Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Giarola, Sara (2012) Sustainable design of biofuel systems: a modelling approach for the financial and environmental optimisation of first and second generation ethanol supply chains. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
2552Kb

Abstract (inglese)

During recent years, biofuels have been encountering a particular interest as a means to address the increasing global energy demand reducing the dependency on fossil fuels and mitigating global warming potentials. Among biofuels, biomass-based ethanol has been assuming a leading position in substituting petroleum-based gasoline: even if its actual carbon footprint is still debated, it is generally acknowledged a reduction in net greenhouse gas (GHG) emissions with respect to oil.
Bioethanol current production is based on the so-called first generation conversion technologies, using the products of conventional food crops as feedstocks, as starchy-, sugar- and oil-based resources (e.g., corn, wheat and sugarcane). The enthusiastic support these biofuels were given at the earlier beginning, has eroded more recently as new studies have highlighted their competition with food crops. Thus, the promotion of biofuels produced from cellulosic biomass (second generation biofuels), which does not have any food value, has been strongly recommended. However high capital expenditures and production costs still hinder the establishment of second generation facilities at a commercial scale. In this context, the main question concerns the identification of the most proper strategies (on both economic and environmental terms) to pave the way for a more sustainable transport system.
In light of this complex background, a well-advised transition towards a more sustainable transport system, requires an integrated analysis based on several issues involving the supply chain (SC) as a whole, that may help defining a more comprehensive view of biofuels. In tackling such high-level decision problems, analytical modelling has been recognised as the best optimisation option especially in the early stage of unknown structures design to address the full management of production systems considering all the stages of the production and distribution SC. Mixed Integer Linear Programming (MILP) in particular, represents one of the most suitable tools in determining the optimal solutions of complex SC design problems where multiple alternatives are to be taken into account.
Notwithstanding biorefineries represent an important part of the literature and biofuels have been gaining ever greater attention, strategic biofuels SC design is dealt with in a still limited number of works and some topics need to be properly discussed. Accordingly, the main purpose of this Thesis is to cover this gap of knowledge in the literature. In the context of bioenergy systems development and deployment, the general aim of this work is to provide quantitative and deterministic tools analysing and optimising the overall supply chain, so as to define the most convenient strategies for the development of the future road transport systems. The MILP, often moMILP, (multi-objective Mixed Integer Linear Programming) modelling frameworks developed, enable simultaneous consideration of conflicting criteria (i.e., financial, environmental, economic) to assist the stakeholders’ decisions on biofuels industry at strategic and tactical levels. The analysis, in particular, has been approached effectively embodying the Life Cycle Analysis (LCA) principles within the SC Analysis (SCA) techniques aiming at a quantitative assessment of the environmental burdens of each SC stage (i.e., biomass production and transport; fuel production and distribution). In addition, financial assessment has been integrated within the formulation involving properly devised risk indices measuring the trade-off between profitability and the risk the investors might be willing to accept for the business to be established.
The attention has been devoted, in particular, to the identification of the suitable strategies to pave the way for the most sustainable technologies for ethanol production. First, a broad range of processes (belonging to both first and second generation) has been dealt with, considering also the possibility of integrating multiple feedstocks within properly devised hybrid technologies using both starchy- and cellulose-rich materials. Then, the analysis has been focused on the general interactions of market policies (i.e., carbon trading, subsidies) on ethanol market development trends to boost sustainable production of ethanol.
Models capabilities in steering decisions on investments for bioenergy systems are evaluated in addressing real world case studies referring to the emerging bioethanol production in Northern Italy

Abstract (italiano)

Le preoccupazioni crescenti degli effetti delle modificazioni climatiche e l’incertezza dell’approvvigionamento energetico esprimono l’importanza cruciale della necessità di ridefinire il sistema di approvvigionamento energetico globale. L’urgenza della questione è legata ad un disaccoppiamento tra la prospettiva di una crescita costante della domanda di combustibili, ed il loro approvvigionamento, che ci si aspetta divenire sempre più incerto e costoso. Il fenomeno del cambiamento climatico è ampiamente riconosciuto essere una conseguenza dell’accresciuta concentrazione di gas serra in atmosfera dovuti all’attività antropogenica ed il trasporto ne è uno dei principali responsabili.
Negli ultimi anni, l’interesse per le energie rinnovabili è aumentato notevolmente per rispondere alla crescita della domanda di energia e cercare allo stesso tempo sia di ridurre la dipendenza da combustibili fossili che di contribuire alla mitigazione del riscaldamento globale. Alla biomassa è stata attribuita una particolare attenzione perché può essere sfruttata non solo per produrre energia elettrica, meccanica e termica, ma anche come fonte primaria di biocombustibili liquidi per autotrazione. Allo scopo di realizzare un sistema di trasporti più sostenibile, l’Unione Europea ha svolto un ruolo fondamentale nella promozione di biocombustibili fissando immissioni obbligatorie di fonti rinnovabili rispetto all’energia complessiva impiegata nei trasporti (5.75% entro il 2010 e 10% entro il 2020). I biocombustibili devono anche rispettare dei requisiti di sostenibilità ambientale nel loro impatto sul suolo, sull’acqua, sull’aria. Va tutelata, inoltre, la biodiversità e deve essere garantita una riduzione crescente delle emissioni di gas serra nella produzione di biocombustibili rispetto allo stesso quantitativo energetico di combustibile fossile che andranno a sostituire (35% dal 2009, 50% dal 2017 e 60% dal 2018).
Tra le alternative possibili, il bioetanolo è generalmente considerato la soluzione più pratica e perseguibile nel breve-medio periodo per sostituire la benzina. Nonostante il suo impatto sul ciclo del carbonio (la cosiddetta carbon footprint) sia stato e sia attualmente argomento molto dibattuto, si riconosce che la produzione ed impiego di questo biocombustibile possa risultare in una riduzione netta delle emissioni di gas serra rispetto alla benzina. Questo genere di investimento su larga scala porterebbe, inoltre, una crescita delle economie rurali grazie all’aumento ed alla segmentazione dei filoni di mercato tipicamente ascritti all’agricoltura.
L’attuale produzione di bioetanolo si basa sulla cosiddetta tecnologia di prima generazione, così chiamata perché sfrutta coltivazioni convenzionali come materie prime: si tratta di risorse ricche di sostanze amidacee, zuccherine od oleose, come mais, grano e canna da zucchero. Tuttavia l’iniziale entusiasmo di cui inizialmente godette questa tecnologia, si è recentemente affievolito a causa delle emergenti problematiche legate alla competizione della destinazione finale delle coltivazioni tra uso energetico ed alimentare. Inoltre, sono emerse preoccupazioni in merito al degrado ambientale per effetto di pratiche monocoltura e la deforestazione necessarie per lo sviluppo su larga scala di tale tecnologia. In generale, dubbi sulla sostenibilità energetica e sulla profittabilità economica del processo, troppo legata al costo di approvvigionamento della biomassa, hanno minato in parte lo sviluppo dell’industria del bioetanolo e la sua accettazione sociale. Alla luce di tutto questo, è emersa la convenienza a promuovere i cosiddetti biocombustibili di seconda generazione, ottenuti cioè a partire da materiale cellulosico e sostanzialmente privi di valore alimentare. Tuttavia, gli elevati costi di capitale e di produzione ostacolano attualmente lo sviluppo di tali tecnologie su scala commerciale, tanto che recentemente sono divenute operative solo strutture su scala di impianto pilota e dimostrativa.
La complessità del contesto impone che la transizione verso un sistema di trasporti più sostenibile sia opportunamente guidata dall’adozione di efficaci strumenti quantitativi in grado di analizzare il problema esteso all’intera filiera produttiva (Supply Chain, SC). La ridefinizione del sistema di approvvigionamento energetico nel trasporto richiede un’analisi integrata il più comprensiva possibile delle intrecciate problematiche coinvolte nella produzione di biocombustibili. Le strategie d’investimento richiedono complessi processi decisionali, per i quali la modellazione analitica risulta essere una delle migliori opzioni metodologiche per garantire l’ottimizzazione delle scelte che coinvolgono l’intero sistema produttivo. I modelli a variabili miste lineari e intere (Mixed Integer Linear Programming, MILP), in particolare, costituiscono uno degli strumenti più adatti nel determinare le soluzioni ottimali a complessi problemi di ottimizzazione tipicamente legati alla progettazione di filiere produttive in cui vengano prese in considerazione configurazioni alternative ed esclusive.
La ricerca bibliografica ha evidenziato alcune lacune nella letteratura in merito alle questioni di progettazione strategica di filiere produttive di biocombustibili, nonostante il concetto di bioraffineria costituisca già un argomento ampiamente trattato ed i biocombustibili stiano riscuotendo un interesse sempre crescente. Tutto ciò ha dato l’impulso per lo svolgimento di questa Tesi. Nel contesto generale dello sviluppo di sistemi bioenergetici, lo scopo generale di questo lavoro è quello di fornire degli opportuni strumenti decisionali per affrontare la transizione verso un sistema di trasporto più sostenibile, muovendo dalla prima alla seconda generazione di bioetanolo. Le metodologie adottate devono essere in grado di abbracciare l’intero problema analizzando tutti gli stadi della filiera, evidenziando aspetti positivi e negativi che provengono da un’ottimizzazione sia di tipo economico che ambientale. I modelli MILP proposti mirano ad essere strumenti di progettazione e pianificazione industriale nel settore dei biocombustibili in grado di contemperare aspetti economici ed ambientali. In effetti, essendo le infrastrutture produttive di biocombustibili ancora ad uno stadio immaturo, un loro studio preliminare rappresenta un’opportunità importante per analizzare la configurazione della filiera prima del suo sviluppo organico, consentendo di individuare gli investimenti ottimali e le opportune scelte di natura politica nazionale ed internazionale. Gli stadi della filiera di biocombustibili (produzione e distribuzione della biomassa; produzione e trasporto del bioetanolo) sono analizzati ed inseriti in modo integrato all’interno della modellazione matematica MILP proposta. L’attenzione è stata focalizzata in particolare sull’identificazione delle strategie opportune atte a favorire lo sviluppo delle più sostenibili tecnologie di produzione del bioetanolo. Innanzitutto, è stata considerata un’ampia gamma di processi, sia di prima che di seconda generazione, ed è stata altresì inclusa la possibilità di integrare opportunamente le due tecnologie all’interno di strutture ibride che ricevano sia materia prima amidacea che cellulosica. Infine, l’analisi si è focalizzata sull’interazione tra le politiche di mercato e lo sviluppo del mercato del bioetanolo, con particolare riguardo alle potenzialità di promuoverne una produzione sostenibile. Sono stati pertanto analizzati meccanismi di mercato cosiddetti flessibili, previsti dal Protocollo di Kyoto, come il carbon trading, ovvero lo scambio di permessi ad emettere gas serra, e potenziali effetti legati all’introduzione di sussidi pubblici.
In generale, l’analisi delle filiere (Supply Chain Analysis, SCA) di biocombustibili affrontata in questo lavoro di Tesi mira a fornire una valutazione integrata di aspetti economici, finanziari ed ambientali valutati lungo l’intera rete produttiva. Questo approccio alla progettazione valuta la responsabilità ambientale come un obiettivo della modellazione e non semplicemente come vincolo, secondo l’approccio della cosiddetta Green Supply Chain Management (GrSCM). L’approccio integra i principi del Life Cycle Assessment (LCA) con le tecniche SCA per ottenere una valutazione quantitativa dell’impatto ambientale arrecato da ogni singola fase della filiera. L’analisi finanziaria inoltre necessita di essere integrata attraverso l’introduzione di opportune misure di rischio finanziario in grado di descrivere il compromesso tra profittabilità e rischio che l’investitore decide di accettare. Per affrontare queste questioni, sono introdotte tecniche di programmazione multi-obbiettivo (Multi-objective Mathematical Programming, moMP), capaci di includere aspetti ambientali, finanziari ed economici nella progettazione di processi chimici.
I modelli sviluppati sono stati applicati ad un caso studio reale che affronta la possibile organizzazione della produzione di bioetanolo in Nord Italia sfruttando la disponibilità di molteplici biomasse sia di prima che di seconda generazione.
Il lavoro di Tesi è organizzato secondo il seguente schema concettuale.
Nel capitolo 1, dopo aver descritto il panorama bibliografico di riferimento, vengono illustrati gli approcci metodologici e modellistici alla base del lavoro, che prevedono l’integrazione di tecniche LCA ed SCA in analisi multi obiettivo secondo tecniche MILP.
Nel capitolo 2 viene trattato l’approccio modellistico alla base della descrizione tecnologica e dell’analisi economica per i sistemi di produzione considerati. Vengono studiati processi di prima e seconda generazione, che ottengono bioetanolo a partire rispettivamente da materiale amidaceo (mais) e lignocellulosico (residui e biomasse coltivate a scopo energetico, energy crops). L’aspetto peculiare della trattazione riguarda, inoltre, la modellazione di un processo di tecnologie ibride che utilizzano sia la parte amidacea che il residuo cellulosico del mais per la produzione di biocombustibili.
Nel capitolo 3 viene condotta la progettazione di filiera di bioetanolo attraverso la formulazione di un problema di ottimizzazione bi-obbiettivo (simultanea minimizzazione delle emissioni di gas serra e massimizzazione del profitto) con lo sviluppo di un modello MILP multi-periodo e georeferenziato. Il modello MILP formulato sfrutta tecniche moMP per l’implementazione di criteri di ottimizzazione ambientale ed economico. Sono considerate diverse configurazioni tecnologiche e vengono prese in esame più soluzioni per lo sfruttamento dei sotto-prodotti del processo di produzione di bioetanolo come possibili alternative tecnologiche per l’abbattimento di costi ed emissioni. Il modello costruito viene poi applicato all’analisi di una possibile filiera di bioetanolo in Nord Italia.
Nel capitolo 4 si studiano gli effetti dell’applicazione di strumenti finanziari sul design di filiere bioenergetiche nelle loro capacità di promuovere tecnologie più sostenibili per la produzione di bioetanolo. Nel modello viene implementato un meccanismo di carbon trading che prevede la commercializzazione di permessi ad emettere gas serra (CO2-equivalenti) rispetto a dei valori soglia stabiliti secondo la normativa ambientale per la sostenibilità dei biocombustibili. La trattazione modellistica esamina anche le dinamiche dei fattori d’incertezza del mercato di riferimento con particolare riguardo all’acquisto della biomassa utilizzata. In questo caso, sono stati ignorati gli aspetti legati alla georeferenziazione, per esaltare invece la questione rilevante legata alla scelta tecnologica sulle prestazioni della filiera. Si descrive, pertanto, lo sviluppo di un modello MILP multi-periodo con un approccio stocastico per la pianificazione della produzione di bioetanolo. La filiera viene progettata seguendo l’ottimizzazione di indici finanziari di investimento nel quale un ulteriore termine di profitto/perdita proviene dalla commercializzazione di permessi di emissione.
Il capitolo 5 estende la trattazione del modello descritto nel capitolo 4, inglobando una più ampia modellazione della pianificazione d’investimento in condizioni di incertezza che abbraccia il processo decisionale con considerazioni di gestione del rischio d’investimento. In particolare, il modello MILP stocastico viene esteso secondo una formulazione multi-obbiettivo permettendo la simultanea ottimizzazione di profitto ed emissione di gas serra. Sono inoltre inclusi dei vincoli sul livello massimo di rischio finanziario sostenibile nell’investimento. Si mostra in questo modo come la diversa attitudine al rischio dell’investitore (propensione o avversione) modifichi la strategia d’investimento in termini di scelte tecnologiche e biomasse trattate, anche alla luce di vincoli ambientali e di profittabilità economica.
Il capitolo 6 conclude la discussione della ricerca sviluppata con la presentazione dei principali risultati conseguiti e l’analisi di alcuni dei potenziali sviluppi futuri per proseguire la ricerca sull’argomento

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Bezzo, Fabrizio
Correlatore:Shah, Nilay
Dottorato (corsi e scuole):Ciclo 24 > Scuole 24 > INGEGNERIA INDUSTRIALE > INGEGNERIA CHIMICA
Data di deposito della tesi:27 Gennaio 2012
Anno di Pubblicazione:27 Gennaio 2012
Parole chiave (italiano / inglese):MILP, supply chain optimisation, bioethanol
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/25 Impianti chimici
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Principi e Impianti di Ingegneria Chimica "I. Sorgato"
Codice ID:4606
Depositato il:26 Ott 2012 11:04
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

agriforenergy (2011). agriforenergy website: www.agriforenergy.com Vai! Cerca con Google

Ahmed, S.; N.V. Sahinidis (1998). Robust process planning uncer uncertainty. Industrial and Engineering Chemistry Research, 37, 1883-1892. Cerca con Google

Ahmetović, E.; M. Martìn; I.E. Grossmann (2010). Optimization of energy and water consumption in corn-based ethanol plants. Industrial and Engineering Chemistry Research, 49, 7972-7982. Cerca con Google

Akgul, O.; A. Zamboni; F. Bezzo; N. Shah; L.G. Papageorgiou (2011). Optimization-based approaches for bioethanol supply chains. Industrial and Engineering Chemistry Research, 50, 4927-4938. Cerca con Google

An, H.; W.E. Wilhelm; S.W. Searcy (2011). Biofuels and petroleum-based fuel supply chain research: A literature review. Biomass and Bioenergy, 35, 3763-74. Cerca con Google

Andreson-Teixeira, K.J.; S.C. Davis; M.D. Masters; E.H. Delucia (2009). Changes in soil organic carbon under biofuel crop. Bioenergy, 1, 75-96. Cerca con Google

Andrews, S. (2006). Crop residue removal for biomass energy production. Effects on soils and recommendations. Available at http://soils.usda.gov. Vai! Cerca con Google

ANL (2006). Fuel-Cycle Assessment of selected Bioethanol Production Pathways in the United States. Argonne National Laboratory: Argonne, Illinois, U.S.A. Cerca con Google

ARB (2011). California Air Resources Board website: http://www.arb.ca.gov. Vai! Cerca con Google

Awudu, I.; J. Zhang (2012). Uncertainties and sustainability concepts in biofuel supply chain management: A review. Renewable and Sustainable Energy Reviews, 16, 1359-1368. Cerca con Google

Azapagic, A. (1999). Life cycle assessment and its application to process selection, design and optimisation. Chemical Engineering Journal, 73, 1–21. Cerca con Google

Baier, S.; M. Clemens; C. Griffiths; J. Ihrig (2009). Biofuels impact on crop and food prices: using an interactive spreadheet. International Finance Discussion Papers: Number 967. Board of Governors of the Federal Reserve System: Washington DC, U.S.A.. Cerca con Google

Beamon, B.M. (1998). Supply chain design and analysis: Models and methods. International Journal of Production Economics, 55, 281–294. Cerca con Google

Berger, M.; M. Finkbeiner (2010). Water Footprinting: How to Address Water Use in Life Cycle Assessment? Sustainability, 2, 919-944. Cerca con Google

Berk, J.; P. De Marzo (2008). Corporate Finance (1st Edition). Pearson Education Inc, Addison-Welsey: Old Tappan, New Jersey, U.S.A.. Cerca con Google

Berthiaume, R.; C. Bouchard; M.A. Rosen (2001). Exergetic Evaluation of the renewability of a biofuel. Exergy, An International Journal, 1, 256-268. Cerca con Google

Bidini, G.; F. Cotana; C. Buratti; F. Fantozzi; M. Barbanera (2006). Analisi del ciclo di vita dei pellet da SRF attraverso misure dirette dei consumi energetici. In: 61° Congresso Nazionale ATI, Perugia (Italy), 12th -15th September (in Italian). Cerca con Google

Blanco-Canqui, H.; R. Lal (2007). Soil and crop response to harvesting corn residues for biofuel production. Geoderma, 141, 355-362. Cerca con Google

Boeters, S.; J., Koorneef (2011). Supply of renewable energy sources and the cost of EU climate policy. Energy Economics, 33, 1024-1034. Cerca con Google

Bojarski, A.D.; J.M. Laìnez; A. Espuña; L. Puigjaner (2009). Incorporating environmental impacts and regulations in a holistic supply chains modelling: An LCA approach. Computers and Chemical Engineering, 33, 1747-1759. Cerca con Google

Bordin, A. (2007). Biocombustibili e biocarburanti – Soluzioni, tecnologie, agevolazioni. IPSOA Indicitalia: Trento, Italy (in Italian). Cerca con Google

Bose, S.; J.F. Pekny (2000). A model predictive framework for planning and scheduling problems, a case study of consumer goods supply chain. Computers and Chemical Engineering, 24, 329-335. Cerca con Google

Bothast, R.J.; M.A. Schlicher (2005). Biotechnological processes for conversion of corn into ethanol. Applied Microbiology and Biotechnology, 67, 19-25. Cerca con Google

Brandão, M., L. Milà i Canals; R. Clift (2011). Soil organic carbon changes in the cultivation of energy crops: Implications for GHG balances and soil quality for use in LCA. Biomass and Bioenergy, 35, 2323-2336. Cerca con Google

Bridgwater, A.V. (1995). The technical and economic feasibility of biomass gasification for power generation. Fuel, 74, 631-653. Cerca con Google

Bruglieri, M.; L. Liberti (2008). Optimal running and planning of a biomass-based energy production process. Energy Policy, 36, 2430-2438. Cerca con Google

Bucklin, L.P. (1966). A Theory of Distribution Channel Structure. IBER Special Publications: Berkeley, CA, U.S.A.. Cerca con Google

Campbell, C.; J. Laherrère (1998). The end of cheap oil. Scientific American, 278, 78-83. Cerca con Google

Cano-Ruiz, J.; G. McRae (1998). Environmentally conscious chemical process design. Annual Review of Energy and the Environment, 23, 499–536. Cerca con Google

Cardona, C.A.; O.J. Sànchez (2006). Energy consumption analysis of integrated flowsheet for production of fuel ethanol from lignocellulosic biomass. Energy, 31, 13, 2477-2459. Cerca con Google

Carpenter, D.L.; R.L. Bain; R.E. Davis; A. Dutta; C.J. Feik; K.R. Gaston; W. Jablonski; S.D. Phillips; M.R. Nimlos (2010). Pilot-Scale Gasification of Corn Stover, Switchgrass, Wheat Straw, and Wood: 1. Parametric Study and Comparison with Literature. Industrial and Engineering Chemistry Research, 49, 1859-1871. Cerca con Google

Carriquiry, M.A.; X. Du; G.R. Timilsina (2011). Second generation biofuels: Economics and policies. Energy Policy, 39, 4222-4234. Cerca con Google

Chapagain, A.K.; A.Y. Hoekstra (2007). The water footprint of coffee and tea consumption in the Netherlands. Ecological Economics, 64, 109-118. Cerca con Google

Chapagain, A.K.; A.Y. Hoekstra; H.H.G. Savenije; R. Gautam, (2006). The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecological Economics, 60, 186-203. Cerca con Google

Cherubini, F. (2010). GHG balances of bioenergy systems – Overview of key steps in the production chain and methodological concerns. Renewable Energy, 35, 1565–1573. Cerca con Google

Cherubini, F.; S. Ulgiati (2010). Crop residues as raw materials for biorefinery systems – A LCA case study. Applied Energy, 87: 47-57. Cerca con Google

Chevallier, J. (2011). Detecting instability in the volatility of carbon prices. Energy Economics, 33, 99-110. Cerca con Google

Christopher, M. (1992). Logistics and Supply Chain Management. Pitman Publishing: London, UK. Cerca con Google

Chiu, Y.-W.; Walseth, B., Suh, Sangwon (2009). Water embodied in bioethanol in the United States. Environmental Science and Technology, 43, 2688-2692. Cerca con Google

Collura, S.; B. Azambre; G. Finqueneisel; T. Zimny; J.V. Weber (2006). Miscanthus x Giganteus straw and pellets as sustainable fuels. Combustion and emission tests. Environmental Chemistry Letters, 4, 75-78. Cerca con Google

CONCAWE, EUCAR and JRC (CONCAWE) (2007). Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the Europ ean Context: WELL-TO-TANK Report. Version 2c. European Commission: Brussels, Belgium. Cerca con Google

Cooper, M.C.; M.D. Lambert; J.D. Pagh (1997). Supply chain management: More than just a name for logistics. The International Journal of Logistics Management, 8, 1−14. Cerca con Google

Creutzig, F.; E. McGlynn; J. Minx; O. Edenhofer (2011). Climate policies for road transport revisited (I): Evaluation of the current framework. Energy Policy, 39, 2396-406. Cerca con Google

Dale, B. (2008). Thinking clear about the issues. Journal of Agricultural and Food Chemistry, 56, 3885-3891. Cerca con Google

Dal-Mas, M.; S. Giarola; A. Zamboni; F. Bezzo (2011). Strategic design and investment capacity planning of the ethanol supply chain under price uncertainty. Biomass and Bioenergy, 35, 2059-2071. Cerca con Google

Danielsen, F.; H. Beukema; N.D. Burgess; F. Parish; C.A. Bruhl; P.F. Donald; D. Murdiyarso; B. Phalan; L. Reijnders; M. Struebig; E.B. Fitzherbert (2008). Biofuel plantations on forested lands: double jeopardhy for biodiversity and climate. Conservation Biology, 23, 348-358. Cerca con Google

Dantzig, G.B. (1955). Linear Programming under uncertainty. Management Science, 1, 197-206. Cerca con Google

Dantzig, G.B.; M.N. Thapa (1997). Linear programming 1: Introduction. Springer-Verlag: NY, U.S.A.. Cerca con Google

Dantzig, G.B.; M.N. Thapa (2003). Linear Programming 2: Theory and Extensions. (Comprehensive, covering e.g. pivoting and interior-point algorithms, large-scale problems, decomposition following Dantzig-Wolfe and Benders, and introducing stochastic programming). Springer-Verlag: NY, U.S.A.. Cerca con Google

Davis, S.C.; K.J. Anderson-Texeira; E.H. DeLucia (2009). Life-cycle analysis and the ecology of biofuels. Trends in Plant Science, 14, 140-146. Cerca con Google

Delucchi, M.A. (2006). Lifecycle analyses of biofuel. Draft report. University of California: Davis, U.S.A. Cerca con Google

De Almeida, P.; P.D. Silva (2009). The peak of oil production-Timings and market recognition. Energy Policy, 37, 1267-1276. Cerca con Google

De Kam, M.J.; R.V. Morey; D.G. Tiffany (2009). Biomass Integrated Gasification Combined Cycle for heat and power at ethanol plants. Energy Conversion and Management, 50, 1682-1690. Cerca con Google

de Oliveira, M.E.D.; B.E. Vaughan; E.J. Rykiel (2005). Ethanol as a fuel: energy, cabon dioxide balances, and ecological footprint. Bioscience, 55, 59-602. Cerca con Google

Demirbas, A. (2009). Political, economic and environmental impacts of biofuels: A review. Applied Energy, 86, S108-S117. Cerca con Google

de Wit, M.; M. Junginger; S. Lensink; M. Londo; A. Faaij (2010). Competition between biofuels: Modelling technological learning and cost reductions over time. Biomass and Bioenergy, 34, 203-17. Cerca con Google

Douglas, J.M. (1988). Conceptual design of chemical processes. McGraw-Hill: New York, U.S.A.. Cerca con Google

Dunnett, A.; C.S. Adjiman; N. Shah (2008). A spatially explicit whole-system model of the lignocellulosic bioethanol supply chain: An assessment of decentralized processing potential. Biotechnology for Biofuels, 1, 13. Cerca con Google

Dwivedi, P.; J.R.R. Alavalapati; P. Lal (2009). Cellulosic ethanol production in the United States: Conversion technologies, current production status, economics, and emerging developments. Energy for Sustainable Development, 13, 174-182. Cerca con Google

EEN (2007). Network Efficienza Energetica website: Cerca con Google

www.een-rer.it/incontri/biomasse/carani.pdf (in Italian) Vai! Cerca con Google

EIA (2011). International Energy Outlook 2011. EIA, U.S. Energy Information Administration: Washington, DC, U.S.A.. Cerca con Google

Eppen, G.D.; R.K. Martin; L. Schrage (1989). A scenario approach to capacity planning. Operations research, 37(4), 517-527. Cerca con Google

EUNOMIA (2010). INEOS Bio - Comparative Life-cycle Assessment. EUNOMIA research & consulting: Bristol, UK. Cerca con Google

European Commission (EC), (2001). Green Paper – Towards a European Strategy for the security of energy supply. Office for official publications of the European Communities: Luxembourg. Cerca con Google

European Commission (EC), (2003). Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels and other renewable fuels for transport. Official Journal of the European Parliament: Brussels. Cerca con Google

European Commission (EC), (2005). Biomass Action Plan. Communication from the Commission: Brussels. Cerca con Google

European Commission (EC), (2006). An EU Strategy for Biofuels. Communication from the Commission: Brussels. Cerca con Google

European Commission (EC), (2009). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Parliament: Brussels. Cerca con Google

European Commission (EC), (2011). Third Follow up Report to the Communication on water scarcity and droughts in the European Union COM (2007) 414 final. Report from the Commission to the European Parliament and the Council: Brussels. Cerca con Google

Facciotto, G.; S. Bergante; C. Lioia; L. Rosso; G. Mughini; I. Zenone; G. Nervo (2006). Produttività di cloni i pioppo e salice in piantagioni a turno breve. Forest@, 3, 238-252. Available online: http://www.sisef.it (in Italian). Vai! Cerca con Google

FAO (2008). Soaring food prices: facts, perspectives, impacts and actions required. Document HLC/08/INF/1. Presented at: High-level conference on world food security: the challenge of climate change and bioenergy, Rome, Italy, 3rd-5th June. Cerca con Google

Fargione, J.; J. Hill; D. Tilman; S. Polasky; P. Hawthorne (2008). Land clearing and the biofuel carbon debt. Science, 319, 1235-1238. Cerca con Google

Farrell, A.E.; R.J. Plevin; B.T. Tuner; A.D. Jones; M.O. O’Hare; D.M. Kammen (2006). Ethanol Can Contribute to Energy and Environmental Goals. Science, 311, 506-508. Cerca con Google

Fingerman, K.R.; M.S. Torn; M.H. O’Hare; D.M. Kammen (2010). Accounting for the water impacts of ethanol production. Environmental Research letters, 5, 014020. Cerca con Google

Forrester, J.W. (1968). Principles of Systems. Wright-Allen Press: Cambridge, Massachusetts, U.S.A.. Cerca con Google

Franceschin, G.; A. Zamboni; F. Bezzo; A. Bertucco (2008). Ethanol from corn: a technical and economical assessment based on different scenarios. Chemical engineering research and design, 86, 488-498. Cerca con Google

Galbe, M.; G. Zacchi (1994). Simulation of ethanol production processes based on enzymatic hydrolysis of woody biomass. Computers and Chemical Engineering, 18, S687-S691. Cerca con Google

Gallagher, P.W. (2008). The Gallagher Review of the indirect effects of biofuels production. Renewable Fuels Agency: London, UK. Cerca con Google

Geoffrion, A.M.; G.W. Graves (1974). Multicommodity distribution system-Design by Benders decomposition. Management Sciences Theory Series, 20, 822-844. Cerca con Google

Gerbens-Leenes, P.W.; A.Y. Hoekstra (2009). The water footprint of sweeteners and bio-ethanol from sugar cane, sugar beet and maize. Value of Water. Research Report Series No. 38. UNESCO-IHE: Delft, the Netherlands. Cerca con Google

Gerbens-Leenes, P.W.; A.Y. Hoekstra; Th. van der Meer (2009a). The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply. Ecological Economics, 68, 1052-1060. Cerca con Google

Gerbens-Leenes, P.W.; A.Y. Hoekstra; Th. van der Meer (2009b). The water footprint of bioenergy. Proceedings of the National Academy of Sciences, 106, 10219-10223. Cerca con Google

Gheewala, S.H.; G. Berndes; G. Jewitt (2011). The bioenergy and water nexus. Biofuels, Bioproduct Biorefineries, 5, 353-360. Cerca con Google

Giarola, S.; A. Zamboni; F. Bezzo (2011a). Spatially explicit multi-objective optimisation for design and planning of hybrid first and second generation biorefineries. Computers and Chemical Engineering, 35, 1782-1797. Cerca con Google

Giarola, S.; A. Zamboni; F. Bezzo (2011b). Environmentally conscious capacity planning and technology selection for bioethanol supply chains. Renewable Energy, doi:10.1016/j.renene.2011.12.011. Cerca con Google

Giarola, S.; A. Zamboni; F. Bezzo (2011c). Supply chain design and capacity planning: From first to second generation biofuel systems. In: Chemical EngineeringTransactions 24, ICheaP-10 (S. Pierucci, Ed.), AIDIC, Milan, Italy, 253-258. Cerca con Google

Giarola, S.; A. Zamboni; F. Bezzo. (2011d). Environmentally Conscious Supply Chain Design and Capacity Planning: from First to Second Generation Biofuel Systems. In: AIDIC Conference Series Vol.10 (accepted). Cerca con Google

Giarola, S.; N. Shah; F. Bezzo (2011e). A comprehensive approach to the design of ethanol supply chains including carbon trading effects. Bioresource Technology, doi:10.1016/j.biortech.2011.11.090. Cerca con Google

Giarola, S.; N. Shah; F. Bezzo (2011f). Assessing the economic and environmental performance of ethanol supply chains under market uncertainty. Presented at: ISAF XIX, Verona, Italy, 10th-14th October. Cerca con Google

Gjerdrum, J.; N. Shah; L.G. Papageorgiou (2000). A combined optimization and agent-based approach for supply chain modelling and performance assessment. Production Planning and Control, 12, 81-88. Cerca con Google

Gnansounou, E. (2010). Production and use of lignocellulosic bioethanol: in Europe: Current situation and perspectives. Bioresource Technology, 101, 4842-4850. Cerca con Google

Gnansounou, E.; A. Dauriat; J. Villegas; L. Panichelli (2009). Life cycle assessment of biofuels: Energy and greenhouse gas balances. Bioresource Technology, 100, 4919-4930. Cerca con Google

Grossmann, I.E.; M. Martìn (2010). Energy and Water Optimization in Biofuels Plants. Chinese Journal of Chemical Engineering, 18, 914-922. Cerca con Google

Grossmann, I.E.; G. Guillén-Gosalbéz (2010). Scope for the application of mathematical programming techniques in the synthesis and planning of sustainable processes. Computers and Chemical Engineering, 34, 1365-1376. Cerca con Google

GSE (2011). GSE website: www.gse.it. Vai! Cerca con Google

GTAP (2011). Global Trade Analysis Project website: www.gtap.org. Vai! Cerca con Google

Guarise, (G.B.) 2000. Lezioni di impianti chimici. Cleup Editrice, 2nd Edition: Padova, Italy. Cerca con Google

Guldimann, T. (2000). The story of risk metrics. Risk, 13, 56-8. Cerca con Google

Guillén-Gosálbez, G.; I.E Grossmann (2009). Optimal design and planning of sustainable chemical supply chains under uncertainty. AIChE Journal, 55, 99–121. Cerca con Google

Guillén-Gosàlbez, G.; F.D. Mele; A. Espuña; L. Puigjaner (2006). Addressing the design of chemical supply chain under demand uncertainty. Industrial and Engineering Chemistry Research, 45, 7566-7581. Cerca con Google

Gupta, A.; C.D. Maranas (2000). A two-stage modeling arid solution framework for multisite midterm planning under demand uncertainty. Industrial and Engineering Chemistry Research, 39, 3799-3813. Cerca con Google

Gupta, S.C.; C.A. Onstad; W.E. Larson (1979). Predicting the effects of tillage and crop residue management on soil erosion. Journal of Soil and Water Conservation, 34, 77-79. Cerca con Google

Hamelinck, C.N.; G. van Hooijdonk; A.P.C. Faaij (2005). Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy, 28, 384-410. Cerca con Google

Hammerschlag, R. (2006). Ethanol’s energy return on investment A survey of the literature 1990-Present. Environmental Science Technology, 40, 1744-1750. Cerca con Google

Harto, C.; R. Meyers; E. Williams (2010). Life cycle water use of low-carbon transport fuels. Energy Policy, 38, 4933–4494. Cerca con Google

HGCA (2005). Bioethanol Greenhouse Gas Calculator: Users’ guide. Home-Grown cereals Authority: London, UK. Cerca con Google

Heller, M.C.; G.A. Keoleian; T.A. Volk (2003). Life cycle assessment of a willow bioenergy cropping system. Biomass and Bioenergy, 25: 147-165. Cerca con Google

Hettinga, W.G.; H.M. Junginger; S.C. Dekker; M. Hoogwijk; A.J. McAloon; K.B. Hicks (2009). Understanding the reduction in US corn ethanol production costs: An experience curve approach. Energy Policy, 37, 190-203. Cerca con Google

Hill, J.; E. Nelson; D. Tilman; S. Polasky; D. Tiffany (2006). Environmental, economic, and energetic costs and benefis of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences, 103, 11206-11210. Cerca con Google

Ho, S.P. (1989). Global warming impact of ethanol versus gasoline. Presented at: 1989 National Conference Clean Air Issues and America’s Motor Fuel Business: Washington, DC. Cerca con Google

Hoekstra, A.Y. (2003). Virtual water trade: Proceedings of the International Expert Meeting on Virtual Water Trade. Value of Water Research Report Series No. 12. IHE: Delft, The Netherlands. Cerca con Google

Hoekstra, A.Y.; A.K. Chapagain (2008). Globalization of water. Sharing the planet’s freshwater resources. Blackwell Publishing Ltd: Oxford, UK. Cerca con Google

Hoekstra, A.Y.; A.K. Chapagain; M.M. Aldaya; M.M. Mekonnen (2011). The Water Footprint assessment Manual. Setting the Global Standard. Earthscan: London, UK, Washington, DC, U.S.A.. Cerca con Google

Hoekstra, A.Y.; P.Q. Hung (2002). Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade. Value of Water Research Report Series No. 11. IHE: Delft, The Netherlands. Cerca con Google

Hubbert, M.K. (1949). Energy from fossil fuels. Science, 109, 103-109. Cerca con Google

Hubbert, M.K. (1971). The energy resources on the Earth. In: Energy and Power, a Scientific American Book (W.H. Freeman & Co. Ed.): San Francisco, U.S.A.. Cerca con Google

Hugé, J.; T. Waas; G. Eggermont; A. Verbruggen (2011). Impact assessment for a sustainable energy future-Reflections and practical experiences. Energy Policy, 39, 624-6253. Cerca con Google

Hugo, A.; E.N. Pistikopoulos (2005). Environmentally conscious long-range planning and design of supply chain networks. Journal of Cleaner Production, 13, 1471–1491. Cerca con Google

Hung, W.Y.; N. Samsatli; N. Shah (2006). Object-oriented dynamic supply chain modelling incorporated with production scheduling. European Journal of Operational Research, 169, 1064-1076. Cerca con Google

IEA (2004). A Review of Greenhouse Gas Emission Factors for Fertiliser Production. Available online at www.ieabioenergy-task38.org Vai! Cerca con Google

IEA (2009). World Energy Outlook 2009. International Energy Agency: Paris, France. Cerca con Google

IEA (2010). Key World Energy Statistics. International Energy Agency: Paris, France. Cerca con Google

IEA (2011). 2008 Energy Balances for World. International Energy Agency: Paris, France. Available at www.iea.org Vai! Cerca con Google

IEA STATISTICS (2010). CO2 emissions from fuel combustion. International Energy Agency: Paris, France. Cerca con Google

Ioannidou, O.; A. Zabaniotou; E. Antonakou; K. Papazisi; A. Lappas; C. Athanassiou (2009). Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolisis in two reactor configurations. Renewable and Sustainable Energy Reviews, 13, 750-762. Cerca con Google

IPCC (2001). Climate Change 2001: The Scientific Basis. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., Jhonson, C. A. (eds.); Cambridge University Press: Cambridge, U.K. and New York, NY, U.S.A.. Cerca con Google

IPCC (2007). Climate Change 2007: Synthesis Report. Intergovernmental Panel on Climate Change: Geneva, Switzerland. Cerca con Google

ISO (1997). ISO 14040: Environmental Management-Life Cycle Assessment-Principles and Framework. International Standards Organization: Geneva, Switzerland. Cerca con Google

ISO (2006). ISO 14040:2006: Environmental Management – Life Cycle Assessment – Principles and Framework. International Standards Organization: Geneva, Switzerland. Cerca con Google

ISTAT (2011). ISTAT website: www.istat.it Vai! Cerca con Google

IT (2007). Legge Finanziaria 2008, L. 24.12.2007 n. 244. Italian Governement: Roma, Italy. Cerca con Google

IT (2008). Camera di Commercio website: www.camcom.it. Vai! Cerca con Google

IT(2010a). Agenzia delle Entrate website: www.agenziaentrate.gov.it. Vai! Cerca con Google

IT (2010b). Camera di Commercio website: www.ud.camcom.it. Vai! Cerca con Google

Iyer, R.R.; I.E. Grossmann (1998). A bilevel decomposition algorithm for long-range planning of process networks. Industrial and Engineering Chemistry Research, 37, 474-481. Cerca con Google

Jackson, P. (2006). Why the Peak Oil Theory Falls Down-Myths, Legends, and the Future of Oil. CERA, Client Services Cambridge: MA, U.S.A.. Cerca con Google

Jackson, J.R.; I.E. Grossmann (2003). Temporal decomposition scheme for nonlinear multisite production planning and distribution models. Industrial and Engineering Chemistry Research, 42, 3045-3055. Cerca con Google

Kallrath, J. (2000). Mixed integer optimization in the chemical process industry: Experience, potential and future perspectives. Chemical Engineering Research and Design, 78, 809–822. Cerca con Google

Kallrath, J. (2002a). Combined strategic and operational planning: An MILP success story in chemical industry. OR Spectrum, 24, 315-341. Cerca con Google

Kallrath, J. (2002b). Planning and scheduling in the process industry. OR Spectrum, 24, 219-250. Cerca con Google

Karuppiah, R.; A. Peschel; I.E. Grossmann; M. Martìn; W. Martinson; L. Zullo (2008). Energy optimization for the design of corn-based ethanol plants. AIChE Journal, 54, 1499-1525. Cerca con Google

Kaufmann, R.K. (2011). The role of market fundamentals and speculation in recent price changes for crude oil. Energy Policy, 39, 105-115. Cerca con Google

Kaylen, M.; D.L. Van Dyne; Y. Choi; M. Blase (2000). Economic feasibility of producing ethanol from lignocellulosic feedstocks. Bioresource Technology, 72, 19-32. Cerca con Google

Keeney, D.R.; T.H. DeLuca (1992). Biomass as an energy source for the Midwestern US. American Journal of Alternative Agriculture, 7, 137-144. Cerca con Google

Khor, C.S.; S. Giarola; B. Chachuat; N. Shah (2011). An Optimization-Based Framework for Process Planning under Uncertainty with Risk Management. Chemical Product and Process Modeling, 6(2), article 4. Cerca con Google

Kim, J.; M.J. Realff; J.H. Lee (2011). Optimal design and global sensitivity analysis of biomass supply chain networks for biofuels under uncertainty. Computers and Chemical Engineering, 35, 1738-1751. Cerca con Google

Kim, S.; E.B. Dale (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy, 26, 261-375. Cerca con Google

Kim, S.; B.E. Dale (2005). Life cycle assessment of various cropping system utilised for producing biofuels: Bioethanol and biodiesel. Biomass and Bioenergy, 29, 426-439. Cerca con Google

King, C.W.; M.E. Webber (2008). Water Intensity of Transportation. Environmental Science and Technology, 42, 7866-7872. Cerca con Google

Kostin, A.M.; G. Guillén-Gosàlbez; F.D. Mele; M.J. Bagajewicz; L. Jiménez (2011). Design and Planning of Infrastructures for Bioethanol and Sugar Production Under Demand Uncertainty. Chemical Engineering Research and Design, doi:10.1016/j.cherd.2011.07.013. Cerca con Google

Kumar, P.; D.M. Barrett; M.J. Delwiche; P. Stroeve (2009). Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial and Engineering Chemistry Research, 48, 3713-3729. Cerca con Google

Kwiatkowsky, J.R.; A.J. McAloon A.J.; F. Taylor; D.B. Johnston (2006). Modelling the process and costs of the production of fuel ethanol by the corn dry-grind process. Industrial Crops and Products, 23, 288-296. Cerca con Google

La Londe, B.J. (1984). A reconfiguration of logistics systems in 80’s: Strategies and Challenges. Journal of Business Logistics, 4(1), 1-11. Cerca con Google

Lal, R. (1995). The role of residue management in sustainable agriculture systems. Journal of Sustainable Agriculture, 5, 51-78. Cerca con Google

Lal, R. (2005). World crop residues production and implications of its use as a biofuels. Environment International, 31, 575-584. Cerca con Google

Larson, W.E.; J.B. Swan; F.J. Pierce (1982). Agronomic implications of using crop residues for energy. In: Agriculture as a producer and consumer of energy. In: AAAS Selected Symposium (Lockertz W., editor), 78, 91-122. Cerca con Google

Laser, M.; H. Jin; K. Jayawardhana; L.R. Lynd (2009). Coproduction of ethanol and power from switchgrass. Biofuels, Bioproducts and Biorefining, 3, 195-218. Cerca con Google

Lescaroux, F. (2011). Dynamics of final sectorial energy demand and aggregate energy intensity. Energy Policy, 39, 66-82. Cerca con Google

Levelton Engineering Ltd; (S&T)2 Consulting; J.E. & Associates (2000). Assessment of Net Emissions of Greenhouse Gases from Ethanol-Gasoline Blends in Southern Ontario. Agriculture and Agri-Food Canada: Ottawa, Ontario, Canada. Cerca con Google

Linde, M.; M. Galbe; G. Zacchi (2007). Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme loadings and low yeast concentration. Enzyme and Microbial Technology, 40, 1100-1107. Cerca con Google

Liu, M.L.; V.N. Sahinidis (1996). Optimization in Process Planning under Uncertainty. Industrial and Engineering Chemistry Research, 35, 4154-4165. Cerca con Google

Liu, P.; D.I. Gerogiorgis; E.N. Pistikopoulos (2007). Modeling and optimization of polygeneration energy systems. Catalysis Today, 127, 347-359. Cerca con Google

Londo, M.; S. Lensink; A. Wakker; G. Fischer; S. Prieler; H. van Velthuizen; M. de Wit; A. Faaij; M. Junginger; G. Berndes; J. Hansson; A. Egeskog; H. Duer; J. Lundbaek; G. Wisniewski; A. Kupczyk; K. Könighofer (2010). The REFUEL EU road map for biofuels in transport: Application of the project’s tools to some short-term policy issues. Biomass and Bioenergy, 34, 244-250. Cerca con Google

Lorenz D.; D. Morris (1995). How Much Energy Does it Take to Make a Gallon of Ethanol? Institute for Local Self-Reliance: Washington, DC, U.S.A.. Cerca con Google

Lucas, A; C.A. Silva; R.C. Neto (2011). Life cycle analysis of energy supply infrastructure for conventional and electric vehicles. Energy Policy, 41, 537-547. Cerca con Google

Luo, L.; E. van der Voet; G. Huppes (2009a). An energy analysis of ethanol from cellulosic feedstock-Corn stover. Renewable and Sustainable Energy Reviews, 13, 203-2011. Cerca con Google

Luo, L.; E. van der Voet; G. Huppes; H.A. Udo de Haes (2009b). Allocation issues in LCA methodology: a case study of stover-based fuel ethanol. The International Journal of Life Cycle Assessment, 14, 529–539. Cerca con Google

Mabee, W.E.; P.N. McFarlane; J.N. Saddler (2011). Biomass availability for lignocellulosic ethanol production. Biomass and Bioenergy, 35, 4519-4529. Cerca con Google

Mani, S.; S. Sokhansanj; S. Tagore; A.F. Turhollow (2010). Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant – Part 2: Cost of heat and power generation systems. Biomass and Bioenergy, 34, 356-364. Cerca con Google

Manzone, M.; G. Airoldi; P. Balsari (2009). Energetic and economic evaluation of a poplar cultivation for the biomass production in Italy. Biomass and Bioenergy, 33, 1258-1264. Cerca con Google

Marland, G.; A.F. Turhollow (1991). CO2 emissions from the production and combustion of fuel ethanol from corn. Energy, 16, 1307-1316. Cerca con Google

Martìn, M.; I.E. Grossman; E. Ahmetović (2011). Optimization of water consumption in second generation bioethanol plants. Industrial and Engineering Chemistry Research, 50, 3705-3721. Cerca con Google

Martinez, A.; M.E. Rodriguez; M. Wells; S.W. York; J.F. Preston; L.O. Ingram (2001). Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnology Progress, 17, 287-293. Cerca con Google

Marvin, W.A.; L.D. Schmidt; S. Benjaafar; D.G. Tiffany; P. Daoutidis (2012). Economic Optimization of a Lignocellolosic Biomass-to-Ethanol Supply Chain. Chemical Engineering Science, 67, 68-79. Cerca con Google

Mavrotas, G.; D. Diakoulaki; K. Florios; P. Georgiou (2008). A mathematical programming framework for energy planning in services’ sector buildings under uncertainty in load demand: The case of a hospital in Athens. Energy Policy, 36, 2415–2429. Cerca con Google

McGovern, P.E. (2003). Ancient Times: The Search for the Origins of Viniculture. Princeton University Press: Princeton, U.S.A.. Cerca con Google

Mekonnen, M.M.; A.Y. Hoekstra (2010). The green, blue and grey water footprint of crops and derived co-products. Volume 1: Main Report.Value of Water. Research Report Series No. 47. UNESCO-IHE: Delft, the Netherlands. Cerca con Google

Mercurio, F. (2008). Anche il mais beneficia dell'irrigazione a goccia. Macchine & Motori Agricoli, 4, 43-45 (in Italian). Cerca con Google

Mele, F.; A. Kostin; G. Guillén-Gosàlbez; L. Jimenez (2011). Multiobjective model for more sustainable fuel supply chains. A case study of sugar cane industry in Argentina. Industrial and Engineering Chemistry Research, 50, 4939-4958. Cerca con Google

Millati, R.; C. Niklasson; M.J. Taherzadeh (2002). Effect of pH, time and temperature of overliming on detoxification of dilute-acid hydrolyzates for fermentation by Saccharomyces cerevisiae. Process Biochemistry, 38, 515-522. Cerca con Google

Mohagheghi, A.; N. Dowe; D. Schell; Y.C. Chou; C. Eddy; M. Zhang (2004). Performance of a newly developed integrant of Zymomonas mobilis for ethanol production of corn stover hydrolysate. Biotechnology Letters, 26, 321-325. Cerca con Google

Mohagheghi, A.; M. Ruth; D.J. Schell (2006). Conditioning hemicelluloses hydrolysates for fermentation: effects of overliming pH on sugar and ethanol yields. Process Biochemistry, 41, 1806-1811. Cerca con Google

Monti, A.; S. Fazio; G. Venturi (2009). Cradle-to-farm gate life cycle assessment in perennial energy crops. European Journal of Agronomy, 31, 77-84. Cerca con Google

Morey, R.V.; D.G. Tiffany; D.L. Hatfield (2006). Biomass for electricity and process heat at ethanol plants. Applied Engineering in Agriculture, 22, 723-728. Cerca con Google

Mousdale, D.M. (2008). Biofuels – Biotechnology, Chemistry, and Sustainable Development. CRC Press, Taylor & Francis Group: Boca Raton, Florida, U.S.A.. Cerca con Google

Munasinghe, P.C.; S.K. Khanal (2010). Biomass-derived syngas fermentation into biofuels: Opportunities and challenges. Bioresource Technology, 101, 501-5022. Cerca con Google

Mussatto, S.I.; G. Dragone; P.M.R. Guimarães; J.P.A. Silva; L.M. Carneiro; I.C. Roberto; A. Vincente; J.A. Texeira (2010). Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, 28, 817-830. Cerca con Google

NREL (1996). Development of an Aspen plus physical property database for biofuels components. Report NREL/MP-425-20685. National Renewable Energy Laboratory: Golden, CO, U.S.A.. Cerca con Google

NREL (2000). Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks. NREL Report TP-580-28893. National Renewable Energy Laboratory: Golden, CO, U.S.A.. Cerca con Google

NREL (2002). Mississippi Ethanol LCC. Final report from Mississippi Ethanol LCC to the National Renewable Energy Laboratory. Report NREL/SR-510-31720. National Renewable Energy Laboratory: Golden, CO, USA. Cerca con Google

NREL (2008). Biochemical production of ethanol from corn stover: 2007 state of technology model. Technical Report NREL/TP-510-43205. National Renewable Energy Laboratory: Golden, CO, U.S.A.. Cerca con Google

ODI (2008). Review of the indirect effects of biofuels, economic effects and food in security – a report to the renewable fuels agency. Overseas Development Institute: London, UK. Cerca con Google

OECD-FAO (2008). Agricultural outlook 2008-2017. Organisation for Economic Cooperation and Development-Food and Agriculture Organization of the United Nations (OECD_FAO): Paris, France. Cerca con Google

Oliver, R.K.; M.D. Webber (1982). Supply-chain management: logistics catches up with strategy. In Logistics: The Strategic Issues (M Christopher Ed.), Chapman Hall: London, UK. Cerca con Google

Optner, S.L. (1960). Systems Analysis. Prentice-Hall Inc., Englewood Cliffs, NJ. Cerca con Google

Papapostolou, C.; E. Kondili; J.K. Kaldellis (2011). Development and implementation of an optimisation model for biofuels supply chains. Energy, 36, 6019-6026. Cerca con Google

Papageorgiou, L.G. (2009). Supply chain optimisation for the process industries: Advances and opportunities. Computers and Chemical Engineering, 33, 1931-1938. Cerca con Google

Peters, M.S.; K.D. Timmerhaus; R.E. West (2003). Plant Design and economics for chemical engineers. McGraw-Hill, 5th edition, New York, U.S.A.. Cerca con Google

Petrolia, D.R. (2008). The economics of harvesting and transporting corn stover for conversion to fuel ethanol: A case study for Minnesota. Biomass and Bioenergy, 32, 603-612. Cerca con Google

Petrou, E.C.; C.P. Pappis (2009). Biofuels: A survey on pros and cons. Energy & Fuels, 23, 1055-1066. Cerca con Google

Phillips, S.; A. Aden; J. Jechura; D. Dayton (2007). Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass. Technical Report NREL/TP-510-41168. National Renewable Energy Laboratory, Golden, CO. Cerca con Google

Piccolo, C. (2010). Sviluppo e applicazione di metodologie per lo scale-up e l’ottimizzazione di processi per la produzione di etanolo da meteriali lignocellulosici. PhD Thesis, DIPIC, Padova, Italy. Cerca con Google

Piccolo, C.; F. Bezzo (2009). A techno-economic comparison between two technologies for bioethanol production from lignocellulose. Biomass and Bioenergy, 33, 478-491. Cerca con Google

Pimentel, D. (1991). Ethanol fuels: energy security, economics, and the environment. Journal of Agricultural and Environmental Ethics, 4, 1-13. Cerca con Google

Pimentel, D.; T.W. Patzek (2005). Ethanol production using corn, switchgrass and wood; biodiesel production using soybean and sunflower. Natural Resources Research, 14, 65-76. Cerca con Google

portaleaziende (2011). portaleaziende website: www.portaleaziende.it. Vai! Cerca con Google

Reijnders, L. (2008). Ethanol from crop residues and soil organic carbon. Resource Conservation and Recycling, 52, 653-658. Cerca con Google

Renon, H.; J.M. Pausnitz (1968). Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. AIChE J, 14, 135-144. Cerca con Google

Rentizelas, A.A.; I.P. Tatsiopoulos; A. Tolis (2009). An optimization model for multi-biomass tri-generation energy supply. Biomass and Bioenergy, 33, 223-233. Cerca con Google

Rickeard, D.J.; G. Punter; J.F. Larivé; R. Edwards; N.D. Mortimer; R. Horne; A. Bauen; J. Woods (2004). WTW evaluation for production of ethanol from wheat. Low Carbon Vehicle Partnership (LCVP), London, UK. Cerca con Google

Ridoutt, B.G.; Pfister, S. (2010). Reducing humanity’s water footprint. Environmental Science and Technology, 44, 6019-6021. Cerca con Google

Rockafellar, R.T.; S. Uryasev (2000). Optimization of conditional value-at-risk. Journal of Risk, 2, 21–41. Cerca con Google

Rosenthal, R.E. (2006). GAMS - A Users’ Guide (Version 22.5). GAMS Development Corporation: Washington, DC, U.S.A.. Cerca con Google

Sabri, E.H.; B.M. Beamon (2000). A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega, 28, 581-598. Cerca con Google

Saddler, J.N. (1992). Biotechnology for the conversion of lignocellulosics. Biomass and Bioernergy, 2, 229-238. Cerca con Google

Sahinidis, N.V. (2004). Optimization under uncertainty: state-of-the-art and opportunities. Computers and chemical Engineering, 28, 971-983. Cerca con Google

Sahinidis, N.V.; I.E. Grossmann; R.E. Fornari; M. Chatrathi (1989). Optimization model for long range planning in the chemical industry. Computers and Chemical Engineering, 13, 1049–1063. Cerca con Google

Sartori, F.; M.H. Ebinger; D.J. Parrish (2006). Potential Soil Carbon Sequestration and CO2 Offset by Dedicated Energy Crops in the USA. Critical Reviews in Plant Sciences, 25, 441-472. Cerca con Google

Sassner, P.; M. Galbe; G. Zacchi (2008). Techno-economic evaluation of bioethanol production of three different lignocellulosic materials. Biomass and Bioenergy, 32, 422-430. Cerca con Google

Schade B.; T. Wiesenthal (2011). Biofuels: A model based assessment under uncertainty applying the Monte Carlo method. Journal of Policy Modeling, 33, 92-126. Cerca con Google

Schmit, T.M.; J. Luo; L.W. Tauer (2009). Ethanol plant investment using net present value and real options analyses. Biomass and Bioenergy, 33, 1442–1451. Cerca con Google

Searchinger, T.; R. Heimlich; R.A. Houghton; F. Dong; A. Elobeid; J. Fabiosa; S. Tokgoz; D. Hayes; T. Yu (2008). Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science, 319, 1238-1240. Cerca con Google

Shah, N. (2005). Process industry supply chains: Advances and challenges. Computers and Chemical Engineering, 29, 1225-1235. Cerca con Google

Shah, N.; J. Gjerdrum; L.G. Papageorgiou (2001). Transfer Prices for Multi-Enterprise Supply Chain Optimization. Industrial and Engineering Chemistry Research, 40, 1650-1660. Cerca con Google

Shapiro, J.F. (2001). Modeling the supply chain. Duxbury/Thomson Learning: Pacific Grove, CA, U.S.A.. Cerca con Google

Shapouri, H.; J.A. Duffields; M.S. Graboski (1995). Estimating the Net Energy Balance of Corn Ethanol. Economic Research Service, AER-721, US Department of Agriculture: Washington, DC. Cerca con Google

Shapouri, H.; J.A. Duffield; M. Wang (2002). The Energy Balance of Corn Ethanol: An Update. Agricultural Economic Report N.8134. U.S. Department of Agriculture, Economic research Service, Office of the Chief Economist, Office of Energy Policy and New Uses: Washington, DC. Cerca con Google

Sharpe, W.F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. Journal of Finance, 19, 425–442. Cerca con Google

Sheehan, J.; V. Camobreco; J. Duffield; M. Graboski; H. Shapouri (1998). Life cycle inventory of biodiesel and petroleum diesel for use in urban bus. USDA report: Colorado, U.S.A.. Cerca con Google

Simmonds, C. (1919). Alcohol, Its Production, Properties, Chemistry, Industrial Applications. Macmillan and Co. Ltd: London, UK. Cerca con Google

Simmons, M.R. (2007). Is the world supply of oil and gas peaking? In: International Petroleum Week, London (UK), 13th February. Cerca con Google

Singh, A.; D. Pant; N.E. Korres; A.S. Nizami; S. Prasad; J.D. Murphy (2010). Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives. Bioresource Technology, 101, 5003-5012. Cerca con Google

Singh, S.; A. Kumar (2011). Development of water requirement factors for biomass conversion pathway. Bioresource Technology, 102, 1316-1328. Cerca con Google

Skinner, I.; H. Van Essen; R. Smokers; N. Hill (2010). Towards the decarbonisation of the EU's transport sector by 2050. European Commission: Brussels, Belgium. Available at: www.eutransportghg2050.eu Vai! Cerca con Google

Slade, R.; A. Bauen; N. Shah (2009). The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe. Biotechnology for Biofuels, 2,15. Cerca con Google

Smeets, E.M.W.; I.M. Lewandowski; A.P.C. Faaij (2009). The economical and environmental performance of miscanthus and switchgrass production and supply chains in European setting. Renewable and Sustainable Energy Reviews, 13, 1230-1245. Cerca con Google

Sokhansanj, S.; S. Mani; S. Tagore; A.F. Turhollow (2010). Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 1: Cost of feedstock supply logistics. Biomass and Bioenergy, 34, 75-81. Cerca con Google

Solomon, B.D.; J.R. Barnes; K.E. Halvorsen (2007). Grain and cellulosic ethanol: History, economics, and energy policy. Biomass and Bioenergy, 31, 416-425. Cerca con Google

Sorrell, S.; J. Speirs; R. Bentley; A. Brandt; R. Miller (2010). Global oil depletion: A review of the evidence. Energy Policy, 38, 5290-5295. Cerca con Google

Srivastava, S.K. (2007). Green supply-chain management: A state-of-the-art literature review. International Journal of Management Reviews, 9, 53–80. Cerca con Google

Stephenson, A.L.; P. Dupree; S.A. Scott; J.S. Dennis (2010). The environmental and economic sustainability of potential bioethanol from willow in the UK. Bioresource Technology, 101, 9612-9623. Cerca con Google

Stevens, G.C. (1989). Integration of the Supply Chain. International Journal of Physical Distribution and Logistics Management, 19, 3-8. Cerca con Google

Stout, B.A. (1990). Handbook of energy for world agriculture. Elsevier Applied Science: London, New York. Cerca con Google

Sultana, A.; A. Kumar (2011). Optimal configuration and combination of multiple lignocellulosic biomass feedstocks delivery to a biorefinery. Bioresource Technology, 102, 9947-9956. Cerca con Google

Surisetty, V.R.; A.K. Dalai; J. Kozinski (2011). Alcohols as alternative fuels: An overview. Applied Catalysis A: General, 404, 1-11. Cerca con Google

Taheripour, F.; T.W. Hertel; W.F. Tyner; J.F. Beckman; D.K. Birur (2010). Biofuels and their by-products: global economic and environmental implications. Biomass and Bioenergy, 34, 278-289. Cerca con Google

Taylor, F.; M.J. Kurantz; N. Goldberg; M.J. McAloon; J.C. Craig Jr. (2000). Dry grind process for fuel ethanol by continuous fermentation and stripping. Biotechnology Progress, 16, 541-547. Cerca con Google

The Royal Society (2008). Sustainable biofuels: prospects and challenges. The Royal Society: London, UK. Available at royalsociety.org. Cerca con Google

Timilsina, GR.; A. Shrestha (2011). How much hope should we have for biofuels? Energy, 36, 2055-2069. Cerca con Google

Timpe, C.H.; J. Kallrath (2000). Optimal planning in large multi-site production networks, European Journal of Operational Research, 126, 422-435. Cerca con Google

Torcellini, P.; N. Long; R. Judkoff (2003). Consumptive water use for U.S. power production. NREL: Golden, Colorado, U.S.A.. Cerca con Google

Tsang, K.H.; N.J. Samsatli; N. Shah (2007). Capacity investment planning for multiple vaccines under uncertainty. 1. Capacity planning. Food and Bioproducts Processing, 85, 120–128. Cerca con Google

Tsiakis, P.; N. Shah; C.C. Pantelides (2001). Design of multi-echelon supply chain networks under demand uncertainty. Industrial and Engineering Chemistry Research, 40, 3585-3604. Cerca con Google

Turk, A.; H. Schwaiger; C. Kettner; A. Arasto; J. Vehlow; J. Sijm; M. Hunder (2008). An assessment of trading mechanisms as a method for increasing liquid biofuels in the road transport sector. Presented at: 16th European Biomass Conference & Exhibition, Valencia (Spain), 2nd -6th June. Available at: http://www.ecn.nl/publications/ECN-M--08-074 Vai! Cerca con Google

UNESCO (2009). The United Nations World Water Development Report 3: Water in a Changing World. Earthscan: Paris and London:. Cerca con Google

UNFCCC (1992). UNFCCC website: http://unfccc.int Vai! Cerca con Google

USDA (2005). Feasibility Study for Co-Locating and Integrating Ethanol Production Plants from Corn Starch and Lignocellulosic Feedstocks. USDA: Wyndmoor, Pennsylvania, U.S.A.. Cerca con Google

USDOE (1999). Lignocellulosic Biomass to Ethanol Process Design and Economics Utilising Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic scenarios. National Renewable Energy Laboratory, USDOE: Golden, CO, U.S.A.. Available at: www.nrel.gov. Vai! Cerca con Google

USDOE (2002). Lignocellulosic biomass to ethanol process design and economic utilizing co-current dilute acid prehydrolysis for corn stover. Report NREL/TP-510-32438. National Renewable Energy Laboratory, USDOE: Golden, CO, U.S.A.. Available at: www.nrel.gov. Vai! Cerca con Google

USDOE (2006). Energy demands on water resources. Report to Congress on the interdependency of energy and water. USDOE: Golden, CO, U.S.A.. Cerca con Google

Varghese, S. (2007). Biofuels and global water challenges. Institute for agriculture and trade policy: Minneapolis, Minnesota. Available at: Cerca con Google

http://www.iatp.org/iatp/publications.cfm?refid=100547> Vai! Cerca con Google

Verderame, P.M.; C.A. Floudas (2010). Operational Planning of Large-Scale Industrial Batch Plants under Demand Due Date and Amount Uncertainty: II. Conditional Value-at-Risk Framework. Industrial and Engineering Chemistry Research, 49, 260-275. Cerca con Google

Vertés, A.A.; N. Qureshi; H.P. Blaschek; H. Yukawa (2010). Biomass to biofuels – Strategies for Global Industries. John Wiley & Sons: Chichester, West Sussex, UK. Cerca con Google

Vidal C.J.; Goetschalckx M. (1997). Strategic production-distribution models: A critical review with emphasis on global supply chain models. European Journal of Operational Research, 98, 1-18. Cerca con Google

Viola, E.; F. Zimbardi; M. Cardinale; G. Cardinale; G. Braccio; E. Gambacorta (2008). Processing cereal straws by steam explosion in a pilot plant to enhance digestibility in ruminants. Bioresource Technology, 99, 681-689. Cerca con Google

von Neumann, J.; O. Morgenstern (1944). Theory of Games and Economic Behavior. Princeton University Press: Princeton, New Jersey, U.S.A.. Cerca con Google

von Sivers, M.; G. Zacchi (1995). A techno-economical comparison of three processes for the production of ethanol from pine. Bioresource Technology, 51, 43-52. Cerca con Google

Wang, L.; M.A. Hanna; C.L. Weller; D.D. Jones (2009). Technical and economical analyses of combined heat and power generation from distillers grains and corn stover in ethanol plants. Energy conversion and management, 50, 1704-1713. Cerca con Google

Wang, M; C. Saricks; D. Santini (1999). Effects of Fuels Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions. U.S. Department of Energy, Argonne National Laboratory, Centre for Transportation Research: Argonne, IL, U.S.A.. Cerca con Google

WCED (1987). Our Common Future. Report of the World Commission on Environment and Development. General Assembly Resolution 42/187. United Nations Department of Economic and Social Affairs: NY, U.S.A.. Cerca con Google

Wei, L.; L.O. Pordesimo; C. Igathinathane; W.D. Batchelor (2009). Process engineering evaluation of ethanol production from wood through bioprocessing and chemical catalysts. Biomass and Bioenergy, 33, 255-66. Cerca con Google

WTRG (2011). WTRG website: www.wtrg.com Vai! Cerca con Google

Wilkinson, S.J.; A. Cortier; N. Shah; C.C. Pantelides (1996). Integrated production and distribution scheduling on a Europe-wide basis. Computers and Chemical Engineering, S20, S1275-S1280. Cerca con Google

Williams, H.P. (1978). Model Building in Mathematical Programming. John Wiley & Sons Ltd: Chichester, UK. Cerca con Google

Williams, H.P. (1993). Model Solving in Mathematical Programming. John Wiley & Sons Ltd: Chichester, UK. Cerca con Google

Wu, M.; M. Mintz; M. Wang; S. Arora (2009). Water consumption in the production of ethanol and petroleum gasoline. Environmental Management, 44, 981-997. Cerca con Google

You, F.; J.M. Wassick; I.E. Grossmann (2009). Risk Management for a Global Supply Chain Planning Under Uncertainty: Models and Algorithms. AIChE Journal, 55,931-46. Cerca con Google

You, F.; L. Tao; D.J. Graziano; S.W. Snyder (2011). Optimal Design of Sustainable cellulosic Biofuel Supply Chains: Multiobjective Optimization Couples with Life Cycle Assessment and Input-Output Analysis. AIChE Journal, doi 10.1002/aic.12637. Cerca con Google

Zamboni, A.; N. Shah; F. Bezzo (2009a). Spatially explicit static model for the strategic design of future bioethanol production systems. 1. Cost minimization. Energy & Fuels, 23, 5121–5133. Cerca con Google

Zamboni, A.; F. Bezzo; N. Shah (2009b). Spatially Explicit Static Model for the Strategic Design of Future Bioethanol Production Systems. 2. Multi-Objective Environmental Optimization. Energy & Fuels, 23, 5134-5143. Cerca con Google

Zamboni ,A.; R.J. Murphy; J. Woods; F. Bezzo; N. Shah (2011a). Biofuels carbon footprints: Whole-systems optimisation for GHG emissions reduction. Bioresource Technology, 102, 7457-7465. Cerca con Google

Zamboni, A.; S. Giarola; F. Bezzo (2011b). Towards second generation bioethanol: Supply chain design and capacity planning. In: Computer Aided Chemical Engineering 29, European Symposium on Computer Aided Process Engineering (E.N. Pistikopoulos, M.C. Georgiadis, A.C. Kokossis, Eds.), Elsevier, Amsterdam (The Netherlands) 1693-1697 Cerca con Google

Zhu, X.; X. Li; Q. Yao; Y. Chen (2011). Challenges and models in supporting logistics system design for dedicated-biomass-based bioenergy industry. Bioresource Technology, 102, 1344–1351. Cerca con Google

Zhu, X.; Q. Yao (2011). Logistics system design for biomass-to-bioenergy industry with multiple types of feedstocks. Bioresource Technology, 102, 10936-10945. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record