Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Doimo, Mara (2012) Yeast models for the study of mitochondrial genetic defects and other metabolic disorders. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF - Versione sottomessa
Tesi non accessible fino a 31 Gennaio 2032 per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

9Mb

Abstract (inglese)

Yeast is a versatile tool to study the function of genes involved in mitochondrial processes and in metabolic pathways. A large number of human genes involved in such pathways have yeast orthologues; moreover, yeast is easy to manipulate and it can switch from a fermentative to a respiratory metabolism, thus permitting to study mitochondrial phenotypes. For all these reasons, we employed S. cerevisiae for the functional characterization of different genes involved in inherited metabolic and mitochondrial disorders.
Gyrate atrophy of choroid and retina (GA) is an autosomal recessive disorder caused by mutations at the level of the ornithine aminotransferase (OAT), a mitochondrial matrix protein involved in the ornithine metabolism. We identified a number of missense mutations in OAT and we proved their pathogenicity in a model of S. cerevisiae deleted for CargB, the homologue of OAT. Moreover, analysis of protein stability and residual enzymatic activity permitted us to elucidate the mechanism by which the aminoacid substitution affects the protein function. However, these data did not allow to establish any genotype-phenotype correlation, suggesting that other factors than the specific OAT genotypes are responsible for the phenotypic variability present in the patients.
Yeast Cox23p is a mitochondrial protein with a twin CX9C domain, involved in the COX assembly and possibly in copper homeostasis. In our lab we identified using a bioinformatics approach its human homologue, hCOX23 and characterized its function. We demonstrated using mass spectrometry that the recombinant protein binds Cu(I), providing the first direct evidence of its copper binding. Upon silencing of COX23 we could not observe a phenotype in HeLa cells, but expression of human COX23 in S. cerevisiae deleted for the corresponding gene, showed that it can vicariate for the function of yCox23, confirming its involvement in COX biogenesis. We then demonstrated that it exerts its function in the intermembrane space (IMS) and that Cmc4p, another twin CX9C protein, has overlapping functions. Since the majority of primary COX deficiencies have not a known cause, the characterization of genes involved in the COX biogenesis is of primary importance to find new possible candidates in these disorders.
Coq6p is a monooxygenase involved in the synthesis of CoQ6 in yeast. Recently, point mutations in its human homologue have been associated with steroid resistant nephrotic syndrome (SRNS). We modelled the missense mutations on a yeast strain deleted for Coq6 and we demonstrated that all the human mutations reduce the ability of the human gene to rescue the phenotype of the deleted yeast. Moreover, we mutated the corresponding aminoacid on the yeast gene and we proved that all these allelic combinations retain some residual activity, supporting the notion that complete lack of CoQ biosynthesis is embryonically lethal.
OPA1 is a dynamin related protein mutated in dominant optic atrophy (ADOA), the most common inherited optic neuropathy. It is involved in different processes such as mitochondrial fusion and apoptosis. In human OPA1 is present with 8 different splicing variants, each of them processed to originate a long form, attached to the inner mitochondrial membrane (IMM) and a short, soluble form, localized in the IMS. The processing of OPA1 is strictly regulated, because the ratio between the two forms is important for the different protein functions. Several proteases have been implicated in the processing. To better characterise this mechanism and to understand the role of the specific splicing isoforms, we decided to employ a model of S. cerevisiae deleted for Mgm1, the homologue of OPA1. Expression of single OPA1 splicing variants cannot rescue the phenotype of the deleted strain while a hybrid form of the protein, containing the mitochondrial targeting and the processing sequences of Mgm1, restores the growth of ΔMgm1. These data indicate that the function of the active core of OPA1 is conserved among evolution and the lack of complementation of OPA1 is probably due to a different mechanism of processing in the two organisms. The hybrid gene will represent a simple tool to study the pathogenicity of missense OPA1 mutations identified in patients with ADOA and ADOA plus.
All together these data demonstrate that yeast represent a simple and effective system to characterize the function and to study the pathogenicity of a broad spectrum of conserved proteins such as the ones involved in mitochondrial respiration, mitochondrial morphology or other metabolic pathways.

Abstract (italiano)

S. cerevisiae è un sistema molto versatile per studiare la funzione dei geni coinvolti in numerose vie mitocondriali e metaboliche. La maggior parte dei geni umani coinvolti in tali processi presentano ortologhi in lievito. Inoltre, questo organismo è facile da manipolare ed è in grado di produrre ATP sia attraverso la glicolisi che attraverso la catena respiratoria, sulla base della fonte di carbonio fornita; tale caratteristica permette lo studio fenotipi mitocondriali.
Per tutte queste ragioni, abbiamo impiegato S. cerevisiae per la caratterizzazione funzionale di geni coinvolti in alcune malattie ereditarie metaboliche e mitocondriali.
L’atrofia girata della retina e della coroide (GA) è una malattia autosomica recessiva causata da mutazioni a livello dell’enzima ornitina aminotransferasi (OAT), una proteina della matrice mitocondriale coinvolta nel metabolismo dell’ornitina. Abbiamo individuato una serie di mutazioni missenso nel gene OAT e ne abbiamo dimostrato la patogenicità in un modello di S. cerevisiae deleto per il gene CargB, l'omologo di OAT. Ulteriori studi sull’analisi della stabilità della proteina e la misurazione dell’attività enzimatica residua hanno permesso di chiarire il meccanismo attraverso il quale le differenti mutazioni missenso influiscono sulla funzione dell’enzima. Tuttavia questi dati non permettono di stabilire alcuna correlazione genotipo-fenotipo, suggerendo che altri fattori oltre la specifica variazione aminoacidica sono responsabili per la variabilità fenotipica osservata nei pazienti.
Cox23p è una proteina di lievito localizzata nei mitocondri e coinvolta nell’ assemblaggio della COX, il complesso IV della catena respiratoria. Possiede il dominio twin CX9C, presente in altre proteine coinvolte nel trasporto del rame. Nel nostro laboratorio abbiamo identificato mediante un approccio bioinformatico il suo omologo umano, hCOX23 e ne abbiamo caratterizzato la funzione. Abbiamo dimostrato con tecniche di spettrometria di massa che la proteina ricombinante lega Cu (I), fornendo la prima prova diretta della sua abilità di legare il rame. Il silenziamento di COX23 in cellule HeLa non ha evidenziato alcun fenotipo. Al contrario, l’espressione del gene umano in un ceppo di lievito deleto per il gene corrispondente, ha dimostrato che COX23 può complementare il fenotipo, confermando il suo coinvolgimento nel processo di assemblaggio della COX. Abbiamo inoltre dimostrato che yCox23p è localizzato nello spazio intermembrana (IMS) e che Cmc4p, un'altra proteina contenente il dominio twin CX9C , ha funzioni rindondanti. Dal momento che la maggior parte dei deficit primari di COX non hanno ancora una causa nota, la caratterizzazione dei geni coinvolti nella biogenesi COX è di primaria importanza per trovare nuovi possibili candidati responsabili di queste patologia.
Coq6p è una monoossigenasi coinvolta nella sintesi di CoQ6 in lievito. Recentemente mutazioni puntiformi nel suo omologo umano sono state associate con la sindrome nefrosica steroido-resistente (SRNS). Abbiamo espresso le mutazioni missenso in un ceppo di lievito deleto per il gene Coq6 e abbiamo dimostrato che tutte le mutazioni riducono o aboliscono la capacità del gene umano di complementare il fenotipo del lievito deleto. Le mutazioni umane sono state successivamente introdotte nei rispettivi residui conservati del gene di lievito. Questo ha permesso di dimostrare che tutte queste combinazioni alleliche presentano una certa attività residua. Tali dati supportano l’ipotesi che la mancanza totale di CoQ biosintesi è letale a livello embrionale.
OPA1 è una proteina mitocondriale coinvolta in diversi processi cellulari tra cui la fusione mitocondriale ed l’apoptosi. Mutazioni a livello di questa proteina causano l’atrofia ottica dominante (ADOA), la più comune neuropatia ottica ereditaria. Nell’uomo il gene OPA1 è presente in 8 differenti varianti di splicing, ognuna delle quali può originare una forma lunga, attaccata alla membrana mitocondriale interna (IMM) e una forma solubile, localizzata nel IMS. Il processamento di OPA1 è strettamente regolato, in quanto il rapporto tra le due forme è importante per le funzioni della stessa. Numerose proteasi sono state indicate come coinvolte in tale processo. Per caratterizzare questo meccanismo e per comprendere il ruolo specifico di ciascuna delle isoforme di splicing, abbiamo deciso di impiegare un modello di S. cerevisiae deleto per Mgm1, l'omologo di OPA1. L’espressione delle singole varianti di splicing non è in grado di ripristinare la crescita del ceppo deleto mentre una forma ibrida della proteina, contenente la sequenza di import mitocondriale e di processamento di Mgm1, permette il recupero del fenotipo di ΔMgm1. Questi dati indicano che la funzione di OPA1 è conservata e la mancanza di complementazione di OPA1 è probabilmente dovuta ad un differente meccanismo di processamento nel lievito rispetto all’uomo. Il gene ibrido rappresenterà un semplice strumento per studiare la patogenicità di missenso OPA1 mutazioni identificate nei pazienti con ADOA e ADOA plus.
Nel complesso questi dati dimostrano che il lievito rappresenta un sistema semplice ed efficace per caratterizzare la funzione e per studiare la patogenicità di un ampio spettro di proteine coinvolte nei processi di respirazione, morfologia mitocondriale e in altre vie metaboliche.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Salviati, Leonardo
Dottorato (corsi e scuole):Ciclo 24 > Scuole 24 > MEDICINA DELLO SVILUPPO E SCIENZE DELLA PROGRAMMAZIONE > EMATOONCOLOGIA, IMMUNOLOGIA E GENETICA
Data di deposito della tesi:27 Gennaio 2012
Anno di Pubblicazione:Gennaio 2012
Parole chiave (italiano / inglese):Yeast model, OAT, COX ASSEMBLY , COQ BIOSYNTHESIS, OPA1
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/03 Genetica medica
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Pediatria
Codice ID:4621
Depositato il:22 Nov 2012 09:11
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Acín-Pérez R, Fernández-Silva P, Peleato ML, Pérez-Martos A, Enriquez JA. Respiratory active mitochondrial supercomplexes.Mol Cell. 2008 Nov 21;32(4):529-39. Cerca con Google

Adams PL, Lightowlers RN, Turnbull DM (1997) Molecular analysis of cytochrome c oxidase deficiency in Leigh’s syndrome. Ann. Neurol. 41: 268–270. Cerca con Google

Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya SS, Wissinger B. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet. 2000 Oct;26(2):211-5. Cerca con Google

Babcock GT and Wikstrom M. (1992) Oxygen activation and the conservation of energy in cell respiration. Nature 356: 301–309. Cerca con Google

Balamurugan K, Schaffner W. (2006) Copper homeostasis in eukaryotes: teetering on a tightrope. Biochim Biophys Acta. 1763:737-46. Cerca con Google

Banci L, Bertini I, Ciofi-Baffoni S, Hadjiloi T, Martinelli M, Palumaa P. (2008) Mitochondrial copper(I) transfer from Cox17 to Sco1 is coupled to electron transfer. Proc Natl Acad Sci U S A. 2008 May 13;105(19):6803-8. Cerca con Google

Barrientos A, Gouget K, Horn D, Soto IC, Fontanesi F. (2009) Suppression mechanisms of COX assembly defects in yeast and human: insights into the COX assembly process. Biochim Biophys Acta. Jan;1793(1):97-107. Cerca con Google

Barrientos A, Zambrano A, Tzagoloff A. (2004) Mss51p and Cox14p jointly regulate mitochondrial Cox1p expression in Saccharomyces cerevisiae. EMBO J., 23, pp. 3472–3482 Cerca con Google

Barros MH, Johnson A, Gin P, Marbois BN, Clarke CF, Tzagoloff A. The Saccharomyces cerevisiae COQ10 gene encodes a START domain protein required for function of coenzyme Q in respiration. J Biol Chem. 2005 Dec 30;280(52):42627-35. Cerca con Google

Barros MH, Johnson A, Tzagoloff A. (2004) COX23, a homologue of COX17, is required for cytochrome oxidase assembly. J Biol Chem. Jul 23;279(30):31943-7 Cerca con Google

Bastin J, Aubey F, Rötig A, Munnich A, Djouadi F. Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients' cells lacking its components. J Clin Endocrinol Metab. 2008 Apr;93(4):1433-41. Cerca con Google

Bellí G, Garí E, Aldea M, Herrero E. Functional analysis of yeast essential genes using a promoter-substitution cassette and the tetracycline-regulatable dual expression system.Yeast. 1998 Sep 15;14(12):1127-38. Cerca con Google

Berson EL, Schmidt SY, Shih VE. Ocular and biochemical abnormalities in gyrate atrophy of the choroid and retina. Ophthalmology. 1978;85:1018-1027. Cerca con Google

Bonnefont JP, Bastin J, Behin A, Djouadi F. Bezafibrate for an inborn mitochondrial beta-oxidation defect. N Engl J Med. 2009 Feb 19;360(8):838-40. Cerca con Google

Botstein D, Chervitz SA, Cherry JM. Yeast as a model organism. Science. 1997 Aug 29; 277(5330):1259-60. Cerca con Google

Brinkmann U, Mattes RE, Buckel P. (1989) High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene. Dec 21;85(1):109-14. Cerca con Google

Brody LC, Mitchell GA, Obie C, Michaud J, Steel G, Fontaine G, Robert MF, Sipila I, Kaiser-Kupfer M, Valle D. Ornithine delta-aminotransferase mutations in gyrate atrophy. Allelic heterogeneity and functional consequences. J Biol Chem. 1992 Feb 15;267(5):3302-7. Cerca con Google

Burke D, Dawson D, and Stearns T. (2000) Methods in Yeast Genetics, pp. 113–114, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY Cerca con Google

Casagrande G, te Kronnie G, Basso G. (2006) The effects of siRNA-mediated inhibition of E2A-PBX1 on EB-1 and Wnt16b expression in the 697 pre-B leukemia cell line. Haematologica 91 (2006) 765-771. Cerca con Google

Cavallaro G. (2010) Genome-wide analysis of eukaryotic twin CX9C proteins. Mol Biosyst. 2010 Dec;6(12):2459-70. Cerca con Google

Champion MP, Bird S, Fensom T, Dalton RN Ornithine aminotransferase deficiency (gyrate atrophy) presenting with hyperammonaemic encephalopathy. J Inherit Metab Dis 25 (Supplement 1): 29(2002). Cerca con Google

Chen DC, Yang BC, Kuo TT. One-step transformation of yeast in stationary phase. Curr Genet. 1992 Jan;21(1):83-4. Cerca con Google

Chen X, Wang L, Fazlieva R, Kruger WD. Contrasting behaviors of mutant cystathionine beta-synthase enzymes associated with pyridoxine response. Hum Mutat. 2006 May;27(5):474-82. Cerca con Google

Church C, Goehring B, Forsha D, Wazny P, Poyton RO. (2005) A role for Pet100p in the assembly of yeast cytochrome c oxidase: interaction with a subassembly that accumulates in a pet100 mutant J. Biol. Chem., 280, pp. 1854–1863 Cerca con Google

Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15927-32. Cerca con Google

Clarke L, Carbon J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature. 1980 Oct 9;287(5782):504-9. Cerca con Google

Cleary MA, Dorland L, de Koning TJ, Poll-The BT, Duran M, Mandell R, Shih VE, Berger R, Cerca con Google

Olpin SE, Besley GT. Ornithine aminotransferase deficiency: diagnostic difficulties in neonatal presentation. J Inherit Metab Dis. 2005;28(5):673-9. Cerca con Google

Corton JM, Gillespie JG, Hawley SA, Hardie DG. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem. 1995 Apr 15;229(2):558-65. Cerca con Google

Degols G. Functional analysis of the regulatory region adjacent to the cargB gene of Saccharomyces cerevisiae. Nucleotide sequence, gene fusion experiments and cis-dominant regulatory mutation analysis. Eur J Biochem. 1987 Nov 16;169(1):193-200. Cerca con Google

Dekaney CM, Wu G, Jaeger LA. Ornithine aminotransferase messenger RNA expression and enzymatic activity in fetal porcine intestine. Pediatr Res. 2001 Jul;50(1):104-9. Cerca con Google

Delettre C, Griffoin JM, Kaplan J, Dollfus H, Lorenz B, Faivre L, Lenaers G, Belenguer P, Hamel CP. Mutation spectrum and splicing variants in the OPA1 gene. Hum Genet. 2001 Dec;109(6):584-91. Cerca con Google

Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J, Hamel CP. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet. 2000 Oct;26(2):207-10. Cerca con Google

Dickinson JR. Life cycle and metabolism. In: The metabolism and molecular physiology of S.cerevisiae, Chapter 1 pp.1-6. Dickinson JR and Schweizer M. CRC Press, 2004. Cerca con Google

DiMauro S and De Vivo DC (1996) Genetic heterogeneity in Leigh syndrome. Ann. Neurol. 40: 5–7. Cerca con Google

Dimmer K.S.,. Navoni F, Casarin A., Trevisson E., Endele S.,. Winterpacht A, Salviati L.,. Scorrano L. (2008) LETM1, deleted in Wolf-Hirschhorn syndrome is required for normal mitochondrial morphology and cellular viability. Hum Mol Genet 17 (2008) 201-214. Cerca con Google

Dolinski K, Botstein D. (2007) Orthology and functional conservation in eukaryotes. Annu Rev Genet.;41:465-507. Cerca con Google

Dougherty KM, Swanson DA, Brody LC, Valle D. Expression and processing of human ornithine-delta-aminotransferase in Saccharomyces cerevisiae. Hum Mol Genet. 1993 Nov;2(11):1835-40. Cerca con Google

Duncan AJ, Bitner-Glindzicz M, Meunier B, Costello H, Hargreaves IP, López LC, Hirano M, Quinzii CM, Sadowski MI, Hardy J, Singleton A, Clayton PT, Rahman S. A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am J Hum Genet. 2009 May;84(5):558-66. Epub 2009 Apr 16. Cerca con Google

Duvezin-Caubet S, Koppen M, Wagener J, Zick M, Israel L, Bernacchia A, Jagasia R, Rugarli EI, Imhof A, Neupert W, Langer T, Reichert AS. OPA1 processing reconstituted in yeast depends on the subunit composition of the m-AAA protease in mitochondria. Mol Biol Cell. 2007 Sep;18(9):3582-90. Cerca con Google

Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B, Scorrano L. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell. 2006 Jul 14;126(1):177-89 Cerca con Google

Fuchs E. Ueber zwei der retinitis pigmentosa verwandte krankheiten (retinitis punctata albescens und atrophia gyrata choroideae et retinae). Arch Augenheilkd. 1896; 32:111-6. Cerca con Google

Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol Rev. 1998 Jun;62(2):334-61. Cerca con Google

Gari E, Piedrafita L, Aldea M, Herrero E. A set of vectors with a tetracycline-regulable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast. 1997 Jul;13(9):837-48. Cerca con Google

Gietz RD and Woods RA. Yeast transformation by the LiAc/SS Carrier DNA/PEG method (2006) Methods Mol Biol 313, 107-120 Cerca con Google

Gin P, Hsu AY, Rothman SC, Jonassen T, Lee PT, Tzagoloff A, Clarke CF. The Saccharomyces cerevisiae COQ6 gene encodes a mitochondrial flavin-dependent monooxygenase required for coenzyme Q biosynthesis. J Biol Chem. 2003 Jul 11;278(28):25308-16. Cerca con Google

Glerum DM, Shtanko A, Tzagoloff A (1996) Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J. Biol. Chem. 271:14504–14509. Cerca con Google

Glerum DM, Yanamura W, Capaldi RA, Robinson BH (1988). Characterization of cytochrome c oxidase mutants in human fibroblasts. FEBS Lett. 236: 100–104. Cerca con Google

Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG. Life with 6000 genes. Science. 1996 Oct 25;274(5287):546, 563-7. Cerca con Google

Goldring ES, Grossman LI, Krupnick D, Cryer DR, Marmur J. The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J Mol Biol. 1970 Sep 14;52(2):323-35. Cerca con Google

Griparic L, Kanazawa T, van der Bliek AM. Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol. 2007 Aug 27;178(5):757-64. Cerca con Google

Griparic L, van der Wel NN, Orozco IJ, Peters PJ, van der Bliek AM. Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem. 2004 Apr 30;279(18):18792-8. Cerca con Google

Guan K, Farh L, Marshall TK, Deschenes RJ. Normal mitochondrial structure and genome maintenance in yeast requires the dynamin-like product of the MGM1 gene. Curr Genet. 1993 Jul-Aug;24(1-2):141-8. Cerca con Google

Guillery O, Malka F, Landes T, Guillou E, Blackstone C, Lombès A, Belenguer P, Arnoult D, Rojo M. Metalloprotease-mediated OPA1 processing is modulated by the mitochondrial membrane potential. Biol Cell. 2008 May;100(5):315-25. Cerca con Google

Guillou E, Bousquet C, Daloyau M, Emorine LJ, Belenguer P. Msp1p is an intermembrane space dynamin-related protein that mediates mitochondrial fusion in a Dnm1p-dependent manner in S. pombe. FEBS Lett. 2005 Feb 14;579(5):1109-16. Cerca con Google

Heeringa SF, Chernin G, Chaki M, Zhou W, Sloan AJ, Ji Z, Xie LX, Salviati L, Hurd TW, Vega-Warner V, Killen PD, Raphael Y, Ashraf S, Ovunc B, Schoeb DS, McLaughlin HM, Airik R, Vlangos CN, Gbadegesin R, Hinkes B, Saisawat P, Trevisson E, Doimo M, Casarin A, Pertegato V, Giorgi G, Prokisch H, Rötig A, Nürnberg G, Becker C, Wang S, Ozaltin F, Topaloglu R, Bakkaloglu A, Bakkaloglu SA, Müller D, Beissert A, Mir S, Berdeli A, Varpizen S, Zenker M, Matejas V, Santos-Ocaña C, Navas P, Kusakabe T, Kispert A, Akman S, Soliman NA, Krick S, Mundel P, Reiser J, Nürnberg P, Clarke CF, Wiggins RC, Faul C, Hildebrandt F. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest. 2011 May 2;121(5):2013-24. Cerca con Google

Heinemeyer J, Braun HP, Boekema EJ, Kouril R. A structural model of the cytochrome C reductase/oxidase supercomplex from yeast mitochondria. J Biol Chem. 2007 Apr 20;282(16):12240-8. Cerca con Google

Hell K. The Erv1-Mia40 disulfide relay system in the intermembrane space of mitochondria. Biochim Biophys Acta. 2008 Apr;1783(4):601-9. Cerca con Google

Herlan M, Bornhövd C, Hell K, Neupert W, Reichert AS. Alternative topogenesis of Mgm1 and mitochondrial morphology depend on ATP and a functional import motor. J Cell Biol. 2004 Apr 26;165(2):167-73. Cerca con Google

Herlan M, Vogel F, Bornhovd C, Neupert W, Reichert AS. Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J Biol Chem. 2003 Jul 25;278(30):27781-8. Cerca con Google

Herrmann JM, Funes S. Biogenesis of cytochrome oxidase-sophisticated assembly lines in the mitochondrial inner membrane. Gene. 2005 Jul 18;354:43-52. Cerca con Google

Hiser L, Di Valentin M, Hamer AG, Hosler JP. (2000) Cox11p is required for stable formation of the Cu(B) and magnesium centers of cytochrome c oxidase. J Biol Chem. 275:619-23. Cerca con Google

Horan S, Bourges I, Taanman JW, Meunier B.(2005) Analysis of COX2 mutants reveals cytochrome oxidase subassemblies in yeast. Biochem. J., 390, pp. 703–708 Cerca con Google

Horn D, Al-Ali H, Barrientos A. (2008) Cmc1p is a conserved mitochondrial twin CX9C protein involved in cytochrome c oxidase biogenesis. Mol Cell Biol. 2008 Jul;28(13):4354-64. Cerca con Google

Horng YC, Cobine PA, Maxfield AB, Carr HS, Winge DR. (2004) Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase. J Biol Chem. 279:35334-40. Cerca con Google

Howden SE, Gore A, Li Z, Fung HL, Nisler BS, Nie J, Chen G, McIntosh BE, Gulbranson DR, Diol NR, Taapken SM, Vereide DT, Montgomery KD, Zhang K, Gamm DM, Thomson JA. Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6537-42. Cerca con Google

International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004 Oct 21;431(7011):931-45. Cerca con Google

Ishihara N, Fujita Y, Oka T, Mihara K. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 2006 Jul 12;25(13):2966-77. Cerca con Google

Jauniaux JC, Urrestarazu LA, Wiame JM. Arginine metabolism in Saccharomyces cerevisiae: subcellular localization of the enzymes. J Bacteriol. 1978 Mar;133(3):1096-1107. Cerca con Google

Jonassen T, Clarke CF. Isolation and functional expression of human COQ3, a gene encoding a methyltransferase required for ubiquinone biosynthesis. J Biol Chem. 2000 Apr 28;275(17):12381-7. Cerca con Google

Jones BA, Fangman WL. Mitochondrial DNA maintenance in yeast requires a protein containing a region related to the GTP-binding domain of dynamin. Genes Dev. 1992 Mar;6(3):380-9:55. Cerca con Google

Kadenbach B, Jarausch J, Hartmann R, Merle P. (1983) Separation of mammalian cytochrome c oxidase into 13 polypeptides by a sodium dodecyl sulfate-gel electrophoretic procedure. Anal Biochem 129:517-21. Cerca con Google

Kaiser-Kupfer MI, Caruso RC, Valle D. Gyrate atrophy of the choroid and retina: further experience with long-term reduction of ornithine levels in children. Arch Ophthalmol. 2002 Feb;120(2):146-53.. Cerca con Google

Kaiser-Kupfer MI, Ludwig 1H, DeMonasterio FM, Valle D, Krieger I. Gyrate atrophy of the choroid and retina: early findings. Ophthalmology. 1985:92:394-401. Cerca con Google

Kaneko S, Ueda-Yamada M, Ando A, Matsumura S, Okuda-Ashitaka E, Matsumura M, Uyama M, Ito S. Cytotoxic effect of spermine on retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2007 Jan;48(1):455-63. Cerca con Google

Kaufman DL, Ramesh V, McClatchey AI, Menkes JH, Tobin AJ. Detection of point mutations associated with genetic diseases by an exon scanning technique. Genomics. 1990 Dec;8(4):656-63. Cerca con Google

Khalimonchuk O, Rödel G. Biogenesis of cytochrome c oxidase. Mitochondrion. 2005 Dec;5(6):363-88. Cerca con Google

Laemmli UK Cleavage of structural proteins during the assembly of the head of bacteriophage T4. (1970) Nature 227(5259), 680-685 Cerca con Google

Lagier-Tourenne C, Tazir M, López LC, Quinzii CM, Assoum M, Drouot N, Busso C, Makri S, Ali-Pacha L, Benhassine T, Anheim M, Lynch DR, Thibault C, Plewniak F, Bianchetti L, Tranchant C, Poch O, DiMauro S, Mandel JL, Barros MH, Hirano M, Koenig M. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet. 2008 Mar;82(3):661-72. Cerca con Google

Landes T, Leroy I, Bertholet A, Diot A, Khosrobakhsh F, Daloyau M, Davezac N, Miquel MC, Courilleau D, Guillou E, Olichon A, Lenaers G, Arnauné-Pelloquin L, Emorine LJ, Belenguer P. OPA1 (dys)functions. Semin Cell Dev Biol. 2010 Aug;21(6):593-8. Cerca con Google

Leary SC, Kaufman BA, Pellecchia G, Guercin GH, Mattman A, Jaksch M, Shoubridge EA. (2004) Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase. Hum Mol Genet. Sep 1;13(17):1839-48. Cerca con Google

Leroy I, Khosrobakhsh F, Diot A, Daloyau M, Arnauné-Pelloquin L, Cavelier C, Emorine LJ, Belenguer P. Processing of the dynamin Msp1p in S. pombe reveals an evolutionary switch between its orthologs Mgm1p in S. cerevisiae and OPA1 in mammals. FEBS Lett. 2010 Jul 16;584(14):3153-7 Cerca con Google

Longen S, Bien M, Bihlmaier K, Kloeppel C, Kauff F, Hammermeister M, Westermann B, Herrmann JM, Riemer J. (2009) Systematic analysis of the twin cx(9)c protein family. J Mol Biol. Oct 23;393(2):356-68. Cerca con Google

López LC, Schuelke M, Quinzii CM, Kanki T, Rodenburg RJ, Naini A, Dimauro S, Hirano M. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet. 2006 Dec;79(6):1125-9. Cerca con Google

Mashima YG, Weleber RG, Kennaway NG, Inana G. Genotype-phenotype correlation of a pyridoxine-responsive form of gyrate atrophy. Ophthalmic Genet. 1999 Dec;20(4):219-24. Cerca con Google

Massa V, Fernandez-Vizarra E, Alshahwan S, Bakhsh E, Goffrini P, Ferrero I, Mereghetti P, D'Adamo P, Gasparini P, Zeviani M. (2008) Severe infantile encephalomyopathy caused by a mutation in COX6B1, a nucleus-encoded subunit of cytochrome c oxidase. Am J Hum Genet. 2008 Jun;82(6):1281-9. Cerca con Google

Maxfield AB, Heaton DN, Winge DR. (2004) Cox17 is functional when tethered to the mitochondrial inner membrane. J Biol Chem. Feb 13;279(7):5072-80. Cerca con Google

McCulloch C, Marliss EB. Gyrate atrophy of the choroid and retina with hyperornithinemia. Am J Ophtbalmol. 1975;80:1047-1057. Cerca con Google

McEwen JE, Ko C, Kloeckner-Gruissem B, Poyton RO (1986) Nuclear functions required for cytochrome c oxidase biogenesis in Saccharomyces cerevisiae. Characterization of mutants in 34 complementation groups. J Biol Chem 261: 11872–11879. Cerca con Google

Merkwirth C, Dargazanli S, Tatsuta T, Geimer S, Löwer B, Wunderlich FT, von Kleist-Retzow JC, Cerca con Google

Waisman A, Westermann B, Langer T. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev. 2008 Feb 15;22(4):476-88. Cerca con Google

Michaud J, Thompson GN, Brody LC, Steel G, Obie C, Fontaine G, Schappert K, Keith CG, Valle D, Mitchell GA. Pyridoxine-responsive gyrate atrophy of the choroid and retina: clinical and biochemical correlates of the mutation A226V. Am J Hum Genet. 1995 Mar;56(3):616-22. Cerca con Google

Michel H, Behr J, Harrenga A, Kannt A. (1998) Cytochrome c oxidase: structure and spectroscopy. Annu Rev Biophys Biomol Struct 27:329-56. Cerca con Google

Misaka T, Miyashita T, Kubo Y. Primary structure of a dynamin-related mouse mitochondrial GTPase and its distribution in brain, subcellular localization, and effect on mitochondrial morphology. J Biol Chem. 2002 May 3;277(18):15834-42. Cerca con Google

Mitchell GA, Brody LC, Sipila I, Looney JE, Wong C, Engelhardt JF, Patel AS, Steel G, Obie C, Cerca con Google

Kaiser-Kupfer M, et al. At least two mutant alleles of ornithine delta-aminotransferase cause gyrate atrophy of the choroid and retina in Finns. Proc Natl Acad Sci U S A. 1989 Jan;86(1):197-201. b Cerca con Google

Mitchell GA, Looney JE, Brody LC, Steel G, Suchanek M, Engelhardt JF, Willard HF, Valle D. Human ornithine-delta-aminotransferase. cDNA cloning and analysis of the structural gene. J Biol Chem. 1988 Oct 5;263(28):14288-95. a Cerca con Google

Mollet J, Delahodde A, Serre V, Chretien D, Schlemmer D, Lombes A, Boddaert N, Desguerre I, de Lonlay P, de Baulny HO, Munnich A, Rötig A. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet. 2008 Mar;82(3):623-30. Cerca con Google

Mollet J, Giurgea I, Schlemmer D, Dallner G, Chretien D, Delahodde A, Bacq D, de Lonlay P, Munnich A, Rötig A. Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders. J Clin Invest. 2007 Mar;117(3):765-72. Cerca con Google

Montini G, Malaventura C, Salviati L. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med. 2008 Jun 26;358(26):2849-50. Cerca con Google

Mueckler MM, Himeno M, Pitot HC. In vitro synthesis and processing of a precursor to ornithine aminotransferase. J Biol Chem. 1982 Jun 25;257(12):7178-80. Cerca con Google

Murray JA. Bending the rules: the 2-mu plasmid of yeast. Mol Microbiol. 1987 Jul;1(1):1-4. Cerca con Google

Myers AM, Pape LK, Tzagoloff A. Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccharomyces cerevisiae. EMBO J. 1985 Aug;4(8):2087-92. Cerca con Google

Nakai D, Yuasa S, Takahashi M, Shimizu T, Asaumi S, Isono K, Takao T, Suzuki Y, Kuroyanagi H, Hirokawa K, Koseki H, Shirsawa T. Mouse homologue of coq7/clk-1, longevity gene in Caenorhabditis elegans, is essential for coenzyme Q synthesis, maintenance of mitochondrial integrity, and neurogenesis. Biochem. Biophys. Res. Commun., 289 (2001), pp. 463–471. Cerca con Google

Nijtmans LG, Taanman JW, Muijsers AO, Speijer D, and Van den Bogert C. (1998) Assembly of cytochrome-c oxidase in cultured human cells. Eur J Biochem 254: 389–394. Cerca con Google

O'Donnell JJ, Sipilä I, Vannas A, Sandman R, Vannas-Sulonen K. Gyrate atrophy of the retina and choroid. Two methods for prenatal diagnosis. Int Ophthalmol. 1981 Aug;4(1-2):33-6. Cerca con Google

O'Donnell JJ, Vannas-Sulonen K, Shows TB, Cox DR. Gyrate atrophy of the choroid and retina: assignment of the ornithine aminotransferase structural gene to human chromosome 10 and mouse chromosome 7. Am J Hum Genet. 1988 Dec;43(6):922-8. Cerca con Google

Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem. 2003 Mar 7;278(10):7743-6. Cerca con Google

Oswald C, Krause-Buchholz U, Rödel G. (2009) Knockdown of human COX17 affects assembly and supramolecular organization of cytochrome c oxidase. J Mol Biol. Jun 12;389(3):470-9. Cerca con Google

Ozeir M, Mühlenhoff U, Webert H, Lill R, Fontecave M, Pierrel F. Coenzyme Q biosynthesis: Coq6 is required for the C5-hydroxylation reaction and substrate analogs rescue Coq6 deficiency. Chem Biol. 2011 Sep 23;18(9):1134-42. Cerca con Google

Pelloquin L, Belenguer P, Menon Y, Ducommun B. Identification of a fission yeast dynamin-related protein involved in mitochondrial DNA maintenance. Biochem Biophys Res Commun. 1998 Oct 29;251(3):720-6. Cerca con Google

Peng M, Falk MJ, Haase VH, King R, Polyak E, Selak M, Yudkoff M, Hancock WW, Meade R, Saiki R, Lunceford AL, Clarke CF, Gasser DL. Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease. PLoS Genet. 2008 Apr 25;4(4). Cerca con Google

Peraino C, Pitot HC. Ornithine-[delta]-transaminase in the rat. I. Assay and some general properties. Biochim Biophys Acta. 1963; 73:222-231. Cerca con Google

Petruzzella V, Tiranti V, Fernandez P, Ianna P, Carrozzo R, Zeviani M. (1998) Identification and characterization of human cDNAs specific to BCS1, PET112, SCO1, COX15, and COX11, five genes involved in the formation and function of the mitochondrial respiratory chain. Genomics. 1998 Dec 15;54(3):494-504. Cerca con Google

Phang JM, Downing SJ, Valle D. A radioisotopic assay for ornithine-delta-transaminase. Anal Biochem. 1973 Sep;55(1):272-7. Cerca con Google

Pidoux G, Witczak O, Jarnæss E, Myrvold L, Urlaub H, Stokka AJ, Küntziger T, Taskén K. Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis. EMBO J. 2011 Oct 7;30(21):4371-86. Cerca con Google

Punter FA, Glerum DM. (2003) Mutagenesis reveals a specific role for Cox17p in copper transport to cytochrome oxidase. J Biol Chem. Aug 15;278(33):30875-80. Cerca con Google

Quinzii C, Naini A, Salviati L, Trevisson E, Navas P, Dimauro S, Hirano M. A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am J Hum Genet. 2006 Feb;78(2):345-9. Cerca con Google

Ramesh V, Gusella JF, Shih VE. Molecular pathology of gyrate atrophy of the choroid and retina due to ornithine aminotransferase deficiency. Mol Biol Med. 1991 Feb; 8(1):81-93. Cerca con Google

Ramesh V, McClatchey AI, Ramesh N, Benoit LA, Berson EL, Shih VE, Gusella JF. Molecular basis of ornithine aminotransferase deficiency in B-6-responsive and -nonresponsive forms of gyrate atrophy. Proc Natl Acad Sci U S A. (1988). Cerca con Google

Rezzonico R, Burger D, Dayer JM. (1998) Direct contact between T lymphocytes and human dermal fibroblasts or synoviocytes down-regulates types I and III collagen production via cell-associated cytokines. J Biol Chem. 1998 Jul 24;273(30):18720-8. Cerca con Google

Rigby K, Zhang L, Cobine PA, George GN, Winge DR. (2007) Characterization of the cytochrome c oxidase assembly factor Cox19 of Saccharomyces cerevisiae. J Biol Chem. Apr 6;282(14):10233-42. Cerca con Google

Romanos MA, Scorer CA, Clare JJ. Foreign gene expression in yeast: a review. Yeast. 1992 Jun;8(6):423-88. Cerca con Google

Rowley N, Prip-Buus C, Westermann B, Brown C, Schwarz E, Barrell B, Neupert W. (1994) Mdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding. Cell. Apr 22;77(2):249-59. Cerca con Google

Sacconi S, Trevisson E, Pistollato F, Baldoin MC, Rezzonico R, Bourget I, Desnuelle C, Tenconi R, Basso G, DiMauro S, Salviati L.(2005) hCOX18 and hCOX19: two human genes involved in cytochrome c oxidase assembly. Biochem Biophys Res Commun. Nov 25;337(3):832-9. Cerca con Google

Salviati L, Hernandez-Rosa E, Walker WF, Sacconi S, DiMauro S, Schon EA, Davidson MM. (2002) Copper supplementation restores cytochrome c oxidase activity in cultured cells from patients with SCO2 mutations. Biochem J. 363:321-7. Cerca con Google

Sartori G, Mazzotta G, Stocchetto S, Pavanello A, Carignani G. Inactivation of six genes from chromosomes VII and XIV of Saccharomyces cerevisiae and basic phenotypic analysis of the mutant strains. Yeast. 2000 Feb;16(3):255-65. Cerca con Google

Satoh M, Hamamoto T, Seo N, Kagawa Y, Endo H.Differential sublocalization of the dynamin-related protein OPA1 isoforms in mitochondria. Biochem Biophys Res Commun. 2003 Jan 10;300(2):482-93. Cerca con Google

Schäfer A, Zick M, Kief J, Steger M, Heide H, Duvezin-Caubet S, Neupert W, Reichert AS. Intramembrane proteolysis of Mgm1 by the mitochondrial rhomboid protease is highly promiscuous regarding the sequence of the cleaved hydrophobic segment. J Mol Biol. 2010 Aug 13;401(2):182-93. Cerca con Google

Schägger H, Pfeiffer K. (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. Apr 17;19(8):1777-83. Cerca con Google

Shen BW, Hennig M, Hohenester E, Jansonius JN, Schirmer T. Crystal structure of human recombinant ornithine aminotransferase. J Mol Biol. 1998 Mar 20;277(1):81-102. Cerca con Google

Shoubridge EA (2001). Cytochrome c oxidase deficiency. Am. J. Med. Genet. 106: 46–52. Cerca con Google

Shteyer E, Saada A, Shaag A, Al-Hijawi FA, Kidess R, Revel-Vilk S, Elpeleg O.(2009) Exocrine pancreatic insufficiency, dyserythropoeitic anemia, and calvarial hyperostosis are caused by a mutation in the COX4I2 gene. Am J Hum Genet. 2009 Mar;84(3):412-7.. Cerca con Google

Shull JD, Pennington KL, Pitot HC, Boryca VS, Schulte BL. Isolation and characterization of the rat gene encoding ornithine aminotransferase. Biochim Biophys Acta. 1992 Sep 24;1132(2):214-8. Cerca con Google

Simell O, Takki K. Raised plasma-ornithine and gyrate atrophy of the choroid and retina. Lancet. 1973 May 12;1(7811):1031-3. Cerca con Google

Simmaco M, John RA, Barra D, Bossa F. The primary structure of ornithine aminotransferase. Identification of active-site sequence and site of post-translational proteolysis. FEBS Lett. 1986 Apr 7;199(1):39-42. Cerca con Google

Sipilä I, Simell O, Rapola J, Sainio K, Tuuteri L. Gyrate atrophy of the choroid and retina with hyperornithinemia: tubular aggregates and type 2 fiber atrophy in muscle. Neurology. 1979 Jul;29(7):996-1005. Cerca con Google

Smith MG, Snyder M. Yeast as a model for human disease. Curr Protoc Hum Genet. 2006 Feb;Chapter 15:Unit 15.6. Cerca con Google

Song Z, Chen H, Fiket M, Alexander C, Chan DC. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol. 2007 Aug 27;178(5):749-55. Cerca con Google

Soto IC, Fontanesi F, Liu J, Barrientos A. Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. Biochim Biophys Acta. 2011 Sep 16. Cerca con Google

Spinazzi M, Casarin A, Pertegato V, Ermani M, Salviati L, Angelini C. (2011) Optimization of respiratory chain enzymatic assays in muscle for the diagnosis of mitochondrial disorders. Mitochondrion. Nov;11(6):893-904. Cerca con Google

Sullivan DM, Chung DC, Anglade E, Nussenblatt RB, Csaky KG. Adenovirus-mediated gene transfer of ornithine aminotransferase in cultured human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1996 Apr;37(5):766-74. Cerca con Google

Takki K. Gyrate atrophy of the choroid and retina associated with hyperornithinaemia. Br J Ophthalmol. 1974 Jan;58(1):3-23. Cerca con Google

Takki KK, Milton RC. The natural history of gyrate atrophy of the choroid and retina. Ophthalmology. 1981 Apr;88(4):292-301. Cerca con Google

Tenenbaum A, Motro M and Fisman EZ. Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons. Cardiovasc. Diabetol., 16 (2005), pp. 4–14. Cerca con Google

Tisato F, Refosco F, Porchia M, Tegoni M, Gandin V, Marzano C, Pellei M, Papini G, Lucato L, Seraglia R, Traldi P. (2010) The relationship between the electrospray ionization behaviour and biological activity of some phosphino Cu(I) complexes. Rapid Commun Mass Spectrom. Jun 15;24(11):1610-6. Cerca con Google

Tondera D, Grandemange S, Jourdain A, Karbowski M, Mattenberger Y, Herzig S, Da Cruz S, Clerc P, Raschke I, Merkwirth C, Ehses S, Krause F, Chan DC, Alexander C, Bauer C, Youle R, Langer T, Martinou JC. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 2009 Jun 3;28(11):1589-600 Cerca con Google

Tran UC, Clarke CF. Endogenous synthesis of coenzyme Q in eukaryotes. Mitochondrion. 2007 Jun;7 Suppl:S62-71. Epub 2007 Mar 30. Cerca con Google

Trevisson E, Burlina A, Doimo M, Pertegato V, Casarin A, Cesaro L, Navas P, Basso G, Sartori G, Salviati L. (2009) Functional complementation in yeast allows molecular characterization of missense argininosuccinate lyase mutations. J Biol Chem. Oct 16;284(42):28926-34. Cerca con Google

Trevisson E, DiMauro S, Navas P, Salviati L. Coenzyme Q deficiency in muscle. Curr Opin Neurol. 2011 Oct;24(5):449-56. Cerca con Google

Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, and Yoshikawa S. (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science 269: 1069–1074. Cerca con Google

Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta. 2004 Jan 28;1660(1-2):171-99. Cerca con Google

Tzagoloff A, Akai A, Needleman RB. Assembly of the mitochondrial membrane system: isolation of nuclear and cytoplasmic mutants of Saccharomyces cerevisiae with specific defects in mitochondrial functions. J Bacteriol. 1975 Jun;122(3):826-31. Cerca con Google

Tzagoloff A, Dieckmann CL. PET genes of Saccharomyces cerevisiae. Microbiol Rev. 1990 Sep;54(3):211-25. Cerca con Google

Ueda M, Masu Y, Ando A, Maeda H, Del Monte MA, Uyama M, Ito S. Prevention of ornithine cytotoxicity by proline in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1998 Apr;39(5):820-7. Cerca con Google

Ugalde C, Coenen MJ, Farhoud MH, Gilinsky S, Koopman WJ, van den Heuvel LP, Smeitink JA, Nijtmans LG. (2002) New perspectives on the assembly process of mitochondrial respiratory chain complex cytochrome c oxidase.Mitochondrion. 2002 Nov;2(1-2):117-28. Cerca con Google

Valentine JS, Wertz DL, Lyons TJ, Liou LL, Goto JJ, and Gralla EB. (1998) The dark side of dioxygen biochemistry. Curr Opin Chem Biol 2: 253–262. Cerca con Google

Valle D and Simell O. The hyperornithinemias. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds). The Metabolic and Molecular Basis of Inherited Disease. McGraw Hill, New York (2001); 1857-1896. Cerca con Google

Viscomi C, Bottani E, Civiletto G, Cerutti R, Moggio M, Fagiolari G, Schon EA, Lamperti C, Zeviani M. In vivo correction of COX deficiency by activation of the AMPK/PGC-1α axis. Cell Metab. 2011 Jul 6;14(1):80-90. Cerca con Google

Wach A, Brachat A, Pöhlmann R, Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 1994 Dec;10(13):1793-808. Cerca con Google

Walberg MW. Applicability of yeast genetics to neurologic disease. Arch Neurol. 2000 Aug; 57(8):1129-34. Cerca con Google

Wang T, Lawler AM, Steel G, Sipila I, Milam AH, Valle D. Mice lacking ornithine-delta-aminotransferase have paradoxical neonatal hypoornithinaemia and retinal degeneration. Nat Genet. 1995 Oct;11(2):185-90. Cerca con Google

Wang T, Steel G, Milam AH, Valle D. Correction of ornithine accumulation prevents retinal degeneration in a mouse model of gyrate atrophy of the choroid and retina. Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1224-9. Cerca con Google

Webster M, Allen J, Rawlinson D, Brown A, Olpin S, Leonard JV Ornithine aminotransferase deficiency presenting with hyperammonaemia in a premature newborn. J Inherit Metab Dis 22(Supplement 1): 80 (1999). Cerca con Google

Wenz T, Diaz F, Spiegelman BM, Moraes CT, Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab., 8 (2008), pp. 249–256. Cerca con Google

Westerman BA, Poutsma A, Steegers EA, Oudejans CB.(2004) C2360, a nuclear protein expressed in human proliferative cytotrophoblasts, is a representative member of a novel protein family with a conserved coiled coil-helix-coiled coil-helix domain. Genomics. 2004 Jun;83(6):1094-104. Cerca con Google

Wolf DE, Hoffman CH, Trenner NR, Arison BH, Shunk CH, Linn BO, McPherson JF, Folkers K. Coenzyme Q. Structure studies on the coenzyme Q group. J Am Chem Soc 80 (1958) 4750-4752. Cerca con Google

Wong ED, Wagner JA, Scott SV, Okreglak V, Holewinske TJ, Cassidy-Stone A, Nunnari J. The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion. J Cell Biol. 2003 Feb 3;160(3):303-11. Cerca con Google

Yotsuyanagi Y. Study of yeast mitochondria. I. Variations in mitochondrial ultrastructure during the aerobic growth cycle. J Ultrastruct Res. 1962 Aug;7:121-40. Cerca con Google

Zhang N, Osborn M, Gitsham P, Yen K, Miller JR, Oliver SG. (2003) Using yeast to place human genes in functional categories. Gene. Jan 16;303:121-9 Cerca con Google

Zick M, Duvezin-Caubet S, Schäfer A, Vogel F, Neupert W, Reichert AS. Distinct roles of the two isoforms of the dynamin-like GTPase Mgm1 in mitochondrial fusion. FEBS Lett. 2009 Jul 7;583(13):2237-43. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record