Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Gazzola, Diana (2012) Studies on grape, wine and grape seed proteins and development of methods for their biochemical and functional characterization. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
4Mb

Abstract (inglese)

Grape and wine proteins represent a subject of study that in recent years has received increasing attention from the international research, mainly due to the fact that important issues on wine can be clarified through the study of the nature and the properties of these macromolecules. Among the reasons of increased concern for winemakers there is the problem of haze development in bottled white wines, known as “protein casse”, due to the presence of residual amounts of insoluble proteins that can become unstable and precipitate during wine storage, causing the appearance of sediments and turbidity. These precipitates are generally the result of denaturation and subsequent aggregation of heat-unstable wine proteins deriving from grapes and belonging to the functional category of plant pathogenesis-related (PR) proteins, namely thaumatin-like proteins (TLPs) and chitinases. It has been observed that these proteins are resistant to acidic pH, proteolysis and fermentation conditions, hence they survive the winemaking process.
In this thesis, firstly, the knowledge about chitinases was elaborated since recent scientific papers have described them as proteins potentially more susceptible to precipitation in white wines. In this context, several chitinase isoforms have been purified from Manzoni Bianco grape juice and their electrophoretic behaviour was characterized, deducing important functional and biochemical information on the properties of these enzymes.
Subsequently, the research has focused on white wine protein aggregation by means of an innovative instrument, the Izon qNano, for polydisperse nanoparticles detection and quantitation in heat-tested samples. In detail, the role towards aggregates formation upon heating played by TLPs, chitinase, phenolics and polysaccharides, all purified from the same unfined white wine, was investigated via reconstitution experiments to better understand the contribution of each compound on haze formation.
Taking into account both the high number and the big size of aggregates formed upon heating, the chitinase revealed to be easily unfolded by heat, thus making it more reactive with other wine macromolecules than TLPs. Among the latter, two isoforms showed to be more prone to form aggregates. It was then demonstrated that TLPs, being present in the starting wine at a much higher concentration than the chitinase, may contribute to the problem of wine haze, even though recent studies revealed their secondary role in haze development.
Since the research in enology needs to find a precise method that allows an accurate quantification of the protein amount in wines and grape juices, in this study two colorimetric assays were compared: the Bradford method (based on the Coomassie Brilliant Blue, CBB) and the potassium dodecyl-sulphate (KDS) protein precipitation followed by the bicinchoninic acid assay (KDS/BCA).
Some main factors that can potentially affect protein quantification in wine and grape juices were analysed including ethanol, polyphenols and protein glycosylation. Moreover, the response of different proteins towards CBB and BCA reagents was studied. The Bradford assay did not prove to be accurate for wine protein quantification as it was affected by the presence of interfering substances in the matrices (ethanol and polyphenols) and by the aminoacid composition of the proteins tested. On the contrary, by applying the KDS/BCA method, the matrix didn’t show any statistically significant effect on the slope of the protein calibration curve and there were less differences between the protein average responses. Furthermore, the BCA method, directly applied on the samples, was almost insensitive to the sugars present in glycoproteins and mannoproteins purified and resuspended in an aqueous medium.
Finally, the storage proteins expressed in the grape seed endosperms were studied systematically, through fractional extractions, electrophoretic analyses and mass spectrometry. These proteins are expressed independently from environmental conditions and their composition has been shown to be species-specific. In particular, the most represented proteins in grape seed endosperms were isolated and identified by mass spectrometry as 11S globulin-like proteins. For the first time, an apparent 7S globulin-like protein was discovered. Finally, it was verified that the doublet of 40 kDa, subunit of the 11S globulin-like protein of 65 kDa, according to its pronounced polymorphism, could be used as “molecular marker”

Abstract (italiano)

Le proteine dell’uva e del vino rappresentano un argomento di studio che negli ultimi anni ha ricevuto crescente attenzione da parte della ricerca internazionale, soprattutto a causa del fatto che importanti aspetti enologici possono essere chiariti attraverso lo studio della natura e delle proprietà di queste macromolecole. Tra i motivi di maggiore apprensione per i produttori vi è il problema della formazione di torbidità nei vini bianchi imbottigliati, noto come “casse proteica” e dovuto alla presenza di quantità residue di proteine instabili che possono divenire insolubili e precipitare, durante lo stoccaggio dei vini, causando la comparsa di sedimenti e torbidità. Tali precipitati sono generalmente il risultato della denaturazione e successiva aggregazione delle proteine instabili del vino, identificate come derivanti dall’uva e appartenenti alla categoria funzionale delle proteine legate alla patogenesi (PR proteins) della pianta, in particolare proteine taumatina-simili (TLPs) e chitinasi. E’ stato osservato che tali proteine sono resistenti a pH acidi, alla proteolisi e alle condizioni di fermentazione, risultando le più stabili al processo di vinificazione.
In questa tesi, in un primo momento, è stata approfondita la conoscenza delle chitinasi che recenti pubblicazioni hanno definito come le proteine potenzialmente più suscettibili alla precipitazione nei vini bianchi. In questo ambito, sono state purificate diverse isoforme di chitinasi dal mosto Manzoni Bianco ed è stato caratterizzato il loro comportamento elettroforetico, deducendo importanti informazioni sulle proprietà funzionali e biochimiche di questi enzimi.
Successivamente l’attività di ricerca si è focalizzata sullo studio dell’aggregazione proteica nei vini bianchi per mezzo di uno strumento innovativo, l’Izon qNano, in grado di individuare e quantificare nanoparticelle polidisperse in campioni testati al calore. In particolare, è stato analizzato il ruolo svolto dalle singole proteine (TLPs e chitinasi), dei polifenoli e dei polisaccaridi, tutti purificati dallo stesso vino, nella formazione di aggregati per mezzo di esperimenti di ricostituzione, con l’obiettivo di determinare il contributo di ogni componente alla formazione di torbidità, valutando le dimensioni e la concentrazione degli aggregati sviluppati nei campioni in seguito a riscaldamento.
Considerando sia l’elevato numero di aggregati formati che le notevoli dimensioni di questi ultimi, la chitinasi si è dimostrata facilmente denaturabile al calore e, come conseguenza di questo fatto, più reattiva con le altre macromolecole del vino rispetto alle taumatine. Tra queste ultime, due isoforme si sono rivelate particolarmente reattive.
Si è dimostrato pertanto che le TLPs, essendo tra l’altro presenti in quantità preponderante nel vino, possono contribuire al problema dell’intorbidamento anche se in misura minore rispetto alle chitinasi, nonostante studi recenti abbiamo rivelato un loro ruolo secondario nella formazione di torbidità.
Poiché è fondamentale nel campo della ricerca utilizzare un metodo preciso che stimi accuratamente la concentrazione delle proteine nei vini e nei mosti, è stato effettuato uno studio che ha messo a confronto due metodi colorimetrici per la quantificazione delle proteine nel vino: il metodo basato sulla colorazione di Bradford e il saggio dell’acido bicinconinico preceduto dalla metodica di precipitazione con potassio dodecyl solfato (KDS/BCA). Lo scopo di questo lavoro è stato quello di analizzare in dettaglio alcuni fattori che potenzialmente possono interferire nella quantificazione delle proteine nel vino, come l’etanolo, i polifenoli, la glicosilazione e la natura delle singole proteine. E’ emerso che il metodo Bradford è inaffidabile nei confronti di una quantificazione proteica precisa in vino in quanto risente sia della presenza di sostanze interferenti nelle matrici (etanolo e polifenoli) che della composizione aminoacidica delle proteine utilizzate come standard. Di contro, il metodo BCA preceduto dalla precipitazione con KDS, si è dimostrato più affidabile in quanto le varie matrici non hanno influenzato la quantificazione e la differenza tra le risposte delle proteine è risultata più attenuata. Inoltre, la tecnica del BCA, applicata direttamente sui campioni, in quanto le mannoproteine non precipitano con KDS, è risultata pressoché insensibile nei confronti degli zuccheri presenti nelle mannoproteine purificate e risospese in mezzo acquoso.
Infine, sono state studiate sistematicamente, tramite estrazioni frazionate, analisi elettroforetiche e spettrometria di massa le proteine di riserva espresse nell’endosperma dei vinaccioli. Queste proteine vengono espresse indipendentemente dalle condizioni ambientali e sono tipiche delle diverse varietà. In particolare, sono state isolate ed identificate attraverso la spettrometria di massa le globuline 11S maggiormente rappresentate nell’endosperma dei vinaccioli e per la prima volta una probabile globulina 7S. Si è infine verificato che il doppietto di 40 kDa, subunità della proteina 11S di 65 kDa, visto il suo spiccato polimorfismo, può essere utilizzato come “marcatore molecolare” delle diverse varietà di Vitis vinifera

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Curioni, Andrea
Dottorato (corsi e scuole):Ciclo 24 > Corsi 24 > Viticoltura, enologia e marketing delle imprese vitivinicole
Data di deposito della tesi:29 Gennaio 2012
Anno di Pubblicazione:29 Gennaio 2012
Parole chiave (italiano / inglese):aggregates, chitinase, grape seed storage proteins, protein quantification, protein haze, thaumatin-like proteins, wine proteins,
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/15 Scienze e tecnologie alimentari
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Biotecnologie Agrarie
Codice ID:4712
Depositato il:26 Ott 2012 10:10
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Achaerandio, I.; Pachova, V.; Güell, C.; López, F. Protein adsorption by bentonite in a white wine model solution: Effect of protein molecular weight and ethanol concentration. Am. J. Enol. Vitic. 2001, 52, 122-126. Cerca con Google

2. Ahmed, H. Principles and reactions of protein extraction, purification, and characterization. CRC Press, Boca Raton, FL, 2005. Cerca con Google

3. Antoniw, J.; Ritter, C.; Pierpoint, W.; Van Loon, L. Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. J. Gen. Virol. 1980, 47, 79. Cerca con Google

4. Batista, L.; Monteiro, S.; Loureiro, V.B.; Teixeira, A.R.; Ferreira, R.B. The complexity of protein haze formation in wines. Food Chem. 2009, 112, 169-177. Cerca con Google

5. Bayly, F.C.; Berg, H. Grape and wine proteins of white wine varietals. Am. J. Enol. Vitic. 1967, 18, 18. Cerca con Google

6. Bertazzo, A.; De Rosso, M.; Dalla Vedova, A.; Agnolin, F.; Flamini, R.; Traldi, P. Parental relationships among three grape varieties studied by MALDI of grape seed protein profiles. Journal of Mass Spectrometry 2010, 45, 966-970. Cerca con Google

7. Blasco, L.; Viñas, M.; Villa, T.G. Proteins influencing foam formation in wine and beer: the role of yeast. International Microbiology 2011, 14, 61-71. Cerca con Google

8. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248-254. Cerca con Google

9. Brissonnet, F.; Maujean, A. Characterization of foaming proteins in a champagne base wine. Am. J. Enol. Vitic. 1993, 44, 297. Cerca con Google

10. Carvalho, E.; Mateus, N.; Plet, B.; Pianet, I.; Dufourc, E.; De Freitas, V. Influence of wine pectic polysaccharides on the interactions between condensed tannins and salivary proteins. J. Agric. Food Chem. 2006, 54, 8936-8944. Cerca con Google

11. Chambery, A.; del Monaco, G.; Di Maro, A.; Parente, A. Peptide fingerprint of high quality Campania white wines by MALDI-TOF mass spectrometry. Food Chem. 2009, 113, 1283-1289. Cerca con Google

12. Cheng, C.S.; Samuel, D.; Liu, Y.J.; Shyu, J.C.; Lai, S.M.; Lin, K.F.; Lyu, P.C. Binding mechanism of nonspecific lipid transfer proteins and their role in plant defense. Biochemistry 2004, 43, 13628-13636. Cerca con Google

13. Cilindre, C.; Jégou, S.; Hovasse, A.; Schaeffer, C.; Castro, A.J.; Clément, C.; Van Dorsselaer, A.; Jeandet, P.; Marchal, R. Proteomic approach to identify champagne wine proteins as modified by Botrytis cinerea infection. Journal of Proteome Research 2008, 7, 1199-1208. Cerca con Google

14. Compton, S.J.; Jones, C.G. Mechanism of dye response and interference in the Bradford protein assay. Anal. Biochem. 1985, 151, 369-374. Cerca con Google

15. Dambrouck, T.; Marchal, R.; Marchal-Delahaut, L.; Parmentier, M.; Maujean, A.; Jeandet, P. Immunodetection of proteins from grapes and yeast in a white wine. J. Agric. Food Chem. 2003, 51, 2727-2732. Cerca con Google

16. Dawes, H.; Boyes, S.; Keene, J.; Heatherbell, D. Protein instability of wines: influence of protein isolelectric point. Am. J. Enol. Vitic. 1994, 45, 319-326. Cerca con Google

17. Derbyshire, E.; Wright, D.; Boulter, D. Legumin and vicilin, storage proteins of legume seeds. Phytochemistry 1976, 15, 3-24. Cerca con Google

18. Derckel, J.P.; Audran, J.C.; Haye, B.; Lambert, B.; Legendre, L. Characterization, induction by wounding and salicylic acid, and activity against Botrytis cinerea of chitinases and β-1,3-glucanases of ripening grape berries. Physiol. Plantarum 1998, 104, 56-64. Cerca con Google

19. Derckel, J.P.; Legendre, L.; Audran, J.C.; Haye, B.; Lambert, B. Chitinases of the grapevine (Vitis vinifera L.): five isoforms induced in leaves by salicylic acid are constitutively expressed in other tissues. Plant Science 1996, 119, 31-37. Cerca con Google

20. Desportes, C.; Charpentier, M.; Duteurtre, B.; Maujean, A.; Duchiron, F. Isolation, identification, and organoleptic characterization of low-molecular-weight peptides from white wine. Am. J. Enol. Vitic. 2001, 52, 376-380. Cerca con Google

21. Dizy, M.; Bisson, L.F. White wine protein analysis by capillary zone electrophoresis. Am. J. Enol. Vitic. 1999, 50, 120-127. Cerca con Google

22. Doco, T.; Vuchot, P.; Cheynier, V.; Moutounet, M. Structural modification of wine arabinogalactans during aging on lees. Am. J. Enol. Vitic. 2003, 54, 150-157. Cerca con Google

23. Dorrestein, E.; Ferreira, R.B.; Laureano, O.; Teixeira, A.R. Electrophoretic and FPLC analysis of soluble proteins in four Portuguese wines. Am. J. Enol. Vitic. 1995, 46, 235-242. Cerca con Google

24. Dufrechou, M.; Sauvage, F.X.; Bach, B.; Vernhet, A. Protein aggregation in white wines: influence of the temperature on aggregation kinetics and mechanisms. J. Agric. Food Chem. 2010, Cerca con Google

25. Dupin, I.V.S.; McKinnon, B.M.; Ryan, C.; Boulay, M.; Markides, A.J.; Jones, G.P.; Williams, P.J.; Waters, E.J. Saccharomyces cerevisiae mannoproteins that protect wine from protein haze: their release during fermentation and lees contact and a proposal for their mechanism of action. J. Agric. Food Chem. 2000, 48, 3098-3105. Cerca con Google

26. Esteruelas, M.; Poinsaut, P.; Sieczkowski, N.; Manteau, S.; Fort, M.; Canals, J.; Zamora, F. Characterization of natural haze protein in Sauvignon white wine. Food Chem. 2009, 113, 28-35. Cerca con Google

27. Falconer, R.J.; Marangon, M.; Van Sluyter, S.C.; Neilson, K.A.; Chan, C.; Waters, E.J. Thermal stability of thaumatin-like protein, chitinase, and invertase isolated from Sauvignon blanc and Semillon juice and their role in haze formation in wine. J. Agric. Food Chem. 2010, 58, 975-980. Cerca con Google

28. Fenchak, S.F.; Kerr, W.L.; Corredig M. Multifactorial study of haze formation in model wine systems. Journal of Food Quality 2002, 25, 91-105. Cerca con Google

29. Ferreira, R.B.; Monteiro, S.; Piçarra-Pereira, M.A.; Tanganho, M.C.; Loureiro, V.B.; Teixeira, A.R. Characterization of the proteins from grapes and wines by immunological methods. Am. J. Enol. Vitic. 2000, 51, 22-28. Cerca con Google

30. Ferreira, R.B.; Monteiro, S.S.; Picarra-Pereira, M.A.; Teixeira, A.R. Engineering grapevine for increased resistance to fungal pathogens without compromising wine stability. Trends Biotechnol. 2004, 22, 168-173. Cerca con Google

31. Ferreira, R.B. The wine proteins. Trends in food science & technology. 2002, 12, 230-239. Cerca con Google

32. Ferreira, R.B.; Monteiro S.; Freitas R.; Santos C.N.; Chen Z.; Batista L.M.; Duarte J.; Borges A.; Teixeira A.R. The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology. 2007, 8, 677-700. Cerca con Google

33. Feuillat, M.; Brillant, G.; Rochard, J. Mise en évidence d’une production de protéases exocellulaires par les levures au cours de la fermentation alcoolique du moût de raisin. Conn.Vigne Vin 1980, 14, 37-52. Cerca con Google

34. Fusi, M.; Mainente, F.; Rizzi, C.; Zoccatelli, G.; Simonato, B. Wine hazing: A predictive assay based on protein and glycoprotein independent recovery and quantification. Food Control 2010, 21, 830-834. Cerca con Google

35. Garcia, R.N.; Arocena, R.V.; Laurena, A.C.; Tecson-Mendoza, E.M. 11S and 7S globulins of coconut (Cocos nucifera L.): purification and characterization. J. Agric. Food Chem. 2005, 53, 1734-1739. Cerca con Google

36. Gerbaud, V.; Gabas, N.; Blouin, J.; Pellerin, P.; Moutounet, M. Influence of wine polysaccharides and polyphenols on the crystallization of potassium hydrogen tartrate. Journal International des Sciences de la Vigne et du Vin 1997, 31, 65-83. Cerca con Google

37. Gianazza, E.; Tedesco, G.; Villa, P.; Scienza, A.; Cargnello, G.; Righetti, P. Characterization of the major proteins from. Plant Science 1989, 73–81. Cerca con Google

38. Girbau, T.; Stummer, B.E.; Pocock, K.F.; Baldock, G.A.; Scott, E.S.; Waters, E.J. The effect of Uncinula necator (powdery mildew) and Botrytis cinerea infection of grapes on the levels of haze‐forming pathogenesis‐related proteins in grape juice and wine. Australian Journal of Grape and Wine Research 2004, 10, 125-133. Cerca con Google

39. Girbau-Sola, T.; López-Tamames, E.; Buján, J.; Buxaderas, S. Foam aptitude of Trepat and Monastrell red varieties in cava elaboration. 1. Base wine characteristics. J. Agric. Food Chem. 2002, 50, 5596-5599. Cerca con Google

40. Gonçalves, F.; Heyraud, A.; de Pinho, M.N.; Rinaudo, M. Characterization of white wine mannoproteins. J. Agric. Food Chem. 2002, 50, 6097-6101. Cerca con Google

41. Goormachtig, S.; Lievens, S.; Van de Velde, W.; Van Montagu, M.; Holsters, M. Srchi13, a novel early nodulin from Sesbania rostrata, is related to acidic class III chitinases. The Plant Cell Online 1998, 10, 905-916. Cerca con Google

42. Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 1949, 177, 751-766. Cerca con Google

43. Grenier, J.; Potvin, C.; Trudel, J.; Asselin, A. Some thaumatin‐like proteins hydrolyse polymeric β‐1, 3‐glucans. The Plant Journal 1999, 19, 473-480. Cerca con Google

44. Grimplet, J.; Wheatley, M.D.; Jouira, H.B.; Deluc, L.G.; Cramer, G.R.; Cushman, J.C. Proteomic and selected metabolite analysis of grape berry tissues under well‐watered and water‐deficit stress conditions. Proteomics 2009, 9, 2503-2528. Cerca con Google

45. Guttman, A. Capillary sodium dodecyl sulfate‐gel electrophoresis of proteins. Electrophoresis 1996, 17, 1333-1341. Cerca con Google

46. Hayasaka, Y.; Adams, K.S.; Pocock, K.F.; Baldock, G.A.; Waters, E.J.; Høj, P.B. Use of electrospray mass spectrometry for mass determination of grape (Vitis vinifera) juice pathogenesis-related proteins: a potential tool for varietal differentiation. J. Agric. Food Chem. 2001, 49, 1830-1839. Cerca con Google

47. Høj, P.; Tattersall, D.; Adams, K.; Pocock, K.; Hayasaka, Y.; Van Heeswijck, R.; Waters, E. The ‘haze proteins’ of wine-a summary of properties, factors affecting their accumulation in grapes, and the amount of bentonite required for their removal from wine. Proceedings of the ASEV 50th Anniversary Annual Meeting, Seattle, Washington, 19-23 June 2000 (America Society for Enology and Viticulture: Davis, California) 2000, 149-154. Cerca con Google

48. Hsu, J.C.; Heatherbell, D.A. Isolation and characterization of soluble proteins in grapes, grape juice, and wine. Am. J. Enol. Vitic. 1987a, 38, 6-10. Cerca con Google

49. Hsu, J.C.; Heatherbell, D.A. Heat-unstable proteins in wine. I. Characterization and removal by bentonite fining and heat treatment. Am. J. Enol. Vitic. 1987b, 38, 11-16. Cerca con Google

50. Hsu, J.; Heatherbell, D.; Flores, J.; Watson, B. Heat-unstable proteins in grape juice and wine. II. Characterization and removal by ultrafiltration. Am. J. Enol. Vitic. 1987, 38, 17-22. Cerca con Google

51. Jacobs, A.; Dry, I.; Robinson, S. Induction of different pathogenesis-related cDNAs in grapevine infected with powdery mildew and treated with ethephon. Plant Pathol. 1999, 48, 325. Cerca con Google

52. Jégou, S.; Conreux, A.; Villaume, S.; Hovasse, A.; Schaeffer, C.; Cilindre, C.; Van Dorsselaer, A.; Jeandet, P. One step purification of the grape vacuolar invertase. Anal. Chim. Acta 2009, 638, 75-78. Cerca con Google

53. Jones, P.; Gawel, R.; Francis, I.; Waters, E. The influence of interactions between major white wine components on the aroma, flavour and texture of model white wine. Food quality and preference 2008, 19, 596-607. Cerca con Google

54. Kasprzewska, A. Plant chitinases-regulation and function. Cellular and Molecular Biology Letters 2003, 8, 809-824. Cerca con Google

55. Katsube, T.; Kang, I.J.; Takenaka, Y.; Adachi, M.; Maruyama, N.; Morisaki, T.; Utsumi, S. N-Glycosylation does not affect assembly and targeting of proglycinin in yeast. Biochimica et Biophysica Acta (BBA)-General Subjects 1998, 1379, 107-117. Cerca con Google

56. Kimura A.; Fukuda T.; Zhang M.; Motoyama S.; Maruyama N.; Utsumi S. Comparison of physicochemical properties of /S and 11S Globulins from pea, fava bean, cowpea and French bean with those of soybean. French bean 7S globulin exhibits excellent properties. J. Agric. Food Chem. 2008, 56, 10273-10279. Cerca con Google

57. Kitajima, S.; Sato, F. Plant pathogenesis-related proteins: molecular mechanisms of gene expression and protein function. J. Biochem. 1999, 125, 1-8. Cerca con Google

58. Koch, J.; Sajak, E. A review and some studies on grape protein. Am. J. Enol. Vitic. 1959, 10, 114-123. Cerca con Google

59. Kwon, S.W. Profiling of soluble proteins in wine by nano-high-performance liquid chromatography/tandem mass spectrometry. J. Agric. Food Chem. 2004, 52, 7258-7263. Cerca con Google

60. Ladizinsky, G. Study of Evolutionanary Problems by Means of Seed Protein Electrophoresis. Seed proteins: biochemistry, genetics, nutritive value, 1983, 481. Cerca con Google

61. Lagace, L.S.; Bisson, L.F. Survey of yeast acid proteases for effectiveness of wine haze reduction. Am. J. Enol. Vitic. 1990, 41, 147-155. Cerca con Google

62. Lambri, M.; Dordoni, R.; Silva, A.; De Faveri, D.M. Effect of bentonite fining on odor-active compounds in two different white wine styles. Am. J. Enol. Vitic. 2010, 61, 225-233. Cerca con Google

63. Lamikanra, O.; Inyang, I.D. Temperature influence on muscadine wine protein characteristics. Am. J. Enol. Vitic. 1988, 39, 113-116. Cerca con Google

64. Le Bourse, D.; Jégou, S.; Conreux, A.; Villaume, S.; Jeandet, P. Review of preparative and analytical procedures for the study of proteins in grape juice and wine. Anal. Chim. Acta 2010, 667, 33-42. Cerca con Google

65. Lee, T. Protein instability: Nature, characterization and removal by bentonite. Physical Stability of Wine. TH Lee Ed. 1985, 23-39. Cerca con Google

66. Leske, P.; Bruer, N.; Capdeboscq, V. An evaluation of some characteristics of commercial bentonites. Australian and New Zealand Wine Industry Journal 1995, 10, 73-73. Cerca con Google

67. Liger-Belair, G.; Polidori, G.; Jeandet, P. Recent advances in the science of Champagne bubbles. Chem. Soc. Rev. 2008, 37, 2490-2511. Cerca con Google

68. Liu, D.; Raghothama, K.G.; Hasegawa, P.M.; Bressan, R.A. Osmotin overexpression in potato delays development of disease symptoms. Proceedings of the National Academy of Sciences 1994, 91, 1888. Cerca con Google

69. Loon, L.C. The nomenclature of pathogenesis-related proteins. Physiol. Mol. Plant Pathol. 1990, 37, 229. Cerca con Google

70. Lorito, M.; Woo, S.; D'ambrosio, M.; Harman, G.; Hayes, C.; Kubicek, C.P.; Scala, F. Synergistic interaction between cell wall degrading enzymes and membrane affecting compounds. Molecular Plant Microbe Interactions 1996, 9, 206-213. Cerca con Google

71. Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265-275. Cerca con Google

72. Lubbers, S.; Charpentier, C.; Feuillat, M.; Voilley, A. Influence of yeast walls on the behavior of aroma compounds in a model wine. Am. J. Enol. Vitic. 1994, 45, 29-33. Cerca con Google

73. Luguera, C.; Moreno-Arribas, V.; Pueyo, E.; Bartolome, B.; Polo, M. Fractionation and partial characterization of protein fractions present at different stages of the production of sparkling wines. Food Chem. 1998, 63, 465-471. Cerca con Google

74. Manteau, S.; Lambert, B.; Jeandet, P.; Legendre, L. Changes in chitinase and thaumatin-like pathogenesis-related proteins of grape berries during the Champagne winemaking process. Am. J. Enol. Vitic. 2003, 54, 267-272. Cerca con Google

75. Marangon, M.; Van Sluyter, S.C.; Haynes, P.A.; Waters, E.J. Grape and wine proteins: their fractionation by hydrophobic interaction chromatography and identification by chromatographic and proteomic analysis. J. Agric. Food Chem. 2009, 57, 4415-4425. Cerca con Google

76. Marchal, R.; Bouquelet, S.; Maujean, A. Purification and partial biochemical characterization of glycoproteins in a champenois Chardonnay wine. J. Agric. Food Chem. 1996, 44, 1716-1722. Cerca con Google

77. Marchal, R.; Chaboche, D.; Marchal-Delahaut, L.; Gerland, C.; Gandon, J.; Jeandet, P. Detection and quantification of lysozyme in Champagne wines. J. Agric. Food Chem. 2000, 48, 3225-3231. Cerca con Google

78. Marchal, R.; Seguin, V.; Maujean, A. Quantification of interferences in the direct measurement of proteins in wines from the Champagne region using the Bradford method. Am. J. Enol. Vitic. 1997, 48, 303. Cerca con Google

79. Melchers, L.S.; Sela-Buurlage, M.B.; Vloemans, S.A.; Woloshuk, C.P.; Roekel, J.S.C.; Pen, J.; Elzen, P.J.M.; Cornelissen, M.J.C. Extracellular targeting of the vacuolar tobacco proteins AP24, chitinase and β-1, 3-glucanase in transgenic plants. Plant Mol. Biol. 1993, 21, 583-593. Cerca con Google

80. Menu-Bouaouiche, L.; Vriet, C.; Peumans, W.J.; Barre, A.; Van Damme, E.J.M.; Rouge, P. A molecular basis for the endo-beta 1, 3-glucanase activity of the thaumatin-like proteins from edible fruits. Biochimie 2003, 85, 123-131. Cerca con Google

81. Mesquita, P.R.; Piçarra-Pereira, M.A.; Monteiro, S.; Loureiro, V.B.; Teixeira, A.R.; Ferreira, R.B. Effect of wine composition on protein stability. Am. J. Enol. Vitic. 2001, 52, 324-330. Cerca con Google

82. Moine Ledoux, V.; Perrin, A.; Paladin, I.; Dubourdieu, D. First result of tartaric stabilization by adding mannoproteins. Journal International des Sciences de la Vigne et du Vin 1997, 31, Cerca con Google

83. Monteiro, S.; Picarra-Pereira, M.A.; Loureiro, V.B.; Teixeira, A.R.; Ferreira, R.B. The diversity of pathogenesis-related proteins decreases during grape maturation. Phytochemistry 2007, 68, 416-425. Cerca con Google

84. Monteiro, S.; Piçarra-Pereira, M.A.; Teixeira, A.R.; Loureiro, V.B.; Ferreira, R.B. Environmental conditions during vegetative growth determine the major proteins that accumulate in mature grapes. J. Agric. Food Chem. 2003, 51, 4046-4053. Cerca con Google

85. Moreno-Arribas, M.; Pueyo, E.; Polo, M.C. Analytical methods for the characterization of proteins and peptides in wines. Anal. Chim. Acta 2002, 458, 63-75. Cerca con Google

86. Moreno-Arribas, V.; Pueyo, E.; Polo, M.C. Peptides in musts and wines. Changes during the manufacture of cavas (sparkling wines). J. Agric. Food Chem. 1996, 44, 3783-3788. Cerca con Google

87. Moretti, R.; Berg, H. Variability among wines to protein clouding. Am. J. Enol. Vitic. 1965, 16, 69-78. Cerca con Google

88. Mori, T.; Saruta, Y.; Fukuda, T.; Prak, K.; Ishimoto, M.; Maruyama, N.; Utsumi, S. Vacuolar sorting behaviors of 11S globulins in plant cells. Biosci. Biotechnol. Biochem. 2009, 73, 53. Cerca con Google

89. Muhlack, R.A.; Waters, E.J.; Lim, A.; O'Neill, B.K.; Colby, C.B. An alternative method for purification of a major thaumatin-like grape protein (VVTL1) responsible for haze formation in white wine. Asia‐Pacific Journal of Chemical Engineering 2007, 2, 70-74. Cerca con Google

90. Murphey, J.; Spayd, S.; Powers, J. Effect of grape maturation on soluble protein characteristics of Gewürztraminer and White Riesling juice and wine. Am. J. Enol. Vitic. 1989, 40, 199-207. Cerca con Google

91. Okuda, T.; Fukui, M.; Takayanagi, T.; Yokotsuka, K. Characterization of major stable proteins in Chardonnay wine. Food science and technology research 2006, 12, 131-136. Cerca con Google

92. Osborne, T.B.; The vegetable proteins. Longmans, Green and co. London, U.K. 1924. Cerca con Google

93. Pastorello, E.A.; Farioli, L.; Pravettoni, V.; Ortolani, C.; Fortunato, D.; Giuffrida, M.G.; Perono Garoffo, L.; Calamari, A.M.; Brenna, O.; Conti, A. Identification of grape and wine allergens as an endochitinase 4, a lipid-transfer protein, and a thaumatin. J. Allergy Clin. Immunol. 2003, 111, 350-359. Cerca con Google

94. Pellerin, P.; Waters, E.; Brillouet, J.; Moutounet, M. Effet de polysaccharides sur la formation de trouble protéique dans un vin blanc. J. Int. Sci. Vigne Vin 1994, 28, 213-225. Cerca con Google

95. Peng, Z.; Pocock, K.F.; Waters, E.J.; Francis, I.L.; Williams, P.J. Taste properties of grape (Vitis vinifera) pathogenesis-related proteins isolated from wine. J. Agric. Food Chem. 1997, 45, 4639-4643. Cerca con Google

96. Pesavento, I.C.; Bertazzo, A.; Flamini, R.; Vedova, A.D.; De Rosso, M.; Seraglia, R.; Traldi, P. Differentiation of Vitis vinifera varieties by MALDI‐MS analysis of the grape seed proteins. Journal of Mass Spectrometry 2008, 43, 234-241. Cerca con Google

97. Pocock, K.F.; Alexander, G.M.; Hayasaka, Y.; Jones, P.R.; Waters, E.J. Sulfate a candidate for the missing essential factor that is required for the formation of protein haze in white wine. J. Agric. Food Chem. 2007, 55, 1799-1807. Cerca con Google

98. Pocock, K.F.; Hayasaka, Y.; McCarthy, M.G.; Waters, E.J. Thaumatin-like proteins and chitinases, the haze-forming proteins of wine, accumulate during ripening of grape (Vitis vinifera) berries and drought stress does not affect the final levels per berry at maturity. J. Agric. Food Chem. 2000, 48, 1637-1643. Cerca con Google

99. Pocock, K.F.; Høj, P.; Adams, K.S.; Kwiatkowski, M.; Waters, E.J. Combined heat and proteolytic enzyme treatment of white wines reduces haze forming protein content without detrimental effect. Australian Journal of Grape and Wine Research 2003, 9, 56-63. Cerca con Google

100. Pocock, K.; Waters, E. The effect of mechanical harvesting and transport of grapes, and juice oxidation, on the protein stability of wines. Australian Journal of Grape and Wine Research 1998, 4, 136-139. Cerca con Google

101. Pollnitz, A.P.; Capone, D.L.; Caldersmith, M.C.; Sefton, M.A. The effect of various wine bottle closures and fining agents on flavour and aroma compounds in wine. Grapegrowing at the edge 2003, 59-63. Cerca con Google

102. Puff, N.; Marchal, R.; Aguié-Béghin, V.; Douillard, R. Is grape invertase a major component of the adsorption layer formed at the air/Champagne interface? Langmuir 2001, 17, 2206−2212. Cerca con Google

103. Rankine, B. Making good wine. Pan Macmillan Australia, 2007. Cerca con Google

104. Roberts, W.K.; Selitrennikoff, C.P. Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. J. Gen. Microbiol. 1990, 136, 1771. Cerca con Google

105. Robinson, S.P.; Davies, C. Molecular biology of grape berry ripening. Australian Journal of Grape and Wine Research 2000, 6, 175-188. Cerca con Google

106. Robinson, S.P.; Jacobs, A.K.; Dry, I.B. A class IV chitinase is highly expressed in grape berries during ripening. Plant Physiol. 1997, 114, 771-778. Cerca con Google

107. Rodríguez-Delgado, M.A.; Malovaná, S.; Montelongo, F.J.; Cifuentes, A. Fast analysis of proteins in wines by capillary gel electrophoresis. European Food Research and Technology 2002, 214, 536-540. Cerca con Google

108. Samant, S.; Singhal, R.; Kulkarni, P.; Rege, D. Protein-polysaccharide interactions: a new approach in food formulations. Int. J. Food Sci. Tech. 1993, 28, 547-562. Cerca con Google

109. Sarmento, M.; Oliveira, J.; Slatner, M.; Boulton, R. Influence of intrinsic factors on conventional wine protein stability tests. Food Control 2000, 11, 423-432. Cerca con Google

110. Sarry, J.E.; Sommerer, N.; Sauvage, F.X.; Bergoin, A.; Rossignol, M.; Albagnac, G.; Romieu, C. Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Proteomics 2004, 4, 201-215. Cerca con Google

111. Sauvage, F.X.; Bach, B.; Moutounet, M.; Vernhet, A. Proteins in white wines: Thermo-sensitivity and differential adsorption by bentonite. Food Chem. 2010, 118, 26-34. Cerca con Google

112. Selitrennikoff, C.P. Antifungal proteins. Appl. Environ. Microbiol. 2001, 67, 2883. Cerca con Google

113. Senée, J.; Robillard, B.; Vignes-Adler, M. Films and foams of Champagne wines. Food Hydrocoll. 1999, 13, 15-26. Cerca con Google

114. Shewry, P.R.; Halford, N.G. Cereal seed storage proteins: structures, properties and role in grain utilization. J. Exp. Bot. 2002, 53, 947-958. Cerca con Google

115. Siebert, K.J. Effects of protein-polyphenol interactions on beverage haze, stabilization, and analysis. J. Agric. Food Chem. 1999, 47, 353-362. Cerca con Google

116. Siebert, K.J.; Troukhanova, N.V.; Lynn, P.Y. Nature of polyphenol-protein interactions. J. Agric. Food Chem. 1996a, 44, 80-85. Cerca con Google

117. Siebert, K.J.; Carrasco, A.; Lynn, P.Y. Formation of protein-polyphenol haze in beverages. J. Agric. Food Chem. 1996b, 44, 1997-2005. Cerca con Google

118. Smith, P.; Krohn, R.I.; Hermanson, G.; Mallia, A.; Gartner, F.; Provenzano, M.D.; Fujimoto, E.; Goeke, N.; Olson, B.; Klenk, D. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76-85. Cerca con Google

119. Somers, T.; Ziemelis, G. Direct determination of wine proteins. Am. J. Enol. Vitic. 1973, 24, 47. Cerca con Google

120. Stintzi, A.; Heitz, T.; Prasad, V.; Wiedemann-Merdinoglu, S.; Kauffmann, S.; Geoffroy, P.; Legrand, M.; Fritig, B. Plant pathogenesis-related proteins and their role in defense against pathogens. Biochimie 1993, 75, 687-706. Cerca con Google

121. Takemoto, D.; Furuse, K.; Doke, N.; Kazuhito, K. Identification of chitinase and osmotin-like protein as actin-binding proteins in suspension-cultured potato cells. Plant and cell physiology 1997, 38, 441. Cerca con Google

122. Tandang-Silvas, M.R.G.; Tecson-Mendoza, E.M.; Mikami, B.; Utsumi, S.; Maruyama, N. Molecular design of seed storage proteins for enhanced food physicochemical properties. Annual Review of Food Science and Technology 2011, 2, 59-73. Cerca con Google

123. Tattersall, D.B.; Van Heeswijck, R.; Hoj, P.B. Identification and characterization of a fruit-specific, thaumatin-like protein that accumulates at very high levels in conjunction with the onset of sugar accumulation and berry softening in grapes. Plant Physiol. 1997, 114, 759. Cerca con Google

124. Tattersall, D.; Pocock, K.; Hayasaka, Y.; Adams, K.; Van Heeswijck, R.; Waters, E.; Høj, P. Pathogenesis related proteins–their accumulation in grapes during berry growth and their involvement in white wine heat instability. Current knowledge and future perspectives in relation to winemaking practices. Molecular Biology and Biotechnology of the Grapevine 2001, 183-202. Cerca con Google

125. Utsumi, S. Plant food protein engineering. Adv. Food Nutr. Res. 1992, 36, 89-208. Cerca con Google

126. Van Loon, L.; Pierpoint, W.; Boller, T.; Conejero, V. Recommendations for naming plant pathogenesis-related proteins. Plant Mol. Biol. Rep. 1994, 12, 245-264. Cerca con Google

127. Van Sluyter, S.C.; Marangon, M.; Stranks, S.D.; Neilson, K.A.; Hayasaka, Y.; Haynes, P.A.; Menz, R.I.; Waters, E.J. Two-step purification of pathogenesis-related proteins from grape juice and crystallization of thaumatin-like proteins. J. Agric. Food Chem. 2009, 57, 11376-11382. Cerca con Google

128. Vernhet, A.; Pellerin, P.; Prieur, C.; Osmianski, J.; Moutounet, M. Charge properties of some grape and wine polysaccharide and polyphenolic fractions. Am. J. Enol. Vitic. 1996, 47, 25-30. Cerca con Google

129. Vincenzi, S.; Curioni, A. Anomalous electrophoretic behavior of a chitinase isoform from grape berries and wine in glycol chitin-containing sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. Electrophoresis 2005, 26, 60-63. Cerca con Google

130. Vincenzi, S.; Mosconi, S.; Zoccatelli, G.; Pellegrina, C.D.; Veneri, G.; Chignola, R.; Peruffo, A.; Curioni, A.; Rizzi, C. Development of a new procedure for protein recovery and quantification in wine. Am. J. Enol. Vitic. 2005a, 56, 182. Cerca con Google

131. Vincenzi, S.; Polesani, M.; Curioni, A. Removal of specific protein components by chitin enhances protein stability in a white wine. Am. J. Enol. Vitic. 2005b, 56, 246-254. Cerca con Google

132. Waters, E.J.; Hayasaka, Y.; Tattersall, D.B.; Adams, K.S.; Williams, P.J. Sequence analysis of grape (Vitis vinifera) berry chitinases that cause haze formation in wines. J. Agric. Food Chem. 1998, 46, 4950-4957. Cerca con Google

133. Waters, E.J.; Pellerin, P.; Brillouet, J.M. A Saccharomyces mannoprotein that protects wine from protein haze. Carbohydr. Polym. 1994a, 23, 185-191. Cerca con Google

134. Waters, E.; Pellerin, P.; Brillouet, J.M. A wine arabinogalactan-protein that reduces heat-induced wine protein haze. Biosci. Biotechnol. Biochem. 1994b, 58, 43-48. Cerca con Google

135. Waters, E.J.; Wallace, W.; Tate, M.E.; Williams, P.J. Isolation and partial characterization of a natural haze protective factor from wine. J. Agric. Food Chem. 1993, 41, 724-730. Cerca con Google

136. Waters, E.; Peng, Z.; Pocock, K.; Williams, P. Proteins in white wine, I: Procyanidin occurrence in soluble proteins and insoluble protein hazes and its relationship to protein instability. Australian Journal of Grape and Wine Research 1995, 1, 86-93. Cerca con Google

137. Waters, E.; Wallace, W.; Williams, P. Heat haze characteristics of fractionated wine proteins. Am. J. Enol. Vitic. 1991, 42, 123-127. Cerca con Google

138. Waters, E.; Wallace, W.; Williams, P. Identification of heat-unstable wine proteins and their resistance to peptidases. Journal of agricultural and Food Chemistry. 1992, 40, 1514-1519. Cerca con Google

139. Waters, E.J. Nuisance proteins of wine are grape pathogenesis-related proteins. Journal of agricultural and food chemistry. 1996, 44, 3-5. Cerca con Google

140. Waters, E.J.; Alexander, G.; Muhlack, R.; Pocock, K.F.; Colby, C.; O'Neill, B.K.; Hoj, P.B.; Jones, P. Preventing protein haze in bottled white wine. Australian Journal of Grape and Wine Research 2005, 11, 215-225. Cerca con Google

141. Weiss, K.C.; Yip, T.T.; Hutchens, T.W.; Bisson, L.F. Rapid and sensitive fingerprinting of wine proteins by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Am. J. Enol. Vitic. 1998, 49, 231-239. Cerca con Google

142. Wel, H.; Loeve, K. Isolation and characterization of thaumatin I and II, the sweet-tasting proteins from Thaumatococcus daniellii Benth. European Journal of Biochemistry 1972, 31, 221-225. Cerca con Google

143. Wigand, P.; Tenzer, S.; Schild, H.; Decker, H. Analysis of Protein Composition of Red Wine in Comparison with Rosé and White Wines by Electrophoresis and High-Pressure Liquid Chromatography-Mass Spectrometry (HPLC-MS). J. Agric. Food Chem. 2009, 57, 4328-4333. Cerca con Google

144. Woloshuk, C.P.; Meulenhoff, J.S.; Sela-Buurlage, M.; van den Elzen, P.J.M.; Cornelissen, B.J.C. Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. The Plant Cell Online 1991, 3, 619-628. Cerca con Google

145. Xie, Z.P.; Staehelin, C.; Wiemken, A.; Broughton, W.J.; Müller, J.; Boller, T. Symbiosis-stimulated chitinase isoenzymes of soybean (Glycine max (L.) Merr.). J. Exp. Bot. 1999, 50, 327-333. Cerca con Google

146. Yokotsuka, K.; Ebihara, T.; Sato, T. Comparison of soluble proteins in juice and wine from Koshu grapes. J. Ferment. Bioeng. 1991, 71, 248-253. Cerca con Google

147. Yokotsuka, K.; Nozaki, K.; Kushida, T. Turbidity formation caused by interaction must proteins with wine tannins. Journal of fermentation technology 1983, 61, 413-416. Cerca con Google

148. Yokotsuka, K.; Singleton, V.L. Glycoproteins: Characterization in a hybrid grape variety (Muscat Bailey A) juice, fermenting must, and resultant red wine. Am. J. Enol. Vitic. 1997, 48, 100-114. Cerca con Google

149. Yu, X.M.; Griffith, M.; Wiseman, S.B. Ethylene induces antifreeze activity in winter rye leaves. Plant Physiol. 2001, 126, 1232. Cerca con Google

150. Zhou, T.; Li, Q.; Zhang, J.; Bai, Y.; Zhao, G. Purification and characterization of a new 11S globulin-like protein from grape (Vitis vinifera L.) seeds. European Food Research and Technology 2010, 230, 693-699. Cerca con Google

151. Zhou, T.; Zhang, T.; Liu, W.; Zhao, G. Physicochemical characteristics and functional properties of grape (Vitis vinifera L.) seeds protein. Int. J. Food Sci. Tech. 2011, 46, 635-641. Cerca con Google

152. Zhu, B.; Chen, T.H.H.; Li, P.H. Activation of two osmotin-like protein genes by abiotic stimuli and fungal pathogen in transgenic potato plants. Plant Physiol. 1995, 108, 929 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record