard S, Murphy G, Benyon RC, Arthur MJ. Tissue inhibitor of metalloproteinase-I and interstitial collagenase expression in autoimmune chronic active hepatitis and activated human hepatic lipocytes, Clin Sci (Lond) 1995; 89:75-81 Cerca con Google

18. Knittel T, Mehde M, Grundmann A, Saile B, Scharf JG, Ramadori G. Expression of matrix metalloproteinases and their inhibitors during hepatic tissue repair in the rat. Histochem Cell Biol 2000; 113:443-453 Cerca con Google

19. Knittel T, Mehde M, Kobold D, Saile B, Dinter C, Ramadori G. Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver: regulation by TNF- and TGF-1. J Hepatol 1999; 30:48-60 Cerca con Google

20. Iredale JP, Benyon RC, Arthur MJ, Ferris WF, Alcolado R, Winwood PJ, Clark N, Murphy G. Tissue inhibitor of metalloproteinase-1 messenger RNA expression is enhanced relative to interstitial collagenase messenger RNA in experimental liver injury and fibrosis. Hepatology 1996; 24:176-184 Cerca con Google

21. Iredale JP, Murphy FR, Hembry RM, Friedman SL, Arthur MJ. Human hepatic lipocytes synthesize tissue inhibitor of metalloproteinases-1. Implications for regulation of matrix degradation in liver. J Clin Invest 1992; 90:282-287 Cerca con Google

22. Murphy FR, Issa R, Zhou X, Ratnarajah S, Nagase H, Arthur MJ, Benyon C, Iredale JP. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: Cerca con Google

implications for reversibility of liver fibrosis. J Biol Chem 2002; 277:11069-11076 Cerca con Google

23. Arthur MJ. Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology 2002; 122:1525-1528 Cerca con Google

24. Issa R, Zhou X, Constandinou CM, Fallowfield J, Millward-Sadler H, Gaca MD, Sands E, Suliman I, Trim N, Knorr A, Arthur MJ, Benyon RC, Iredale JP. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology 2004; 126:1795-1808 Cerca con Google

25. Desmet VJ, Roskams T. Cirrhosis reversal: a duel between dogma and myth. J Hepatol 2004; 40:840-867 Cerca con Google

26. Desmoulière A. Hepatic stellate cells: the only cells involved in liver fibrogenesis? A dogma challenged. Gastroenterology 2007; 132(5):2059-62 Cerca con Google

27. Guyot C, Lepreux S, Combe C, Doudnikoff E, Bioulac-Sage P, Balabaud C, Desmoulière A. Hepatic fibrosis and cirrhosis: the (myo)fibroblastic cell subpopulations involved. Int J Biochem Cell Biol 2006; 38(2):135-51 Cerca con Google

28. Tuchweber B, Desmoulière A, Bochaton-Piallat ML, Rubbia-Brandt L, Gabbiani G. Proliferation and phenotypic modulation of portal fibroblasts in the early stages of cholestatic fibrosis in the rat. Lab Invest 1996; 74:265-278 Cerca con Google

29. Desmoulière A, Darby I, Costa AMA, Raccurt M, Tuchweber B, Sommer P, Gabbiani G. Extracellular matrix deposition, lysyl oxidase expression, and myofibroblastic differentiation during the initial stages of cholestatic fibrosis in the rat. Cerca con Google

Lab Invest 1997; 76:765-778 Cerca con Google

30. Milani S, Herbst H, Schuppan D, Kim KY, Riecken EO, Stein H. Procollagen expression by nonparenchimal rat liver cells in experimental biliary fibrosis. Gastroenterology 1990; 98:175-184 Cerca con Google

31. Gao Zh, McAlister VC, Williams GM. Repopulation of liver endothelium by bonemarrow- derived cells. The Lancet 2001; 357:932-33 Cerca con Google

32. Fujii H, Hirose T, Oe S, Yasuchika K, Azuma H, Fujikawa T, Nagao M, Yamaoka Y. Contribution of bone marrow cells to liver regeneration after partial hepatectomy in mice. J Hepatol 2002; 36:653-59 Cerca con Google

33. Baba S, Fujii H, Hirose T, Yasuchika K, Azuma H, Hoppo T, Naito M, Machimoto T, Ikai I. Commitment of bone marrow cells to hepatic stellate cells in mouse. J Hepatol 2004; 40:255-60 Cerca con Google

34. Russo FP, Alison MR, Bigger BW, Amofah E, Florou A, Amin F, Bou-Gharios G, Jeffery R, Iredale JP, Forbes SJ. The bone marrow functionally contributes to liver fibrosis. Gastroenterology 2006; 130:1807-21 Cerca con Google

35. Forbes SJ, Russo FP, Rey V, Burra P, Rugge M, Wright NA, Alison MR. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology 2004; 126:955-63 Cerca con Google

36. Higashiyama R, Inagaki Y, Hong YY, Kushida M, Nakao S, Niioka M, Watanabe T, Okano H, Matsuzaki Y, Shiota G, Okazaki I. Bone marrow-derived cells express matrix metalloproteinases and contribute to regression of liver fibrosis in mice. Cerca con Google

Hepatology 2007; 45:213-22 Cerca con Google

37. Quan TE, Cowper SE, Bucala R. The role of circulating fibrocytes in fibrosis. Curr Rheumatol Rep 2006, 8:145-50 Cerca con Google

38. Quan TE, Cowper S, Wu SP, Bockenstedt LK, Bucala R. Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 2004, 36:598-606 Cerca con Google

39. Abe R, Donnelly SC, Peng T, Bucala R, Metz CN. Peripheral blood fibrocytes: Differentiation pathway and migration to wound sites. J Immunol 2001, 166:7556-62 Cerca con Google

40. Kisseleva T, Uchinami H, Feirt N, Quintana-Bustamante O, Segovia JC, Schwabe RF, Brenner DA. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol 2006; 45:429-38 Cerca con Google

41. Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 2006; 172:973-81 Cerca con Google

42. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112:1776-84 Cerca con Google

43. Zeisberg M, Yang C, Martino M, Duncan MB, Rieder F, Tanjore H, Kalluri R. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem. 2007; 282(32):23337-47 Cerca con Google

44. Kaimori A, Potter J, Kaimori J, Wang C, Mezey E, Koteish A. TGF-beta 1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in-vitro. J Biol Chem 2007; 282(30):22089-22101 Cerca con Google

45. Yang Y, Pan X, Lei W, Wang J, Shi J, Li F, Song J. Regulation of transforming growth factor-{beta}1-induced apoptosis and epithelial-to-mesenchymal transition by protein kinase A and signal transducers and activators of transcription 3. Cancer Res 2006; 66:8617-24 Cerca con Google

46. Del Castillo G, Murillo MM, Alvarez-Barrientos A, Bertran E, Fernandez M, Sanchez A, Fabregat I. Autocrine production of TGF-[beta] confers resistance to apoptosis after an epithelial-mesenchymal transition process in hepatocytes: Role of EGF receptor ligands. Exp Cell Res 2006; 312:2860-71 Cerca con Google

47. Robertson H, Kirby JA, Yip WW, Jones DEJ, Burt AD. Biliary epithelial-mesenchymal transition in posttransplantation recurrence of primary biliary cirrhosis. Hepatology 2007; 45:977-81 Cerca con Google

48. Rygiel KA, Robertson H, Burt AD, Jones DEJ, Kirby JA. Demonstration of the transition of intrahepatic biliary epithelial cells to fibroblasts during chronic inflammatory liver diseases. J Hepatol 2006; 44:S241 Cerca con Google

49. Cassiman D, Roskams T. Beauty is in the eye of the beholder: emerging concepts and pitfalls in hepatic stellate cell research. J Hepatol 2002; 37:527-35 Cerca con Google

50. Bhunchet E, Wake K. Role of mesenchymal cell populations in porcine serum-induced rat liver fibrosis. Hepatology 1992; 16:1452-1473 Cerca con Google

51. Andrade ZA, Guerret S, Fernandes AL. Myofibroblasts in schistosomal portal fibrosis of man. Memorias do Instituto Oswaldo Cruz 1999; 94:87-93 Cerca con Google

52. Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis 2001; 21(3): 311-335 Cerca con Google

53. Geerts A. On the origin of stellate cells: mesodermal, endodermal or neuro-ectodermal? J Hepatol 2004; 40: 331-334 Cerca con Google

54. Pinzani M. Novel insights into the biology and physiology of the Ito cell. Pharmac Ther 1995; 66: 387-412 Cerca con Google

55. Wake K, Sato T. Intralobular heterogeneity of perisinusoidal stellate cells in porcine liver. Cell Tissue Res 1993; 273:227-237 Cerca con Google

56. Benyon RC, Iredale JP, Goddard S, Winwood PJ, Arthur MJP. Expression of tissue inhibitor of metalloproteinases 1 and 2 is increased in fibrotic human liver. Gastroenterology 1996; 110:821-31 Cerca con Google

57. Benyon RC, Arthur MJP. Extracellular matrix degradation and the role of hepatic stellate cells. Semin Liver Dis 2001; 21:373-84 Cerca con Google

58. Helyar L, Bundschuh DS, Laskin JD, Laskin DL. Induction of hepatic Ito cell nitric oxide production after acute endotoxemia. Hepatology 1994; 20:1509-1515 Cerca con Google

59. Marra F, Valente AJ, Pinzani M, Abboud HE. Cultured human liver fat-storing cells produce monocyte chemotactic protein-1. Regulation by proinflammatory cytokines. J Clin Invest 1993; 92:1674-80 Cerca con Google

60. Rockey D. Hepatic blood flow regulation by stellate cells in normal and injured liver. Semin Liver Dis 2001; 21:337-49 Cerca con Google

61. Reynaert H, Thompson MG, Thomas T, Geerts A. Hepatic stellate cells: role in microcirculation and pathophysiology of portal hypertension. Gut 2002; 50:571-81 Cerca con Google

62. Vinas O, Bataller R, Sancho-Bru P, Gines P, Berenguer C, Enrich C, Nicolas JM, Ercilla G, Gallart T, Vives J, Arroyo V, Rodes J. Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology 2003; 38:919-29 Cerca con Google

63. Winau F, Hegasy G, Weiskirchen R, Weber S, Cassan C, Sieling PA, Modlin RL, Liblau RS, Gressner AM, Kaufmann SHE. Ito cells are liver-resident antigenpresenting cells for activating T cell responses. Immunity 2007; 26:117-29 Cerca con Google

64. Kordes C, Sawitza I, Muller-Marbach A, Ale-Agha N, Keitel V, Klonowski-Stumpe H, Haussinger D. CD133+ hepatic stellate cells are progenitor cells. Biochem Biophys Res Commun 2007; 352:410-17 Cerca con Google

65. Zhan S-S, Jiang JX, Wu J, Halsted C, Friedman SL, Zern MA, Torok NJ. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology 2006; 43:435-43 Cerca con Google

66. Passino MA, Adams RA, Sikorski SL, Akassoglou K. Regulation of Hepatic Stellate Cell Differentiation by the Neurotrophin Receptor p75NTR. Science 2007; 315:1853-56 Cerca con Google

67. Lee JS, Semela D, Iredale JP, Shah VH. Sinusoidal remodeling and angiogenesis: A new function for the liver-specific pericytes? Hepatology 2007; 45:817-25 Cerca con Google

68. Gressner AM. Transdifferentiation of hepatic stellate cells to myofibroblasti: a key event in hepatic fibrogenesis. Kidney Int 1996; 49:S39-45 Cerca con Google

69. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275(4):2247-2250 Cerca con Google

70. Nieto N. Oxidative-stress and IL-6 mediate the fibrogenic effects of rodent Kupffer cells in stellate cells. Hepatology 2006, 44:1487-1501 Cerca con Google

71. Adachi T, Togashi H, Suzuki A, Kasai S, Ito J, Sugahara K, Kawata S. NAD(P)H oxidase plays a crucial role in PDGF-induced proliferation of hepatic stellate cells. Hepatology 2005; 41:1272-81 Cerca con Google

72. Baroni GS, D'Ambrosio L, Ferretti G, Casini A, di Sario A, Salzano R, Ridolfi F, Saccomanno S, Jezequel AM, Benedetti A. Fibrogenic effect of oxidative stress on rat hepatic stellate cells. Hepatology 1998; 27:720-26 Cerca con Google

73. Casini A, Ceni E, Salzano R, Biondi P, Parola M, Galli A, Foschi M, Caligiuri A, Pinzani M, Surrenti C. Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide. Hepatology 1997; 25:361-67 Cerca con Google

74. Svegliati-Baroni G, Ridolfi F, di Sario A, Saccomanno S, Bendia E, Benedetti A, Greenwel P. Intracellular signaling pathways involved in acetaldehyde- induced collagen and fibronectin gene expression in human hepatic stellate cells. Hepatology 2001; 33:1130-40 Cerca con Google

75. Corpechot C, Barbu V, Wendum D, Kinnman N, Rey C, Poupon R, Housset C, Rosmorduc O. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology 2002; 35:1010-21 Cerca con Google

76. Inagaki Y, Okazaki I. Emerging insights into Transforming growth factor {beta} Smad signal in hepatic fibrogenesis. Gut 2007; 56:284-92 Cerca con Google

77. Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis 2001; 21:397-416 Cerca con Google

78. Ross R. Platelet-derived growth factor. Annu Rev Med 1987; 38:71-9 Cerca con Google

79. Marra F, Choudhury GG, Pinzani M, Abboud HE. Regulation of platelet-derived growth factor secretion and gene expression in human liver fat-storing cells. Gastroenterology 1994; 107: 1110-7 Cerca con Google

80. Marra F, Arrighi MC, Fazi M, Caligiuri A, Pinzani M, Romanelli RG, Efsen E, Laffi G, Gentilini P. Extracellular signal-regulated kinase activation differentially regulates platelet-derived growth factor's actions in hepatic stellate cells, and is induced by in vivo liver injury in the rat. Hepatology 1999; 30(4):951-8 Cerca con Google

81. Pinzani M, Marra F, Carloni V. Signal transduction in hepatic stellate cells. Liver 1998; 18(1):2-13 Cerca con Google

82. Gong W, Roth S, Michel K, Gressner AM. Isoforms and splice variant of transforming growth factor beta-binding protein in rat hepatic stellate cells. Gastroenterology 1998; 114: 352-63 Cerca con Google

83. Wells RG. Fibrogenesis. V. TGF-beta signaling pathways. Am J Physiol Gastrointest Liver Physiol 2000; 279: G845-G850 Cerca con Google

84. Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K, Nishida E. Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-L-induced gene expression. J Biol Chem 1999; Cerca con Google

274: 27161-27167 Cerca con Google

85. Bissell DM, Wang SS, Jarnagin WR, Roll FJ. Cell-specific expression of transforming growth factor-beta in rat liver - Evidence for autocrine regulation of hepatocyte proliferation. J Clin Invest 1995; 96:447-55 Cerca con Google

86. Marra F, Bonewald LF, Parksnyder S, Park IS, Woodruff KA, Abboud HE. Characterization and regulation of the latent transforming growth factor-beta complex secreted by vascular pericytes. J Cell Physiol 1996; 166:537-46 Cerca con Google

87. Gressner AM, Polzar B, Lahme B, Mannherz HG. Induction of rat liver parenchymal cell apoptosis by hepatic myofibroblasts via transforming growth factor-beta. Hepatology 1996; 23:571-81 Cerca con Google

88. Gressner AM, Lahme B, Mannherz HG, Polzar B. TGF-beta-mediated hepatocellular apoptosis by rat and human hepatoma cells and primary rat hepatocytes. J Hepatol 1997; 26:1079-92 Cerca con Google

89. Kiso S, Kawata S, Tamura S, Ito N, Takaishi K, Shirai Y, Tsushima H, Matsuzawa Y. Alteration in growth regulation of hepatocytes in primary culture obtained from cirrhotic rat: Poor response to transforming growth factor-beta 1 and interferons. Hepatology 1994; 20:1303-8 Cerca con Google

90. Bissell DM, Roulot D, George J. Transforming growth factor L and the liver. Hepatology 2001; 34:859-67 Cerca con Google

91. Koli K, Saharinen J, Hyytiainen M, Penttinen C, Keski-Oja J. Latency, activation, and binding proteins of TGF-beta. Microsc Res Technique 2001; 52:354-62 Cerca con Google

92. Williams EJ, Gaca MD, Brigstock DR, Arthur MJ, Benyon RC. Increased expression of connective tissue growth factor in fibrotic human liver and in activated hepatic stellate cells. J Hepatol 2000; 32: 754-761 Cerca con Google

93. A.W. Rachfal and D.R. Brigstock. Connective tissue growth factor (CTGF/CCN2) in hepatic fibrosis. Hepatol Res 2003; 26: 1-9 Cerca con Google

94. Pinzani M, Milani S, De Franco R, Grappone C, Caligiuri A, Gentilini A, Tosti- Guerra C, Maggi M, Failli P, Ruocco C, Gentilini P. Endothelin 1 is overexpressed in human cirrhotic liver and exerts multiple effects on activated hepatic stellate cells. Cerca con Google

Gastroenterology 1996; 110(2):534-48 Cerca con Google

95. Bataller R, Sancho-Bru P, Gines P, Lora JM, Al-Garawi A, Solé M, Colmenero J, Nicolás JM, Jiménez W, Weich N, Gutiérrez-Ramos JC, Arroyo V, Rodés J. Activated human hepatic stellate cells express the renin-angiotensin system and Cerca con Google

synthesize angiotensin II. Gastroenterology 2003; 125: 117-25 Cerca con Google

96. Hegyi K, Fulop K, Kovacs K, Toth S, Falus A. Leptin-induced signal transduction pathways. Cell Biol Int 2004; 28: 159-169 Cerca con Google

97. Saxena NK, Ikeda K, Rockey DC, Friedman SL, Anania FA. Leptin in hepatic fibrosis: evidence for increased collagen production in stellate cells and lean littermates of ob/ob mice. Hepatology 2002; 35: 762-771 Cerca con Google

98. Lang T, Ikejima K, Yoshikawa M, Enomoto N, Iijima K, Kitamura T, Takei Y, Sato N. Leptin facilitates proliferation of hepatic stellate cells through up-regulation of platelet-derived growth factor receptor. Biochem Biophys Res Commun 2004; 323: 1091-1095 Cerca con Google

99. Saxena NK, Titus MA , Ding X, Floyd J, Srinivasan S, Sitaraman SV, Anania FA. Leptin as a novel profibrogenic cytokine in hepatic stellate cells: mitogenesis and inhibition of apoptosis mediated by extracellular regulated kinase (Erk) and Akt Cerca con Google

phosphorylation. FASEB J 2004; 18: 1612-1614 Cerca con Google

100. Marra F, Valente AJ, Pinzani M, Abboud HE. Cultured human liver fat-storing cells produce monocyte chemotactic protein-1. Regulation by proinflammatory cytokines. J Clin Invest 1993; 92: 1674-1680 Cerca con Google

101. Marra F, DeFranco R, Grappone C, Milani S, Pastacaldi S, Pinzani M, Romanelli RG, Laffi G, Gentilini P. Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration. Am J Pathol 1998; 152: 423-430 Cerca con Google

102. Greenwel P, Rubin J, Schwartz M, Hertzberg EL, Rojkind M. Liver fat-storing cell clones obtained from a CCl4-cirrhotic rat are heterogeneous with regard to proliferation, expression of extracellular matrix components, interleukin-6, and connexin 43. Lab Invest 1993; 69: 210-216 Cerca con Google

103. Tiggelman AM, Boers W, Linthorst C, Brand HS, Sala M, Chamuleau RA. Interleukin-6 production by human liver (myo)fibroblasts in culture. Evidence for a regulatory role of LPS, IL-1 beta and TNF alpha. J Hepatol 1995; 23: 295-306 Cerca con Google

104. Pinzani M. Novel insights into the biology and physiology of the Ito cell. Pharmac Ther 1995; 66: 387-412 Cerca con Google

105. Sohara N, Znoyko I, Levy MT, Trojanowska M, Reuben A. Reversal of activation of human myofibroblast-like cells by culture on a basement membrane-like substrate. J Hepatol. 2002; 37:214-221 Cerca con Google

106. Gaca MD, Zhou X, Issa R, Kiriella K, Iredale JP, Benyon RC. Basement membranelike matrix inhibits proliferation and collagen synthesis by activated rat hepatic stellate cells: evidence for matrix-dependent deactivation of stellate cells. Matrix Biol. 2003; 22:229-239 Cerca con Google

107. Wang SC, Ohata M, Schrum L, Rippe RA, Tsukamoto H. Expression of interleukin-10 by in vitro and in vivo activated hepatic stellate cells. J Biol Chem 1998; 273(1): 302-8 Cerca con Google

108. Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, Hovell C, Arthur MJ. Mechanisms of spontaneous resolution of rat liver fibrosis-hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 1998; 102: 538-549 Cerca con Google

109. Baldwin AS. The NF-?B and I?B proteins: new discoveries and insights. Annu Rev Immunol 1996; 14: 649-81 Cerca con Google

110. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: The control of NF-?B activity. Annu Rev Immunol 2000; 18: 621-63 Cerca con Google

111. Hellerbrand C, Jobin C, Licato LL, Sartor RB, Brenner DA. Cytokines induce NF-?B in activated but not in quiescent rat hepatic stellate cells. Am J Physiol 1998; 275: G269- 78 Cerca con Google

112. Elsharkawy AM, Wright MC, Hay RT, Arthur MJ, Hughes T, Bahr MJ, Degitz K, Mann DA. Persistent activation of nuclear factor-kappa B in cultured rat hepatic stellate cells involves the induction of potentially novel Rel-like factors and prolonged changes in the expression of I_B family proteins. Hepatology 1999; 30: 761-9 Cerca con Google

113. Lang A, Schoonhoven R, Tuvia S, Brenner DA, Rippe RA. Nuclear factor KappaB in proliferation, activation and apoptosis in rat hepatic stellate cells. J Hepatol 2000; 33: 49-58 Cerca con Google

114. Vogt PK. Jun, the oncoprotein. Oncogene 2001; 20:2365-77 Cerca con Google

115. Bahr MJ, Vincent KJ, Arthur MJ, Fowler AV, Smart DE, Wright MC, Clark IM, Benyon RC, Iredale JP, Mann DA. Control of the tissue inhibitor of metalloproteinases- 1 promoter in culture-activated rat hepatic stellate cells: regulation by activator protein- 1 DNA binding proteins. Hepatology 1999; 29: 839-48 Cerca con Google

116. Smart DE, Vincent KJ, Arthur MJ, Eickelberg O, Castellazzi M, Mann J, Mann DA. JunD regulates transcription of the tissue inhibitor of metalloproteinases-1 and interleukin-6 genes in activated hepatic stellate cells. J Biol Chem 2001; 276: 24414-21 Cerca con Google

117. Poulos JE, Weber JD, Bellezzo JM, Di Bisceglie AM, Britton RS, Bacon BR, Baldassare JJ. Fibronectin and cytokines increase JNK, ERK, AP-1 activity and transin gene expression in rat hepatic stellate cells. Am J Physiol 1997; 273: G804-11 Cerca con Google

118. Solís-Herruzo JA, Rippe RA, Schrum LW, de La Torre P, García I, Jeffrey JJ, Muñoz-Yagüe T, Brenner DA. Interleukin-6 increases rat metalloproteinase-13 gene expression through stimulation of activator protein 1 transcription in cultured fibroblasts. J Biol Chem 1999; 274: 30919-26 Cerca con Google

119. Ratziu V, Lalazar A, Wong L, Dang Q, Collins C, Shaulian E, Jensen S, Friedman SL. Zf9, a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis. Proc Natl Acad Sci USA 1998; 95: 9500-5 Cerca con Google

120. Kim Y, Ratziu V, Choi SG, Lalazar A, Theiss G, Dang Q, Kim SJ, Friedman SL. Transcriptional activation of transforming growth factor L1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. J Biol Chem 1998; 273: 33750-8 Cerca con Google

121. Garcí­a-Trevijano ER, Iraburu MJ, Fontana L, Domí­nguez-Rosales JA, Auster A, Covarrubias-Pinedo A, Rojkind M. Transforming growth factor L1 induces the expression of H1 (I) procollagen mRNA by a hydrogen peroxide-C/EBPL-dependent Cerca con Google

mechanism in rat hepatic stellate cells. Hepatology 1999; 29: 960-970 Cerca con Google

122. Greenwel P, Domínguez-Rosales JA, Mavi G, Rivas-Estilla AM, Rojkind M. Hydrogen peroxide: a link between acetaldehyde-elicited H1 (I) collagen gene upregulation and oxidative stress in mouse hepatic stellate cells. Hepatology 2000; 31: 109-16 Cerca con Google

123. Iraburu MJ, Domínguez-Rosales JA, Fontana L, Auster A, García-Trevijano ER, Covarrubias-Pinedo A, Rivas-Estilla AM, Greenwel P, Rojkind M. Tumor necrosis factor H down-regulates expression of the H1 (I) collagen gene in rat hepatic stellate cells through a p20C/EBPL- and C/EBPo-dependent mechanism. Hepatology 2000; 31: 1086- 93 Cerca con Google

124. Blackwell TK, Weintraub H. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 1990; 250: 1104-10 Cerca con Google

125. Yun K, Wold B. Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Curr Opin Cell Biol 1996; 8: 877-89 Cerca con Google

126. Vincent KJ, Jones E, Arthur MJ, Smart DE, Trim J, Wright MC, Mann DA. Regulation of E-box DNA binding during in vivo and in vitro activation of rat and human hepatic stellate cells. Gut 2001; 49: 713-19 Cerca con Google

127. Weiner JA, Chen A, Davis BH. E-box repressor is down-regulated in hepatic stellate cells during up-regulation of mannose-6-phosphate/insulin-like growth factor II receptor expression in early hepatic fibrogenesis. J Biol Chem 1998; 273: 15913-19 Cerca con Google

128. Buck M, Kim DJ, Houglum K, Hassanein T, Chojkier M. c-Myb modulates transcription of the alpha-smooth muscle actin gene in activated hepatic stellate cells. Am J Physiol 2000; 278: G321-8 Cerca con Google

129. Wilson TM, Lambert MH, Kliewer SA. Peroxisome proliferators-activated receptor ? and metabolic disease. Ann Rev Biochem 2001; 70: 341-67 Cerca con Google

130. Miyahara T, Schrum L, Rippe R, Xiong S, Yee HF, Motomura K, Anania FA, Willson TM, Tsukamoto H. Peroxisome proliferators-activated receptors and hepatic stellate cell activation. J Biol Chem 2000; 275: 35715-22 Cerca con Google

131. Galli A, Crabb D, Price D, Ceni E, Salzano R, Surrenti C, Casini A. Peroxisome proliferators-activated receptor ? transcriptional regulation is involved in platelet-derived growth factor-induced proliferation of human hepatic stellate cells. Hepatology 2000; 31: 101-8 Cerca con Google

132. Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 2005; 132(14): 3151-61 Cerca con Google

133. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 2002; 3(3): 155-66 Cerca con Google

134. Carver EA, Jiang R, Lan Y, Oram KF, Gridley T. The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol 2001; 21(23): 8184-8 Cerca con Google

135. Thisse C, Thisse B, Schilling TF, Postlethwait JH. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 1993; 119(4): 1203-15 Cerca con Google

136. Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2(2): 76-83 Cerca con Google

137. Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E, Sancho E, Dedhar S, De Herreros AG, Baulida J. Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1. J Biol Chem 2002 18; 277(42): 39209-16 Cerca con Google

138. Ikenouchi J, Matsuda M, Furuse M, Tsukita S. Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 2003; 116(10): 1959-67 Cerca con Google

139. Olmeda D, Jordá M, Peinado H, Fabra A, Cano A. Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene 2007; 26(13): 1862-74 Cerca con Google

140. Batlle E, Sancho E, Francí C, Domí­nguez D, Monfar M, Baulida J, Garcí­a De Herreros A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2(2): 84-9 Cerca con Google

141. Kajita M, McClinic KN, Wade PA. Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol 2004; 24(17): 7559-66 Cerca con Google

142. Martí­nez-Alvarez C, Blanco MJ, Prez R, Rabadán MA, Aparicio M, Resel E, Martí­nez T, Nieto MA. Snail family members and cell survival in physiological and pathological cleft palates. Dev Biol. 2004; 265(1): 207-18 Cerca con Google

143. Vega S, Morales AV, Ocaña OH, Valdés F, Fabregat I, Nieto MA. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 2004; 18(10): 1131-43 Cerca con Google

144. Peinado H, Quintanilla M, Cano A. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 2003; 278: 21113-2123ù Cerca con Google

145. Barbera MJ, Puig I, Domínguez D, Julien-Grille S, Guaita-Esteruelas S, Peiro S, Baulida J, Franci C, Dedhar S, Larue L, Garcia de Herreros A. Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene 2004; 23: 7345-7354 Cerca con Google

146. Bachelder RE, Yoon SO, Franci C, Garcia de Herreros A, Mercurio AM. Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. J Cell Biol 2005; 168: 29-33 Cerca con Google

147. Peiró S, Escrivà  M, Puig I, Barberà  MJ, Dave N, Herranz N, Larriba MJ, Takkunen M, Francí C, Muñoz A, Virtanen I, Baulida J, García de Herreros A. Snail1 transcriptional repressor binds to its own promoter and controls its expression. Nucleic Cerca con Google

Acids Res 2006; 34(7): 2077-84 Cerca con Google

148. Domínguez D, Montserrat-Sentí­s B, Virgós-Soler A, Guaita S, Grueso J, Porta M, Puig I, Baulida J, Francí­ C, García de Herreros A. Phosphorylation regulates the subcellular location and activity of the snail transcriptional repressor. Mol Cell Biol 2003; 23(14): 5078-89 Cerca con Google

149. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004; 6(10): 931-40 Cerca con Google

150. Yook JI, Li XY, Ota I, Fearon ER, Weiss SJ. Wnt-dependent regulation of the Ecadherin repressor snail. J Biol Chem 2005; 280(12): 11740-8 Cerca con Google

151. Yang Z, Rayala S, Nguyen D, Vadlamudi RK, Chen S, Kumar R. Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail's subcellular localization and functions. Cancer Res 2005; 65(8): 3179- Cerca con Google

84 Cerca con Google

152. Yamashita S, Miyagi C, Fukada T, Kagara N, Che YS, Hirano T. Zinc transporter LIV1 controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature 2004; 429(6989): 298-302 Cerca con Google

153. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005; 17(5): 548-58 Cerca con Google

154. De Craene B, van Roy F, Berx G. Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal 2005; 17(5): 535-47 Cerca con Google

155. Yáñez-Mó M, Lara-Pezzi E, Selgas R, Ramírez-Huesca M, Domínguez-Jiménez C, Jiménez-Heffernan JA, Aguilera A, Sánchez-Tomero JA, Bajo MA, Alvarez V, Castro MA, del Peso G, Cirujeda A, Gamallo C, Sánchez-Madrid F, López-Cabrera Cerca con Google

M. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med. 2003; 348(5): 403-13 Cerca con Google

156. Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGFbeta1/ Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 2003; 112(10): 1486-94 Cerca con Google

157. Boutet A, De Frutos CA, Maxwell PH, Mayol MJ, Romero J, Nieto MA. Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. EMBO J 2006; 25(23): 5603-13 Cerca con Google

158. Francí C, Takkunen M, Dave N, Alameda F, Gómez S, Rodríguez R, Escrivà M, Montserrat-Sentí­s B, Baró T, Garrido M, Bonilla F, Virtanen I, García de Herreros A. Expression of Snail protein in tumor-stroma interface. Oncogene 2006; 25(37): 5134- 44 Cerca con Google

159. Constandinou C, Henderson N, Iredale JP. Modeling liver fibrosis in rodents. Methods Mol Med 2005;117:237-50 Cerca con Google

160. Brun P, Castagliuolo I, Pinzani M, Palù G, Martines D. Exposure to bacterial cell wall products triggers an inflammatory phenotype in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2005; 289(3): G571-8 Cerca con Google

161. De Minicis S, Seki E, Uchinami H, Kluwe J, Zhang Y, Brenner DA, Schwabe RF. Gene expression profiles during hepatic stellate cell activation in culture and in vivo. Gastroenterology 2007; 132(5): 1937-46 Cerca con Google

162. Kagan HM, Li W. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem 2003; 88: 660-672 Cerca con Google

163. Peinado H, Del Carmen Iglesias-de la Cruz M, Olmeda D, Csiszar K, Fong KS, Vega S, Nieto MA, Cano A, Portillo F. A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J 2005; 24(19): 3446-58 Cerca con Google

164. Vadasz Z, Kessler O, Akiri G, Gengrinovitch S, Kagan HM, Baruch Y, Izhak OB, Neufeld G. Abnormal deposition of collagen around hepatocytes in Wilson's disease is associated with hepatocyte specific expression of lysyl oxidase and lysyl oxidase like protein-2. J Hepatol 2005; 43(3): 499-507 Cerca con Google

165. Shafiei MS, Rockey DC. The role of integrin-linked kinase in liver wound healing. J Biol Chem 2006; 281(34): 24863-72 Cerca con Google

166. Zhang Y, Ikegami T, Honda A, Miyazaki T, Bouscarel B, Rojkind M, Hyodo I, Matsuzaki Y. Involvement of integrin-linked kinase in carbon tetrachloride-induced hepatic fibrosis in rats. Hepatology 2006; 44(3): 612-22 Cerca con Google

167. Jordà  M, Olmeda D, Vinyals A, Valero E, Cubillo E, Llorens A, Cano A, Fabra A. Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci 2005; 118(15): 3371-85 Cerca con Google

168. Han YP, Yan C, Zhou L, Qin L, Tsukamoto H. A matrix metalloproteinase-9 activation cascade by hepatic stellate cells in trans-differentiation in the three-dimensional extracellular matrix. J Biol Chem 2007; 282(17): 12928-39 Cerca con Google

169. Leroy P, Mostov KE. Slug is required for cell survival during partial epithelialmesenchymal transition of HGF-induced tubulogenesis. Mol Biol Cell 2007; 18(5): 1943- 52 Cerca con Google

170. Magness ST, Bataller R, Yang L, Brenner DA. A dual reporter gene transgenic mouse demonstrates heterogeneity in hepatic fibrogenic cell populations. Hepatology 2004; 40(5): 1151-9 Cerca con Google

171. Pagan R, Martí­n I, Llobera M, Vilaró S. Epithelial-mesenchymal transition of cultured rat neonatal hepatocytes is differentially regulated in response to epidermal growth factor and dimethyl sulfoxide. Hepatology 1997; 25(3): 598-606 Cerca con Google

172. Spagnoli FM, Cicchini C, Tripodi M, Weiss MC. Inhibition of MMH (Met murine hepatocyte) cell differentiation by TGF(beta) is abrogated by pre-treatment with the heritable differentiation effector FGF1. J Cell Sci 2000; 113(20): 3639-47 Cerca con Google

173. Zeisberg M, Yang C, Martino M, Duncan MB, Rieder F, Tanjore H, Kalluri R. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 2007; 282(32): 23337-47 Cerca con Google

174. Xia JL, Dai C, Michalopoulos GK, Liu Y. Hepatocyte growth factor attenuates liver fibrosis induced by bile duct ligation. Am J Pathol 2006;168:1500-12 Cerca con Google

175. Robertson H, Kirby JA, Yip WW, Jones DE, Burt AD. Biliary epithelial-mesenchymal transition in posttransplantation recurrence of primary biliary cirrhosis. Hepatology 2007; 45: 977-81 Cerca con Google

176. Díaz R, Kim JW, Hui JJ, Li Z, Swain GP, Fong KS, Csiszar K, Russo PA, Rand EB, Furth EE, Wells RG. Evidence for the epithelial to mesenchymal transition in biliary atresia fibrosis. Hum Pathol 2008; 39(1): 102-15 Cerca con Google

177. Lim, Y.S., K.A. Kim, J.O. Jung, J.H. Yoon, K.S.Suh, C.Y. Kim, H.S. Lee. Modulation of cytokeratin expression during in vitro cultivation of human hepatic stellate cells:evidence of transdifferentiation from epithelial to mesenchymal phenotype. Cerca con Google

Histochem Cell Biol 2002; 118: 127-136 Cerca con Google

178. Lim YS, Lee HC, Lee HS. Switch of cadherin expression from E- to N-type during the activation of rat hepatic stellate cells. Histochem Cell Biol 2007; 127(2): 149-60 Cerca con Google

179. Sicklick JK, Choi SS, Bustamante M, McCall SJ, Pérez EH, Huang J, Li YX, Rojkind M, Diehl AM. Evidence for epithelial-mesenchymal transitions in adult liver cells. Am J Physiol Gastrointest Liver Physiol 2006; 291(4): G575-83 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record