Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Millioni, Renato (2008) Proteomica di fibroblasti cutanei coltivati in vitro, ottenuti da biopsie di soggetti normali e di pazienti diabetici di tipo 1, caratterizzati dalla presenza o assenza di complicanze microvascolari renali. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

The target of this research project was to identify protein markers of diabetic nephropathy (DN), a microvascular complication which develops in about 30% of subject with type 1 diabetes and which is often associated with an increase risk of developing cardiovascular diseases and premature death in comparison with non nephropatic subjects.
Many studies indicate that hyperglycemia is a necessary although not sufficient condition to determine the diabetes associated renal damage. Indeed, the incidence of nephropathy reaches a maximum after 15-20 years of disease and thereafter it decreases. Such a behaviour is compatible with the existence of an individual susceptibility (genetic) to renal damage, induced by factors other than hyperglycaemia, thus highlighting the need for an early detection of the type 1 diabetic subjects with high risk of developing DN, and to clarify the pathophysiological mechanisms
Human fibroblasts represent an ideal experimental model, also because easily accessible, for an ample investigation on the genetic predisposition to diabetic disease, as well as to study of the mechanisms leading to cellular and metabolic damages occurring in diabetic complications.
We have established an experimental protocol for the extraction of proteins from cultured cells and we have defined the optimal experimental conditions to obtain reproducible 2-D gels.
So we compared protein profiles of cultured fibroblasts, harvested from skin biopsies of type 1 diabetic patients with long disease duration and with or without DN, and normal healthy subjects. This research has allowed, firstly, a more and deeper knowledge about human fibloblast proteome, useful data as a reference for subsequent investigations applied to the study of various diseases including non-diabetic.
Secondly, the comparison among groups showed significant changes in the amounts of some proteins including cytoskeletal proteins and proteins involved in energy metabolism and protein turnover. Some of these results have been validated with more depth analysis as western blot and enzymatic activity test.
These data, entirely original at the international level, represent a starting point for further investigations for the early identification of subjects with a genetic predisposition to DN and revealed new clues to understand physiopathological mechanisms that lead to the development of this pathology.
Finally we made the comparison of protein levels after exposure to high levels of glucose, within each group and among the three groups, obtaining information about proteins involved in cellular response to hyperglycemia.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Tessari, Paolo
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI > DIABETOLOGIA
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Parole chiave (italiano / inglese):Proteomica, elettrforesi bidimensionale, nefropatia diabetica
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/14 Nefrologia
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Medicina Clinica e Sperimentale
Codice ID:472
Depositato il:07 Ott 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Adams DJ, Beveridge DJ, van der Weyden L, Mangs H, Leedman PJ, Morris BJ (2003). HADHB, HuR, and CP1 bind to the distal 3'-untranslated region of human renin mRNA and differentially modulate renin expression. J Biol Chem; 278: 44894-44903 Cerca con Google

2. Akisawa N, Maeda T, Iwasaki S, Onishi S (1997). Identification of an autoantibody against alpha-enolase in primary biliary cirrhosis. J Hepatology; 26: 845-851 Cerca con Google

3. Arrigo AP (2001). Hsp27: novel regulator of intracellular redox state. IUBMB Life; 52: 303-307 Cerca con Google

4. Asai Y, Yamada K, Watanabe T, Keng VW, Noguchi T (2003). Insulin stimulates expression of the pyruvate kinase M gene in 3T3-L1 adipocytes. Biosci Biotechnol Biochem; 67: 1272-1277 Cerca con Google

5. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000). HSP70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med; 6: 435-442 Cerca con Google

6. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002). Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR)2 and TLR4. J Biol Chem. 277: 15028-15034 Cerca con Google

7. Bamburg JR, Bray D (1987). Distribution and cellular localization of actin depolymerization factor. J Cell Biol; 105: 2817-2825 Cerca con Google

8. Batlle D, Lurbe A, LaPointe M, Agrawal R (1995). The Na+/H+ antiporter, type I diabetes, and hypertension. Kidney Curr Surv World Lit; 4: 1-3 Cerca con Google

9. Belfiore F, Rabuazzo AM, Iannello S, Campione R, Vasta D (1985). Cathepsin D and other hydrolases in the kidney of streptozotocin-diabetic mice. Possible relevance to microangiopathy. Horm Metab Res; 17: 435-437 Cerca con Google

10. Beltramo E, Berrone E, Giunti S, Gruden G, Perin PC, Porta M (2006). Effects of mechanical stress and high glucose on pericyte proliferation, apoptosis and contractile phenotype. Exp Eye Res; 83: 989-94. Cerca con Google

11. Bjellqvist B, Ek K, Righetti PG, Gianazza E, Gorg A, Westermeier R, Postel W (1982). Isolelectric focusing in immobilized pH gradients: principle, methodology, and some applications. J Bioch Biophys Methods; 6: 317-339 Cerca con Google

12. Borch-Johnsen K, Norgaard K, Hommel E, Mathiesen ER, Jensen JS, Deckert T, Parving HH (1992). Is diabetic nephropathy an inherited complication? Kidney Int; 41: 719-722 Cerca con Google

13. Borrebaeck CAK (2000). Antibodies in diagnostics - from immunoassays to protein chips. Immunol Today; 21: 379-382 Cerca con Google

14. Bretscher A, Edwards K, Fehon RG (2002). ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol; 3: 586-599 Cerca con Google

15. Breyer JA (1996). Diabetic nephropathy in insulin-dependent patients. Am J Kidney Dis; 20: 533-547 Cerca con Google

16. Brownlee M (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes; 54: 1615-1625 Cerca con Google

17. Brownlee M, Cerami A, Vlassara H (1988). Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med; 3188: 1315-1321 Cerca con Google

18. Burkart V, Liu H, Bellmann K, Wissing D, Jaattela M, Cavallo MG, Pozzilli P, Briviba K, Kolb H (2000). Natural resistance of human beta cells toward nitric oxide is mediated by heat shock protein 70. J Biol Chem; 275: 19521-19528 Cerca con Google

19. Callahan MK, Chaillot D, Jacquin C, Clark PR, Menoret A (2002). Differential acquisition of antigenic peptides by Hsp70 and Hsc70 under oxidative conditions. J Biol Chem; 277: 33604-33609 Cerca con Google

20. Campostrini N, Areces LB, Rappsilber J, Pietrogrande MC, Dondi F, Pastorino F, Ponzoni M, Righetti PG (2005). Spot overlapping in two-dimensional maps: a serious problem ignored for much too long. Proteomics; 5(9): 2385-95 Cerca con Google

21. Caramori ML, Fioretto P, Mauer M (2000). The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient? Diabetes; 49(9): 1399-408 Cerca con Google

22. Carballo E, Lai WS, Blackshear PJ (1998). Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science; 281: 1001-1005 Cerca con Google

23. Carmassi F, Morale M, Puccetti R, De Negri F, Monzani F, Navalesi R, Mariani G (1992). Coagulation and fibrinolytic system impairment in insulin dependent diabetes mellitus. Thromb Res; 67: 643-654 Cerca con Google

24. Caron JM (1989). Alteration of microtubule physiology in hepatocytes by insulin. J Cell Physiol; 138: 603-610 Cerca con Google

25. Celis JE, Gromov P (1999). 2D protein electrophoresis: can it be perfected? Curr Opin Biotech; 10: 16-21 Cerca con Google

26. Ceriello A, Morocutti A, Mercuri F, Quagliaro L, Moro M, Damante G, Viberti GC (2000). Detective intracellular antioxidant enzyme production in type 1 diabetic patients with nephropathy. Diabetes; 49: 2170-2177 Cerca con Google

27. Chen HS, Shan YX, Yang TL, Lin HD, Chen JW, Lin SJ, Wang PH (2005). Insulin deficiency downregulated heat shock protein 60 and IGF-1 receptor signaling in diabetic myocardium. Diabetes; 54: 175-181 Cerca con Google

28. Chou YH, Goldman RD (2000). Intermediate filament on the move. J Cell Biol; 150: F101-105 Cerca con Google

29. Clarkson MR, Murphy M, Gupta S, Lambe T, Mackenzie HS, Godson C, Martin F, Brady HR (2002). High glucose-altered gene expression in mesangial cells. Actin-regulatory protein gene expression is triggered by oxidative stress and cytoskeletal disassembly. J Biol Chem; 277: 9707-9712 Cerca con Google

30. Conway BR, Maxwell AP, Savage DA, Patterson CC, Doran PP, Murphy M, Brady HR, Fogarty DG (2004). Association between variation in the actin-binding gene caldesmon and diabetic nephropathy in type 1 diabetes. Diabetes; 53: 1162-1165 Cerca con Google

31. Cooper JA (1991). The role of actin polymerization in cell mobility. Annu Rev Physiol; 53: 585-605 Cerca con Google

32. Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T, DeFronzo RA, Kahn CR, Mandarino LJ (2000). Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signalling in human muscle. J Clin Invest; 105: 311-320 Cerca con Google

33. Dandapani SV, Sugimoto H, Matthews BD, Kolb RJ, Sinha S, Gerszten RE, Zhou J, Ingber DE, Kalluri R, Pollak MR (2007). Alpha-actinin-4 is required for normal podocyte adhesion. J Biol Chem; 282: 467-77 Cerca con Google

34. De Cosmo S, Argiolas A, Miscio G, Thomas S, Piras GP, Trevisan R, Perin PC, Bacci S, Zucaro L, Margaglione M, Frittitta L, Pizzuti A, Tassi V, Viberti GC, Trischitta V. (2000). A PC-1 amino acid variant (K121Q) is associated with faster progression of renal disease in patients with type 1 diabetes and albuminuria. Diabetes; 49(3): 521-4 Cerca con Google

35. De Cosmo S, Margaglione M, Tassi V, Garrubba M, Thomas S, Olivetti C, Piras GP, Trevisan R, Vedovato M, Cavallo-Perin P, Bacci S, Coalizzo D, Costernino C, Zucaro L, Di Minno G, Trischitta V, Viberti GC (1999). ACE, PAI-1, decorin and Werner helicase genes are not associated with the development of renal disease in European patients with type 1 diabetes. Diabetes Metab Res Rev; 15: 247-53 Cerca con Google

36. Deinum J, Chaturvedi N (2002). The Renin-Angiotensin system and vascular disease in diabetes. Semin Vasc Med; 2: 149-156 Cerca con Google

37. DellAngelica EC, Payne GS (2001). Intracellular cycling of lysosomal enzyme receptors: cytoplasmic tails’ tales. Cell; 106: 395-398 Cerca con Google

38. Du X, Matsumura T, Edelstein D, Rossetti L, Zsengeller Z, Szabo C, Brownlee M (2003). Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest; 112: 1049-1057 Cerca con Google

39. Dunlop ME, Muggli EE (2000). Small heat shock protein alteration provides a mechanism to reduce mesangial cell contractility in diabetes and oxidative stress. Kidney Int; 57: 464-475 Cerca con Google

40. El Nahas AM, Muchaneta-Kubara EC, Zhang G, Adam A, Goumenos D (1996). Phenotypic modulation of renal cells during experimental and clinical renal scarring. Kidney Int; 54: S23-27 Cerca con Google

41. Finotti P, Pagetta A (2004). A heat shock protein70 fusion protein with alpha1-antitrypsin in plasma of type 1 diabetic subjects. Biochem Biophys Res Commun; 315: 297-305 Cerca con Google

42. Finotti P, Piccoli A, Carraro P (1992). Alteration of plasma proteinase-antiproteinase system in type 1 diabetic patients. Influence of sex and relationship with metabolic control. Diabetes Res Clin Pract; 18: 35-42 Cerca con Google

43. Flyvbjerg A, Landau D, Domene H, Hernandez L, Gronbaek H, LeRoith D (1995). The role of growth hormone, insulin-like growth factors (IGFs), and IGF-binding proteins in experimental diabetic kidney disease. Metabolism; 44 (10 Suppl 4): 67-71 Cerca con Google

44. Foucault G, Vacher M, Merkulova T, Keller A, Ario-Dupont M (1999). Presence of enolase in the M-band of skeletal muscle and possible indirect interaction with the cytosolic muscle isoform of creatine kinase. Biochem J; 338: 115-121 Cerca con Google

45. Fowler VM, Sussmann MA, Miller PG, Flucher BE., Daniels MP (1993). Tropomodulin is associated with the free (pointed) ends of the thin filaments in rat skeletal muscle. J Cell Biol; 120: 411-420 Cerca con Google

46. Fujisawa T, Ikegami H, Kawaguchi Y, Hamada Y, Ueda H, Shintani M, Fukuda M, Ogihara T (1998). Meta-analysis of association of insertion/deletion polymorphism of angiotensin I-converting enzyme genewith diabetic nephropathy and retinopathy. Diabetologia; 41: 47-52 Cerca con Google

47. Galkina E, Ley K (2006). Leukocyte recruitment and vascular injury in diabetic nephropathy. J Am Soc Nephrol; 17: 368-377 Cerca con Google

48. Gerke V, Creutz CE, Moss SE (2005). Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol; 6: 449-461 Cerca con Google

49. Griffin TJ, Gygi SP, Ideker T, Rist B, Eng J, Hood L, Aebersold R (2002). Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol Cell Proteomics; 4: 323-333 Cerca con Google

50. Gugliucci A, Ghitescu L (2002). Is diabetic hypercoagulability an acquired annexinopathy? Glycation of annexin II as a putative mechanism for impaired fibrinolysis in diabetic patients. Med Hypotheses; 59: 247-251 Cerca con Google

51. Gutmann I, Bernt E (1974). Pyruvate Kinase. In Bergmeyer HU (eds) Methods of Enzymatic Analysis; vol. 2; Verlag Chemie Weinheim, Academic Press, Inc. New York and London; 774-777 Cerca con Google

52. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999). Correlation between protein and mRNA abundance in yeast. Mol Cell Biol; 19: 1720-1730 Cerca con Google

53. Haddad JJ (2002). The involvement of L-γ-glutamyl-L-cysteinyl-glycine (glutathione/GSH) in the mechanism of redox signaling mediating MAPKp38-dependent regulation of pro-inflammatory cytokine production. Biochem Pharmacol; 63: 305-320 Cerca con Google

54. Hartl FU (1996). Molecular chaperones in cellular protein folding. Nature; 381: 571-579 Cerca con Google

55. Helfman DM, Levy ET, Berthier C, Shtutman M, Riveline D, Grosheva I, Lachish-Zalait A, Elbaum M, Bershadsky AD (1999). Caldesmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions. Mol Biol Cell; 10: 3097-3112 Cerca con Google

56. Hollams EM, Giles KM, Thomson AM, Leedman PJ (2002). Neurochem Res; 27, 957-980 Cerca con Google

57. Huang C, Kim Y, Caramori ML, Fish AJ, Rich SS, Miller ME, Russell GB, Mauer M. (2002). Cellular basis of diabetic nephropathy: II. The transforming growth factor-beta system and diabetic nephropathy lesions in type 1 diabetes. Diabetes; 51(12): 3577-81 Cerca con Google

58. Inoguchi T, Battan R, Handler E, Sportsman JR, Heath W, King GL (1992). Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci USA; 89: 11059-11063 Cerca con Google

59. Iori E, Marescotti MC, Vedovato M, Ceolotto G, Avogaro A, Tiengo A, Del Prato S, Trevisan R (2003). In situ protein kinase C activity is increased in cultured fibroblasts from type 1 diabetic patients with nephropathy. Diabetologia; 46: 524-530 Cerca con Google

60. Jessop CE, Chakravarthi S, Watkins RH, Bulleid NJ (2004). Oxidative protein folding in the mammalian endoplasmic reticulum. Biochem Soc Trans; 32: 655-658 Cerca con Google

61. Jones JI, Clemmons DR (1995). Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev; 16: 3-34 Cerca con Google

62. Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, Mathis BJ, Rodrí­guez-Pérez JC, Allen PG, Beggs AH, Pollak MR (2000). Mutations in ACTN4, encoding α-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet; 24: 251-256 Cerca con Google

63. Karl M, Potier M, Schulman IH, Rivera A, Werner H, Fornoni A, Elliot SJ (2005). Autocrine activation of the local insulin-like growth factor I system is up-regulated by estrogen receptor (ER)-independent estrogen actions and accounts for decreased ER expression in type 2 diabetic mesangial cells. Endocrinology; 146: 889-900 Cerca con Google

64. Khayat ZA, Tong P, Yaworsky K, Bloch RJ, Klip A (2000). Insulin-induced actin filament remodeling colocalizes actin with phosphatidylinositol 3-kinase and GLUT4 in L6 myotubes. J Cell Sci; 113: 279-290 Cerca con Google

65. Kiang JG, Tsokos GC (1998). Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther; 80: 183-201 Cerca con Google

66. Kondoh Y, Kawase M, Kawakami Y, Ohmori S (1992). Concentrations of D-lactate and its related metabolic intermediates in liver, blood, and muscle of diabetic and starved rats. Res Exp Med (Berl); 192: 407-414 Cerca con Google

67. Koya D, King GL (1998). Protein kinase C activation and the development of diabetic complications Diabetes; 47: 859-866 Cerca con Google

68. Langdon JM, Vonakis BM, MacDonald SM (2004). Identification of the interaction between the human recombinant histamine releasing factor/translationally controlled tumor protein and elongation factor-1 delta (also known as eElongation factor-1B beta). Biochim Biophys Acta; 1688: 232-236 Cerca con Google

69. Lee JH, Chung KY, Bang D, Lee KH (2006). Searching for aging-related proteins in human dermal microvascular endothelial cells treated with anti-aging agents. Proteomics; 6: 1351-61 Cerca con Google

70. Legrain P, Jestin JL, Schächter V (2000). From the analysis of protein complexes to proteomewide linkage maps. Curr Opin Biotech; 11: 402-407 Cerca con Google

71. Lei H, Romeo G, Kazlauskas A (2004). Heat shock protein 90 alpha-dependent translocation of annexin II to the surface of endothelial cells modulates plasmin activity in the diabetic rat aorta. Circ Res; 94: 902-909 Cerca con Google

72. Lerh S, Kotzka J, Knebel B, Schiller M, Krone W, Muller-Wieland D (2002). Primary skin fibroblasts as human model system for proteome analysis. Proteomics; 2: 280-287 Cerca con Google

73. Liu H, Peng HW, Cheng YS, Yuan HS, Yang-Yen HF (2005). Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol Cell Biol; 25: 3117-3126 Cerca con Google

74. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951). Protein measurement with the Folin phenol reagent. J Biol Chem; 193:265-275 Cerca con Google

75. Lupi R, Marselli L, Dionisi S, Del Guerra S, Boggi U, Del Chiaro M, Lencioni C, Bugliani M, Mosca F, Di Mario U, Del Prato S, Dotta F, Marchetti P (2004). Improved insulin secretory function and reduced chemotactic properties after tissue culture of islets from type 1 diabetic patients. Diabetes Metab Res Rev; 20: 246-251 Cerca con Google

76. Lupia E, Elliot SJ, Lenz O, Zheng F, Hattori M, Striker GE, Striker LJ (1999). IGF-1 decreases collagen degradation in diabetic NOD mesangial cells: implications for diabetic nephropathy. Diabetes; 48: 1638-1644 Cerca con Google

77. Lurbe A, Fioretto P, Mauer M, LaPointe MS, Batlle D (1996). Growth phenotype of cultured skin fibroblasts from IDDM patients with and without nephropathy and overactivity of the Na+/H+ antiporter. Kidney Int; 50: 1684-1693 Cerca con Google

78. Mason RM, Wahab NA (2003). Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol; 14: 1358-1373 Cerca con Google

79. Matsumura F, Yamashiro S (1993). Caldesmon. Curr Opin Cell Biol; 5: 70-76 Cerca con Google

80. McRobert EA, Gallicchio M, Jerums G, Cooper ME, Bach LA (2003). The amino-terminal domains of the ezrin, radixin, and moesin (ERM) proteins bind advanced glycation end products, an interaction that may play a role in the development of diabetic complications. J Biol Chem; 278: 25783-25789 Cerca con Google

81. Merkulova T, Lucas M, Jabet C, Lamandé N, Rouzeau JD, Gros F, Lazar M, Keller A (1997). Biochemical characterization of the muscle-specific enolase: developmental changes in electrophoretic variants and selective binding to other proteins. Biochem J; 323:791-800 Cerca con Google

82. Meyer C, Tolias A, Platanisiotis D, Stumvoll M, Vlachos L, Mitrakou A (2005). Increased renal glucose metabolism in Type 1 diabetes mellitus. Diabet Med; 22: 453-459 Cerca con Google

83. Mezzano S, Droguett A, Burgos ME, Ardiles LG, Flores CA, Aros CA, Caorsi I, Vio CP, Ruiz-Ortega M, Egido J (2003). Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy. Kidney Int; 86: S64-S70 Cerca con Google

84. Nasr CE, Hoogwerf BJ, Faiman C, Reddy SS (1999). United Kingdom Prospective Diabetes Study (UKPDS). Effects of glucose and blood pressure control on complications of type 2 diabetes mellitus. Cleve Clin J Med; 66(4):247-53. Cerca con Google

85. Nelson CL, Karschimkus CS, Dragicevic G, Packham DK, Wilson AM, O'Neal D, Becker GJ, Best JD, Jenkins AJ (2005). Systemic and vascular inflammation is elevated in early IgA and type 1 diabetic nephropathies and relates to vascular disease risk factors and renal function. Nephrol Dial Transplant; 20: 2420-2426 Cerca con Google

86. Nisihara JC, Champion KM (2002). Quantitative evaluation of proteins in one- and two-dimensional polyacrylamide gels using a fluorescent stain. Electrophoresis; 23: 2203-2215 Cerca con Google

87. O'Farrell PH. High resolution two-dimensional electrophoresis of proteins (1975) J Biol Chem; 250(10): 4007-21 Cerca con Google

88. Orth T, Kellner R, Diekmann O, Faus J, Meyer zum Büschenfelde KH, Mayet WJ (1998). Identification and characterization of autoantibodies against catalase and alphaenolase in patients with primary sclerosing cholangitis. Clin Exp Immunol; 112: 507-515 Cerca con Google

89. Paczek L, Gaciong Z, Bartlomiejczyk I, Sebekova K, Birkenmeier G, Heidland A (2001). Protease administration decreases enhanced transforming growth factor-beta 1 content in isolated glomeruli of diabetic rats. Drugs Exp Clin Res; 27: 141-149 Cerca con Google

90. Pagetta A, Folda A, Brunati AM, Finotti P (2003). Identification and purification from the plasma of Type 1 diabetic subjects of a proteolytically active Grp94. Evidence that Grp94 is entirely responsible for plasma proteolytic activity. Diabetologia; 46: 996-1006 Cerca con Google

91. Pancholi V (2001). Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci; 58: 902-920 Cerca con Google

92. Parks WC, Drake RL (1982). Insulin mediates the stimulation of pyruvate kinase by a dual mechanism. Biochem J; 208: 333-337 Cerca con Google

93. Parving HH, Chaturvedi N, Viberti G, Mogensen CE (2002). Does microalbuminuria predict diabetic nephropathy? Diabetes Care; 25(2): 406-7 Cerca con Google

94. Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS (2003). Regression of microalbuminuria in type 1 diabetes. N Engl J Med; 348: 2285-93 Cerca con Google

95. Pessin JE, Saltiel AR (2000). Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest; 106: 165-169 Cerca con Google

96. Phillips K, Kedersha N, Shen L, Blackshear PJ, Anderson P (2004). Arthritis suppressor genes TIA-1 and TTP dampen the expression of tumor necrosis factor, cyclooxygenase 2, and inflammatory arthritis. Proc Natl Acad Sci USA; 101: 2011-2016 Cerca con Google

97. Podestà F, Meregalli G, Ghelardi R, Del Giudice R, Asnaghi V, Maestroni A, Zerbini G (2001). Low Ca2+ pump activity in diabetic nephropathy. Am J Kidney Dis; 38: 465-472 Cerca con Google

98. Raghothama C, Rao P (1996). Degradation of glycated hemoglobin by erythrocytic proteolytic enzymes. Clin Chim Acta; 245: 201-208 Cerca con Google

99. Ritz E (2003). Renal dysfunction: a novel indicator and potential promoter of cardiovascular risk. Clin Med; 3: 357-60 Cerca con Google

100. Roberts RC, Hall PK, Nikolai TF, McKenzie AK (1986). Reduced trypsin binding capacity of alfa 2-macroglobulin in diabetes. Clin Chim Acta; 154: 85-101 Cerca con Google

101. Roep BO (1996). T-cell responses to autoantigens in IDDM. The search for the Holy Grail. Diabetes; 45: 1147-1156 Cerca con Google

102. Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G, Ducasse C, Paul C, Wieske M, Arrigo AP, Buchner J, Gaestel M (1999). Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem; 274: 18947-18956 Cerca con Google

103. Rossing P, Rossing K, Jacobsen P, Parving HH (1995). Unchanged incidence of diabetic nephropathy in IDDM patients. Diabetes; 44: 739-743 Cerca con Google

104. Sakai N, Wada T, Furuichi K, Iwata Y, Yoshimoto K, Kitagawa K, Kokubo S, Kobayashi M, Hara A, Yamahana J, Okumura T, Takasawa K, Takeda S, Yoshimura M, Kida H, Yokoyama H (2005). Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy. Am J Kidney Dis; 45: 54-65 Cerca con Google

105. Sanai T, Sobka T, Johnson T, el-Essawy M, Muchaneta-Kubara EC, Ben Gharbia O, el Oldroyd S, Nahas AM (2000). Expression of cytoskeletal proteins during the course of experimental diabetic nephropathy. Diabetologia; 43: 91-100 Cerca con Google

106. Schena FP, Gesualdo F (2005). Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol; Suppl 1: 30-33 Cerca con Google

107. Schleicher E, Kolm V, Ceol M, Nerlich A (1996). Structural and functional changes in diabetic glomerulopathy. Kidney Blood Press Res; 19: 305-315 Cerca con Google

108. Schreiber V, Masson R, Linares JL, Mattei MG (1998). Chromosomal assignment and expression pattern of the murine Lasp-1 gene. Gene; 207: 171-175 Cerca con Google

109. Schröder M, Kaufman RJ (2005). ER stress and unfolded protein response. Mutat Res; 569: 29-63 Cerca con Google

110. Scott JN, Clark AW, Zochodne DW (1999). Neurofilament and tubulin gene expression in progressive experimental diabetes: failure of synthesis and export by sensory neurons. Brain; 122: 2109-2118 Cerca con Google

111. Sebekova K, Paczek L, Dammrich J, Ling H, Spustova V, Gaciong Z, Heidland A (1997). Effetti della terapia della proteasi nel resto del rene modello di progressiva insufficienza renale. Miner Electrolyte Metab; 23: 291-295 Cerca con Google

112. Shih DQ, Screenan S, Munoz KN, Philipson L, Pontoglio M, Yaniv M, Polonsky KS, Stoffel M (2001). Loss of HNF-1alpha function in mice leads to abnormal expression of genes involved in pancreatic islet development and metabolism. Diabetes; 50: 2472-2480 Cerca con Google

113. Shimoni Y, Rattner JB (2001). Type 1 diabetes leads to cytoskeleton changes that are reflected in insulin action on rat cardiac K+ currents. Am J Physiol. 281: 575-585 Cerca con Google

114. Shinada M, Akdeniz A, Panagiotopoulos S, Jerums G, Bach LA (2000). Proteolysis of insulin-like growth factor-binding protein-3 is increased in urine from patients with diabetic nephropathy. J Clin Endocrinol Metab; 85: 1163-1169 Cerca con Google

115. Singh R, Barden A, Mori T, Beilin L (2001). Advanced glycation end-products: a review. Diabetologia; 44: 129-146 Cerca con Google

116. Sitia R, Molteni SN (2004). Stress, protein (mis)folding, and signaling: the redox connection. Sci STKE; 22(239): pe27 Cerca con Google

117. Southwick FS, DiNubile MJ (1986). Rabbit alveolar macrophages contain a Ca2+-sensitive, 41000-dalton protein which reversibly blocks the "barbed" ends of actin filaments but does not sever them. J Biol Chem; 261: 14191-14195 Cerca con Google

118. Staessen JA, Wang JG, Ginocchio G, Petrov V, Saavedra AP, Soubrier F, Vlietinck R, Fagard R (1997). The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular-renal risk. J Hypertens; 15: 1579-85 Cerca con Google

119. Stossel TP (1993). On the crawling of animal cells. Science; 260: 1086-1094 Cerca con Google

120. Sun HO, Kwiatkowska K, Yin HL (1995). Actin monomer binding proteins. Curr Opin Cell Biol; 7: 102-110 Cerca con Google

121. Sung LA, Fan Y, Lin CC (1996). Gene assignment, expression, and homology of human tropomodulin. Genomics; 34: 92-96 Cerca con Google

122. Tanaka T, Akatsuka S, Ozeki M, Shirase T, Hiai H, Toyokuni S (2004). Redox regulation of annexin 2 and its implications for oxidative stress-induced renal carcinogenesis and metastasis. Oncogene; 23: 3980-3989 Cerca con Google

123. Theriault JR, Lambert H, Chavez-Zobel AT, Charest G, Lavigne P, Landry J (2004). Essential role of the NH2-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27. J Biol Chem; 279: 23463-23471 Cerca con Google

124. Theriot JA, Mitchison TJ (1991). Actin microfilament dynamics in locomoting cells. Nature; 352: 126-131 Cerca con Google

125. Trevisan R, Fioretto P, Barbosa J, Mauer M (1999). Insulindependent diabetic sibling pairs are concordant for sodiumhydrogen antiport activity. Kidney Int; 55: 2383-2389 Cerca con Google

126. Trevisan R, Li LK, Messent J, Tariq T, Earle K, Walker JD, Viberti G (1992). Na+/H+ antiport activity and cell growth in cultured skin fibroblasts of IDDM patients with nephropathy. Diabetes; 41: 1239-1246 Cerca con Google

127. Trevisan R., Cipollina MR., Duner E, Trevisan M, Nosadini R (1996). Abnormal Na+/H+ antiport activity in coltured fibroblasts from NIDDM patients with hypertension and microalbuminuria. Diabetologia; 39: 717-24 Cerca con Google

128. Tsukita S, Yonemura S (1999). Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins. J Biol Chem; 274: 34507-3451 Cerca con Google

129. Valmadrid CT, Klein R, Moss SE, Klein BE (2000). The risk of cardiovascular disease mortality associated with microalbuminuria and gross proteinuria in persons with older-onset diabetes mellitus. Arch Intern Med; 160:1093-1100 Cerca con Google

130. Vercoutter-Edouart AS, Czeszak X, Crepin M, Lemoine J, Boilly B, Le Bourhis X, Peyrat JP, Hondermarck H (2001). Proteomic detection of changes in protein synthesis induced by fibroblast growth factor-2 in MCF-7 human breast cancer cells. Exp Cell Res; 262: 59-68 Cerca con Google

131. Viberti GC, Yip Messent J, Morocutti A (1992). Diabetic nephropathy. Future avenue. Diabetes Care; 15: 1216-25 Cerca con Google

132. Voges D, Zwickl P, Baumeister W (1999). The 26S proteasome: A molecular machine designed for controlled proteolysis. Annu Rev Biochem; 68: 1015-1068 Cerca con Google

133. Walter G, Büssow K, Cahill D, Lueking A, Lehrach H (2000). Protein arrays for gene expression and molecular interaction screening. Curr Opin Biotech; 3: 298-302 Cerca con Google

134. Welch WJ (1992). Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev; 72: 1063-1081 Cerca con Google

135. Weller PA, Ogryzko EP, Corben EB, Zhidkova NI, Patel B, Price GJ, Spurr NK, Koteliansky VE, Critchley DR (1990). Complete sequence of human vinculin and assignment of the gene to chromosome 10. Proc Nat Acad Sci; 87, 5667-5671 Cerca con Google

136. Weston BS, Wahab NA, Roberts T, Mason RM (2001). Bacitracin inhibits fibronectin matrix assembly by mesangial cells in high glucose. Kidney Int; 60: 1756-1764 Cerca con Google

137. Worrall G. (1994). Results of the DCCT trial. Implications for managing our patiens with diabetes. Can Fam Physician; 40: 1955-60, 1963-5 Cerca con Google

138. Xia J, Bogardus C, Prochazka M (1999). A type 2 diabetes-associated polymorphic ARE motif affecting expression of PPP1R3 is involved in RNA-protein interactions. Mol Genet Metab; 68: 48-55 Cerca con Google

139. Yabe-Nishimura C (1998). Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol Rev; 50: 21-33 Cerca con Google

140. Yamashiro S, Chern H, Yamakita Y, Matsumura F (2001). Mutant caldesmon lacking cdc2 phospho-rylation sites delays M-phase entry and inhibits cytokinesis. Mol Biol Cell; 12: 239-250 Cerca con Google

141. Yan L, Ge H, Li H, Lieber SC, Natividad F, Resuello RR, Kim SJ, Akeju S, Sun A, Loo K, Peppas AP, Rossi F, Lewandowski ED, Thomas AP, Vatner SF, Vatner DE (2004). Gender-specific proteomic alterations in glycolytic and mitochondrial pathways in aging monkey hearts. J Mol Cell Cardiol; 37: 921-929 Cerca con Google

142. Yip J, Mattock MB, Morocutti A, Sethi M, Trevisan R, Viberti G (1993). Insulin resistance in insulin-dependent diabetic patients with microalbuminuria. Lancet; 342: 883-887 Cerca con Google

143. Yokoyama T, Yamane K, Minamoto A, Tsukamoto H, Yamashita H, Izumi S, Hoppe G, Sears JE, Mishima HK (2006). High glucose concentration induces elevated expression of anti-oxidant and proteolytic enzymes in cultured human retinal pigment epithelial cells. Exp Eye Res; 83(3): 602-609 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record