Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Finezzo, Maria Letizia (2008) Confronto strutturale e studio dell'attività  biologica di Angiogenina e Lactogenina per possibili applicazioni di terapia medica e ingegneria tissutale. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

Ribonucleases (RNases) are proteins involved into many biological processes and hydrolysis of ribonucleic acid. The topic of this study has been the structural and functional characterization of three bovine proteins, namely RNase-A, Angiogenin-1 (bANG) and Lactogenin. The enzymatic, pro-angiogenic and cytotoxic activity has been evaluated. RNase-A is the best known protein showing a strong ribonucleolytic activity and a low cytotoxic action.
bANG is a single-chain polypeptide stimulating angiogenesis; it has a weak ribonucleolytic activity necessary, but not sufficient, to induce the neoformation of blood vessels.
Lactogenin, also named RNase BL-4, has been relatively poorly studied. In this study the relationship between molecular structure and biological activity of the three RNases has been evaluated by spectroscopy, ribonucleolytic activity analysis and, finally, by their effects on the viability of human endothelial or cancerous cellular cultures.
High homology level of primary structure is resulted for all three under study proteins. Moreover, disulfide architecture is preserved except the missing of one bridge in bANG and the presence of a pyroglutamic residue at the N-terminus of Lactogenin. It is known that RNase-A is far more active in cleaving dinucleotide substrates as CpG and UpG in comparison with Lactogenin and bANG. On the other hand, Lactogenin presents a higher specificity for UpG instead of CpG than bANG. Angiogenin has been treated with immobilized trypsin in order to obtain its tryptic peptides and identify which part of protein is more involved into biological activity.
The research study has shown that bANG stimulates the proliferation and capillary-like structures formation of Huvec endothelial cells in Matrigel in vitro angiogenic assay. The fragment 1-6 (N-terminal, termed P1) and the fragment 56-61
have stimulated a cellular proliferation response comparable to the native protein's one while the C-terminal fragment 103-124 has exhibited an inhibition effect. Moreover, in the presence of all the fragments P1, 56-61 and C-terminal the cells have demonstrated branch points formation, after seeding on Matrigel. The activity of Lactogenin has been comparable to the one of bANG, even if less strong, while RNase-A have not stimulated HUVEC cells' proliferation or differentation on Matrigel. Angiogenin and Lactogenin have been shown to promote the migration of cultured endothelial cells and the
neovascularization in the chicken chorioallantoic membrane. The attachment and growth of HUVEC cells on synthetic materials such as polycaprolactone scaffolds seem to be improved by the addition of Angiogenin and its N-terminal fragment to the culture medium. The cytotoxic properties of RNase-A, bANG and Lactogenin have been valuated by using some tumor cell lines. bANG has expressed a stronger cytotoxic
potential, inducing cell death by an apoptotic mechanism. In comparison with RNase A, the major cytotoxicity of bANG could be explained as a minor interaction with the RNAse inhibitor (RI). This hypothesis has been verified modelling bANG structure on the complex human Angiogenin-hRI, as the protein conformation is not so different in the complex from the free form. Many different contacts with hRI have been observed in hANG and bANG. One of the principal anchorage sites of hRI to hANG is resulted the Pro 88 residue, which lies within a hydrophobic pocket defined by three tryptophan residues of hRI. In bANG, the replacing of Pro88, with Ser89 causes a steric and electrostatic strain in the inhibitor enzymatic complex, decreasing the susceptibility of bANG to the inactivation by RI. Further studies will clarify the binding of bANG to hRI by calculating the inhibition constant.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Grandi, Claudio
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > BIOLOGIA E MEDICINA DELLA RIGENERAZIONE > INGEGNERIA DEI TESSUTI E DEI TRAPIANTI
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):Angiogenina Lactogenina Ribonucleasi Angiogenesi Ingegneria dei tessuti Citotossicità 
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/15 Biologia farmaceutica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Farmaceutiche
Codice ID:476
Depositato il:17 Ott 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Acharya K.R., Shairo R., Allen S.C., Riordan J.F. and Vallee B.L. Crystal structure of human angiogenin reveals the structural basis for its functional divergence from ribonuclease. Proc. Natl. Acad. Sci. USA, 91, 2915-2919, 1994. Cerca con Google

2. Bicknell R. and Vallee B.L. Angiogenin activates endothelial cell phospholipase C. Proc Natl Acad Sci U S A 85, 5961-65,1988. Cerca con Google

3. Blaser J., Triebel S., Kopp C. and Tschesche H. A highly sensitive immunoenzymometric assay for the determintion of angiogenin. Eur J Chem Clin Biochem 31 (8): 513-6, 1993 Cerca con Google

4. Boix E., Wu Y., Vasandani V.M., Saxena S.K., Ardelt W., Ladner J., Youle R.J. Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity. J Mol Biol. 19;257(5):992-1007,1996. Cerca con Google

5. Bond M.D. and Strydom D.J. Amino acid sequence of bovine angiogenin. Biochemistry 28, 6110-13, 1989. Cerca con Google

6. Bond MD, Vallee BL. Isolation of bovine angiogenin using a placental ribonuclease inhibitor binding assay. Biochemistry. 27(17): 6282-7, 1988. Cerca con Google

7. Boyden, S.V. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115: 453, 1962. Cerca con Google

8. Carsana A., Confalone E., Palmieri M., Libonati M. and Furia A., Structure of the bovine pancreatic ribonuclease gene: the unique intervening sequence in the 5' untranslated region contains a promoter-like element. Nucleic Acids Res., 16, 5491- 5502, 1988. Cerca con Google

9. Chen C.Z. and Shapiro R. Site-specific mutagenesis reveals differences in the structural bases for tight binding of RNase inhibitor to angiogenin and RNase A Proc. Natl. Acad. Sci. USA 94, 1761-1766, 1997 Cerca con Google

10. Chang S.I., Jeong G.B., Park S.H., Ahn B.C., Choi J.D., Chae Q., Namgoong S.K., Chung S.I. Detection, quantitation, and localization of bovine angiogenin by immunological assays. Biochem Biophys Res Commun. 232(2), 323-327, 1997 Cerca con Google

11. Coombes A.G.A., Rizzi S.C, Williamsonc M.,. Barraletd J.E, Downesa S., Wallacee W.A. Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials 25(2), 315-325, 2004. Cerca con Google

12. Costanzi J., Sidransky D., Navon A., Goldsweig H. Ribonucleases as a novel proapoptotic anticancer strategy: review of the preclinical and clinical data for ranpirnase. Cancer Invest. 23(7):643-50, 2005. Cerca con Google

13. Di Liddo R. Ingegneria del tessuto adiposo: adipogenesi e apetti applicativi. Tesi di dottorato. 2005. Cerca con Google

14. Dimmmeler S., Zeiher A.M. Endothelial cell apoptosis in angiogenesis and vessel regression. Circ. Res. 87: 434-439, 2000. Cerca con Google

15. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6(7): 1948-54, 1967. Cerca con Google

16. Fant J. Caratterizzazione dell'Angiogenina mediante lo studio dei suoi peptidi triptici. Valutazione dell'attività biologica. Lavoro di Tesi. AA 2003-2004. Cerca con Google

17. Fett J.W, Rybak R.M., Auld D.S., St.Clair D.K, Yao Q. C-Terminal Angiogenin peptides inhibit the biological and enzymatic activities of angiogenin. Biochem Biophys Res Commun 162(1): 535-543, 1989. Cerca con Google

18. Finezzo M.L., Studi sull'angiogenina. Analisi dell'attività enzimatica. Lavoro di Tesi. AA 2003-2004. Cerca con Google

19. Genove E., Shen C., Zhanga S., Semino C.E. The effect of functionalized selfassembling peptide scaffolds onhuman aortic endothelial cell function. Biomaterials 26 3341-3351,2005. Cerca con Google

20. Green H., Meuth M. An established pre-adipose cell line and its differentiation in culture. Cell 3: 127-133, 1974. Cerca con Google

21. Greenfield, N. and Fasman, G.D., Computer circular dichroism spectra for the evaluation of protein conformation. Biochemistry, 8: 4108-4116, 1969 Cerca con Google

22. Guerra M. Isolamento di angiogenina da latte vaccino e preparazione di frammenti peptidici con potenziale attività angiogenica. Tesi di Laurea AA 1999-2000. Cerca con Google

23. Hallan T.W., Shapiro R., Vallee B.L. Dual site model for organogenic activity of angiogenin. Proc. Natl. Acad. Sci. USA, 88:2222-6, 1991. Cerca con Google

24. Harper J.W. and Vallee B.L., A covalent Angiogenin ribonuclease hybrid with fourth disulfide bond generated by regional mutagenesis. Biochemstry 28,1875-84, 1989. Cerca con Google

25. Hosoya K., Nagareda Y., Hasemi S., Sanda A., Takizawa Y., Watanabe H., Ohgi K. and Irie M., Primary structure of an alkaline ribonuclease from bovine liver. J. Biochem., 107, 613-618, 1990. Cerca con Google

26. Hu G., Riordan J.F., Vallee B.L. A putative angiogenin receptor in angiogeninresponsive human endhotelial cells. Proc. Natl. vAcad. Sci. USA. 94:2204-9,1997. Cerca con Google

27. Hu G., Xu C., Riordan J.F. Human angiogenin is rapidly translocated to the nucleus of human umbilical vein endothelial cells and binds to DNA. J Cell Biochem76(3):452-62, 2000. Cerca con Google

28. Ilinskaya, Olga N., Dreyer, Florian, Mitkevich, Vladimir A., Shaw, Kevin L., Pace, C. Nick and Makarov, Alexander A., Changing the net charge from negative to positive makes ribonuclease Sa cytotoxic. Protein Science, 11(10), 2522-2525, 2002. Cerca con Google

29. Iordanov M.S., Ryabinina O.P., Wong J., Dinh T.H., Newton D.L., Rybak S.M., Magun B.E. Molecular determinants of apoptosis induced by the cytotoxic ribonuclease onconase: evidence for cytotoxic mechanisms different from inhibition of protein synthesis. Cancer Res. 60(7), 1983-94, 2000. Cerca con Google

30. Jaffe,E. A., Nachman R.L., Becker C.G. and Minck C.R., Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52: 2745-2756, 1973. Cerca con Google

31. Kim J.S., Soucek J., Matousek J., Raines R.T. Structural basis for the biological activities of bovine seminal ribonuclease.J Biol Chem.270(18):10525-30,1995. Cerca con Google

32. Kishimoto K., Liu S., Tsuji T., Olson K.A., Hu G.F. Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis Oncogene.24(3):445-56, 2005 Cerca con Google

33. Kubota Y., Kleinman H.K., Martin G.R. and Lawley T.J. Role of Laminin and Basement Membrane in the Morphological Differentiation of Human Endothelial Cells into Capillary-like Structures. The Journal of Cell Biology, 107,1589-1598,1988 Cerca con Google

34. Langer R., Vacanti J.P., Tissue engineering , Science, 260: 920-926, 1993. Cerca con Google

35. Lee F.S. and Valle B.L. Binding of placental ribonuclease inhibitor to the active site of angiogenin. Biochemstry, 28, 3556-3561, 1989 Cerca con Google

36. Lee F.S. and Vallee B.L. Characterization of ribonucleolytic activity of Angiogenin towards tRNA. Biochem Biophys Res Commun 161(1), 121-126, 1989. Cerca con Google

37. Lee F.S., Shapiro R., and Valle B.L., Tight-binding inhibition of angiogenin and ribonuclease A by placental ribonuclease inhibitor. Biochemstry 28, 225.230, 1989. Cerca con Google

38. Leland P.A., Schultz L.W., Byung-Moon Kim, Raines T. Ribonuclease A variants with potent cytotoxic activity. Proc. Natl. Acad. Sci. USA, 95, 10407-10412, 1998. Cerca con Google

39. Leoinidas D.D, Shapiro R., Subbarao G.V., Russo N. and Acharya R.R. Crystallographic studies of the C-Terminal segment of Human Angiogenin in defining enzymatic potency. Biochemstry. 41,(8), 2552-62, 2002. Cerca con Google

40. Liao, You-Di; Wang, Sui-Chi; Leu, Ying-Jen; Wang, Chiu-Feng; Chang, Shu-Ting; Hong, Yu-Ting; Pan, Yun-Ru and Chen, Chinpan, The structural integrity exerted by Nterminal pyroglutamate is crucial for the cytotoxicity of frog ribonuclease from Rana pipiens. Nucleic Acids Research, 31(18), 5247-5255, 2003. Cerca con Google

41. Makarov A.A., Ilinskaya O.N. Cytotoxic ribonucleases: molecular weapons and their targets. FEBS Lett. 540(1-3):15-20, 2003. Cerca con Google

42. Malamitsi-Puchner A., Sarandakou A., Giannaki G., Rizos D., Phocas I. Changes of angiogenin serum concentrations in the perinatal period. Pediatr Res. 41(6), 909-911, 1997. Cerca con Google

43. Naddeo, M., Vitagliano, L., Russo, A., Gotte, G., D'Alessio, G. and Sorrentino, S., Interactions of the cytotoxic RNase A dimers with the cytosolic ribonuclease inhibitor. FEBS Lett., 579(12), 2663-8, 2005. Cerca con Google

44. Narmoneva D.A., Onib O., Sieminski A.L., ZhangS., Gertler J.P., Kamm R.D., T. Leea R.T., Self-assembling short oligopeptides and the promotion of angiogenesis Biomaterials 26 4837-4846, 2005. Cerca con Google

45. Ng T.B., Ye X.Y. and Cheng K.J., Isolation and characterization of angiogenin-1 and a novel protein designated lactogenin from bovine milk. Biochem Biophys Res Commun, 263: 187-91, 1999. Cerca con Google

46. Ng, T.B., Lam, T.L., Au, T.K., Ye, X.Y. and Wan, C.C., Inhibition of human immunodeficiency virus type 1 reverse transcriptase, protease and integrase by bovine milk proteins. Life sci., 69(19), 2217-23, 2001. Cerca con Google

47. Papageorgiou A.C., Shapiro R., Acharya K.R. Molecular recognition of human angiogenin by placental ribonuclease inhibitor--an X-ray crystallographic study at 2.0 A resolution. EMBO J. 16. 5162-5177,1997. Cerca con Google

48. Parcianello A. Studi mediante spettrometria di massa dell'angiogenina bovina e di peptidi da essa derivati. Lavoro di Tesi AA 2000 - 2001. Cerca con Google

49. Pepper M.S., Mandriota S.J., Vassalli J.D., Orci L., Montesano R. Angiogenesisregulating cytokines: activities and interactions. Curr Top Microbiol Immunol 213:31-67, 1996. Cerca con Google

50. Rausch, Jason W., Sathyanarayana, B. K., Bona, Marion K. and Le Grice, Stuart F. J., Probing contacts between the ribonuclease H domain of HIV-1 reverse transcriptase and nucleic acid by site-specific photocross-linking. J. Biol. Chem., 275(21), 16015-16022, 2000. Cerca con Google

51. Ribatti D., Guidolin D., Conconi M.T., Nico B., Baiguera S., Parnigotto P.P., Vacca A. and Nussdorfer G.G. Vinblastine inhibits the angiogenic response induced by adrenomedullin in vitro and in vivo. Oncogene 22(41): 6458-61,2003 Cerca con Google

52. Ribatti D., Vacca A., Roncali L. and Dammacco F. The chick embryo chorionallantoic membrane as a model for in vivo research on angiogenesis. Int. J. Dev. Biol. 40, 1189-1197, 1996. Cerca con Google

53. Rosenberg1, Helene F. and Domachowske, Joseph B., Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. Journal of Leukocyte Biology, 70(5), 691-698, 2001. Cerca con Google

54. Rosenberg2, Helene F., Zhang, Jianzhi, Liao, You-Di and Dyer, Kimberly D., Rapid Diversification of RNase A Superfamily Ribonucleases from the Bullfrog, Rana catesbeiana. J. Mol. Evol., 53(1), 31-38, 2001. Cerca con Google

55. Rutkoski T.J., Kurten E.L., Mitchell J.C., Raines RT. Disruption of shapecomplementarity markers to create cytotoxic variants of ribonuclease A. J Mol Biol. 18, 41-54. 2005 Cerca con Google

56. Russo N., Nobile V, Di Donato A., Riordan J.F. and Vallee B.L. The C-terminal region of Human Angiogenin has a dual role in enzymatic activity. Biochemstry 93, 3243-47, 1996 Cerca con Google

57. Schnaper H.W., Kleinman H.K., Grant D.S., Role of laminin in endhotelial cell recognition and differentiation. Kidney International 43: 20-25, 1993. Cerca con Google

58. Shapiro R. and Vallee B.L. Site-directed mutagenesis of histidine-13 and histidine-114 of Human Angiogenin. Alanine derivates inhibit Angiogenin-induced angiogenesis. Biochemstry 28,7401-08, 1989. Cerca con Google

59. Shapiro R. and Vallee B.L. Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activity of Angiogenin. Proc. Natl. Acad. Sci. USA, 84, 2238-2241, 1987 Cerca con Google

60. Shapiro R., Hallahan T.W and Vallee B.L. Dual site model for the angiogenic activity of Angiogenin. Proc. Natl Acad Sci USA 88, 2222-26, 1991. Cerca con Google

61. Shapiro R., Riordan J.F. and Valle B.L. Characteristic ribonucleolytic activity of Human Angiogenin. Biochemstry 25 3527-32, 1986 Cerca con Google

62. Smith M.R., Newton D.L., Mikulski S.M., Rybak S.M. Cell cycle-related differences in susceptibility of NIH/3T3 cells to ribonucleases. Exp Cell Res. 247(1):220-32, 1999 Cerca con Google

63. Smyth D.G., Stein W.H. and Moore S., The sequence of amino acid residues in bovine pancreatic ribonuclease: revisions and confirmation. J Biol Chem, 238, 227-234, 1963. Cerca con Google

64. Thomas, Brian C., Chamberlain, Joel, Engelke, David R. and Gegenheimer, Peter, Evidence for an RNA-based catalytic mechanism in eukaryotic nuclear ribonuclease P. RNA, 6(4), 554-562, 2000. Cerca con Google

65. Vallee B.L., Fett J.W., Strydom D.J., Lobb R.R., Alderman E.M., Bethune J.L. and Riordan J.F. Isolation and characterization of Angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24, 5480-6, 1985. Cerca con Google

66. Vallee B.L., Hu G.F., Strydom D. J., Fett J.W. and Riordan J.F. Actin is a binding protein for Angiogenin. Proc Natl Acad Sci USA 90, 1217-21, 1993. Cerca con Google

67. Vallee B.L., Shapiro R., Strydom D.J. and Olson K.A. Isolation of angiogenin from normal human plasma. Biochemistry 26, 5141-6, 1987. Cerca con Google

68. Zhang S., Holmes T.C., Lockshin C. & Rich A. Spontaneous assembly of a selfcomplementary oligopeptide to form a stable macroscopic membrane. Proc. Natl. Acad. Sci. Usa; 90: 3334- 1993. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record