Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Kaludercic, Nina (2008) Role of monoamine oxidase A in cardiac hypertrophy and transition to heart failure. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

Oxidative stress has been implicated in numerous pathologies and a number of intracellular sources of ROS have already been identified. Mitochondria and especially mitochondrial respiratory chain, are considered as major intracellular sources of ROS. However, other potential sites responsible for ROS generation are present in the mitochondria and could be equally important, but have not been investigated up to date. In the present thesis, we investigated the role of monoamine oxidases, flavoenzymes located at the level of outer mitochondrial membrane, in the oxidative stress in cardiac myocytes, in relation to cardiac remodeling and transition from hypertrophy to heart failure.
Initially, the expression level of each MAO isoform was determined at the cardiac level. These studies showed that MAO-A is the major isoform present at the cardiac level and that low concentrations of clorgyline (0.05-1 ?M) are able to completely prevent H2O2 production in the presence of MAO substrates such as tyramine and serotonin. At this concentration clorgyline did not affect mitochondrial function or ROS production by mitochondrial respiratory chain.
To investigate the role of MAO in the oxidative stress, HL-1 cardiomyocytes were treated with H2O2 or arachidonic acid to induce an increase in ROS production measured by fluorescent probe Mitotracker Red. Treatment with these agents induced a 1.6- and 1.4-fold increase in oxidative stress, respectively. When cells were pretreated with 1 ?M clorgyline, specific inhibitor of MAO-A isoform, this increase in ROS production was reduced or completely prevented. On the contrary, when cells were pretreated with specific MAO-B inhibitor selegiline, no protective effect was observed. This suggests that MAO-A is the major isoform expressed at the cardiomyocyte level and involved in the oxidative stress. To further confirm the specificity of MAO-A inhibition, we genetically silenced the expression of MAO-A by 90% by means of siRNA. Results identical to those obtained using the pharmacological inhibitor clorgyline were observed in siRNA treated cells. These results unequivocally demonstrate that MAO inhibitors are specific and that MAO-A plays an important role in the onset and amplification of oxidative stress.
Given the relevant role of MAO-A in the oxidative stress, we investigated its involvement in hypertrophy and heart failure, a condition strongly favored by increased oxidative burden. In vitro studies revealed that MAO-A expression was increased by 2-fold when neonatal rat cardiomyocytes were stimulated with prohypertrophic agent norepinephrine (NE) and incubation of the cells with clorgyline reduced the extent of NE-induced hypertrophy. Furthermore, stimulation of MAO-A activity by its substrate tyramine induced the expression of NFAT3 and NFAT4, well known mediators of maladaptive hypertrophy, and this increase was significantly reduced in cells pretreated with clorgyline. These changes were paralleled by an increase in mitochondrial ROS production, which was completely prevented with clorgyline.
To further confirm whether these in vitro findings could be of any significance in a more complex, in vivo setting, C57Bl6 mice were subjected to transverse aortic constriction (TAC) to induce pressure-overload. This procedure initially results in concentric hypertrophy as a compensatory mechanism for the
increase in pressure, leading to eccentric hypertrophy, chamber dilation and heart failure in a long term. MAO-A expression was 3.6-fold higher in mice after 6 weeks of TAC, a time-point associated with chamber dilation and decreased left ventricular (LV) function. Inhibition of MAO-A (CLO) in these mice resulted in reduced hypertrophy and LV dimensions compared to control mice, as calculated LV mass was significantly reduced in CLO group. LV end-diastolic and endsystolic dimensions were 3.5- and 1.3-fold increased in saline treated mice, reflecting chamber remodeling and dilation. This increase in chamber dimensions was absent in CLO group. Cardiac function was also markedly improved in CLO group. Both fractional shortening and ejection fraction were comparable to the values measured in sham operated mice, while they were reduced by 50% in saline treated mice. Differences in morphological and functional data were accompanied also by changes at the molecular level. Fetal gene reprogramming, measured as increase in ANP expression was 4-fold reduced in CLO mice. Reduction in hypertrophy and improvement in cardiac function were also associated with decreased levels of oxidative stress in CLO mice, as determined by DHE staining, and reduced activation of pro-hypertrophic and pro-apoptotic pathways, determined by measuring the levels of activated Akt and cleaved caspase 3. This suggests that clorgyline exerts its protective effects by reducing the levels of oxidative stress and promoting cell viability.
Taken together, these data demonstrate for the first time that MAO-A plays a major role in the onset and amplification of oxidative stress, contributing to the transition from compensated hypertrophy to dilated cardiomyopathy in vivo.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Di Lisa, Fabio
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > BIOCHIMICA E BIOTECNOLOGIE > BIOCHIMICA E BIOFISICA
Data di deposito della tesi:January 2008
Anno di Pubblicazione:January 2008
Key Words:monoamine oxidase A, oxidative stress, hypertrophy, heart failure
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Struttura di riferimento:Dipartimenti > pre 2012 Dipartimento di Chimica Biologica
Codice ID:480
Depositato il:19 Sep 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

(1) Chen ZY, Powell JF, Hsu YP, Breakefield XO, Craig IW. Organization of the human monoamine oxidase genes and long-range physical mapping around them. Genomics 1992 September;14(1):75-82. Cerca con Google

(2) Grimsby J, Chen K, Wang LJ, Lan NC, Shih JC. Human monoamine oxidase A and B genes exhibit identical exon-intron organization. Proc Natl Acad Sci U S A 1991 May 1;88(9):3637-41. Cerca con Google

(3) Bach AW, Lan NC, Johnson DL et al. cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci U S A 1988 July;85(13):4934- 8. Cerca con Google

(4) Edmondson DE, Mattevi A, Binda C, Li M, Hubalek F. Structure and mechanism of monoamine oxidase. Curr Med Chem 2004 August;11(15):1983-93. Cerca con Google

(5) Chen ZY, Hotamisligil GS, Huang JK et al. Structure of the human gene for monoamine oxidase type A. Nucleic Acids Res 1991 August 25;19(16):4537-41. Cerca con Google

(6) Edmondson DE, Binda C, Mattevi A. The FAD binding sites of human monoamine oxidases A and B. Neurotoxicology 2004 January;25(1- 2):63-72. Cerca con Google

(7) Abell CW, Kwan SW. Molecular characterization of monoamine oxidases A and B. Prog Nucleic Acid Res Mol Biol 2001;65:129-56. Cerca con Google

(8) Binda C, Newton-Vinson P, Hubalek F, Edmondson DE, Mattevi A. Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat Struct Biol 2002 January;9(1):22-6. Cerca con Google

(9) De CL, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A. Threedimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proc Natl Acad Sci U S A 2005 September 6;102(36):12684-9. Cerca con Google

(10) Binda C, Li M, Hubalek F, Restelli N, Edmondson DE, Mattevi A. Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proc Natl Acad Sci U S A 2003 August 19;100(17):9750-5. Cerca con Google

(11) Kearney EB, Salach JI, Walker WH et al. The covalently-bound flavin of hepatic monoamine oxidase. 1. Isolation and sequence of a flavin peptide and evidence for binding at the 8alpha position. Eur J Biochem 1971 December;24(2):321-7. Cerca con Google

(12) Youdim MB, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 2006 April;7(4):295- 309. Cerca con Google

(13) Tipton KF, Boyce S, O'Sullivan J, Davey GP, Healy J. Monoamine oxidases: certainties and uncertainties. Curr Med Chem 2004 August;11(15):1965-82. Cerca con Google

(14) Cases O, Seif I, Grimsby J et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 1995 June 23;268(5218):1763-6. Cerca con Google

(15) Lenders JW, Eisenhofer G, Abeling NG et al. Specific genetic deficiencies of the A and B isoenzymes of monoamine oxidase are characterized by distinct neurochemical and clinical phenotypes. J Clin Invest 1996 February 15;97(4):1010-9. Cerca con Google

(16) Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 1993 October 22;262(5133):578-80. Cerca con Google

(17) Shih JC. Cloning, after cloning, knock-out mice, and physiological functions of MAO A and B. Neurotoxicology 2004 January;25(1-2):21- 30. Cerca con Google

(18) Rebsam A, Seif I, Gaspar P. Dissociating barrel development and lesioninduced plasticity in the mouse somatosensory cortex. J Neurosci 2005 January 19;25(3):706-10. Cerca con Google

(19) Berry MD, Juorio AV, Paterson IA. The functional role of monoamine oxidases A and B in the mammalian central nervous system. Prog Neurobiol 1994 February;42(3):375-91. Cerca con Google

(20) Kitahama K, Maeda T, Denney RM, Jouvet M. Monoamine oxidase: distribution in the cat brain studied by enzyme- and immunohistochemistry: recent progress. Prog Neurobiol 1994 January;42(1):53-78. Cerca con Google

(21) Luque JM, Biou V, Nicholls JG. Three-dimensional visualization of the distribution, growth, and regeneration of monoaminergic neurons in whole mounts of immature mammalian CNS. J Comp Neurol 1998 January 19;390(3):427-38. Cerca con Google

(22) Arai R, Kimura H, Nagatsu I, Maeda T. Preferential localization of monoamine oxidase type A activity in neurons of the locus coeruleus and type B activity in neurons of the dorsal raphe nucleus of the rat: a detailed enzyme histochemical study. Brain Res 1997 January 16;745(1- 2):352-6. Cerca con Google

(23) Levitt P, Pintar JE, Breakefield XO. Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc Natl Acad Sci U S A 1982 October;79(20):6385-9. Cerca con Google

(24) Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW. Distinct monoamine oxidase A and B populations in primate brain. Science 1985 October 11;230(4722):181-3. Cerca con Google

(25) Westlund KN, Denney RM, Rose RM, Abell CW. Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience 1988 May;25(2):439-56. Cerca con Google

(26) Fowler JS, Logan J, Wang GJ et al. Monoamine oxidase A imaging in peripheral organs in healthy human subjects. Synapse 2003 September 1;49(3):178-87. Cerca con Google

(27) Sivasubramaniam SD, Finch CC, Rodriguez MJ, Mahy N, Billett EE. A comparative study of the expression of monoamine oxidase-A and –B mRNA and protein in non-CNS human tissues. Cell Tissue Res 2003 September;313(3):291-300. Cerca con Google

(28) Saura J, Kettler R, Da PM, Richards JG. Quantitative enzyme radioautography with 3H-Ro 41-1049 and 3H-Ro 19-6327 in vitro: localization and abundance of MAO-A and MAO-B in rat CNS, peripheral organs, and human brain. J Neurosci 1992 May;12(5):1977- 99. Cerca con Google

(29) Shih JC, Chen K. Regulation of MAO-A and MAO-B gene expression. Curr Med Chem 2004 August;11(15):1995-2005. Cerca con Google

(30) Edelstein SB, Breakefield XO. Monoamine oxidases A and B are differentially regulated by glucocorticoids and "aging" in human skin fibroblasts. Cell Mol Neurobiol 1986 June;6(2):121-50. Cerca con Google

(31) Youdim MB, Banerjee DK, Kelner K, Offutt L, Pollard HB. Steroid regulation of monoamine oxidase activity in the adrenal medulla. FASEB J 1989 April;3(6):1753-9. Cerca con Google

(32) Zhu QS, Grimsby J, Chen K, Shih JC. Promoter organization and activity of human monoamine oxidase (MAO) A and B genes. J Neurosci 1992 November;12(11):4437-46. Cerca con Google

(33) Zhu QS, Chen K, Shih JC. Bidirectional promoter of human monoamine oxidase A (MAO A) controlled by transcription factor Sp1. J Neurosci 1994 December;14(12):7393-403. Cerca con Google

(34) Yang L, Omori K, Suzukawa J, Inagaki C. Calcineurin-mediated BAD Ser155 dephosphorylation in ammonia-induced apoptosis of cultured rat hippocampal neurons. Neurosci Lett 2004 February 26;357(1):73-5. Cerca con Google

(35) Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem 1992 November;59(5):1609-23. Cerca con Google

(36) Cesura AM, Pletscher A. The new generation of monoamine oxidase inhibitors. Prog Drug Res 1992;38:171-297. Cerca con Google

(37) Bianchi P, Kunduzova O, Masini E et al. Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury. Circulation 2005 November 22;112(21):3297-305. Cerca con Google

(38) Pchejetski D, Kunduzova O, Dayon A et al. Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase Aassociated cardiac cell apoptosis. Circ Res 2007 January 5;100(1):41-9. Cerca con Google

(39) Bianchi P, Pimentel DR, Murphy MP, Colucci WS, Parini A. A new hypertrophic mechanism of serotonin in cardiac myocytes: receptorindependent ROS generation. FASEB J 2005 April;19(6):641-3. Cerca con Google

(40) Coatrieux C, Sanson M, Negre-Salvayre A et al. MAO-A-induced mitogenic signaling is mediated by reactive oxygen species, MMP-2, and the sphingolipid pathway. Free Radic Biol Med 2007 July 1;43(1):80-9. Cerca con Google

(41) Maurel A, Hernandez C, Kunduzova O et al. Age-dependent increase in hydrogen peroxide production by cardiac monoamine oxidase A in rats. Am J Physiol Heart Circ Physiol 2003 April;284(4):H1460-H1467. Cerca con Google

(42) Riederer P, Lachenmayer L, Laux G. Clinical applications of MAOinhibitors. Curr Med Chem 2004 August;11(15):2033-43. Cerca con Google

(43) Riederer P, Lachenmayer L, Laux G. Clinical applications of MAOinhibitors. Curr Med Chem 2004 August;11(15):2033-43. Cerca con Google

(44) Dostert PL, Strolin BM, Tipton KF. Interactions of monoamine oxidase with substrates and inhibitors. Med Res Rev 1989 January;9(1):45-89. Cerca con Google

(45) Pletscher A. The discovery of antidepressants: a winding path. Experientia 1991 January 15;47(1):4-8. Cerca con Google

(46) Tetrud JW, Koller WC. A novel formulation of selegiline for the treatment of Parkinson's disease. Neurology 2004 October 12;63(7 Suppl 2):S2-S6. Cerca con Google

(47) Marin DB, Bierer LM, Lawlor BA et al. L-deprenyl and physostigmine for the treatment of Alzheimer's disease. Psychiatry Res 1995 October 16;58(3):181-9. Cerca con Google

(48) Qin F, Shite J, Mao W, Liang CS. Selegiline attenuates cardiac oxidative stress and apoptosis in heart failure: association with improvement of cardiac function. Eur J Pharmacol 2003 February 14;461(2-3):149-58. Cerca con Google

(49) Simon L, Szilagyi G, Bori Z, Orbay P, Nagy Z. (-)-D-Deprenyl attenuates apoptosis in experimental brain ischaemia. Eur J Pharmacol 2001 November 2;430(2-3):235-41. Cerca con Google

(50) Vondriska TM, Klein JB, Ping P. Use of functional proteomics to investigate PKC epsilon-mediated cardioprotection: the signaling module hypothesis. Am J Physiol Heart Circ Physiol 2001 April;280(4):H1434-H1441. Cerca con Google

(51) Weinreb O, Bar-Am O, Amit T, Chillag-Talmor O, Youdim MB. Neuroprotection via pro-survival protein kinase C isoforms associated with Bcl-2 family members. FASEB J 2004 September;18(12):1471-3. Cerca con Google

(52) Stadtman ER, Levine RL. Protein oxidation. Ann N Y Acad Sci 2000;899:191-208. Cerca con Google

(53) Davies KJ. Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 1995;61:1-31. Cerca con Google

(54) Ide T, Tsutsui H, Kinugawa S et al. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 1999 August 20;85(4):357-63. Cerca con Google

(55) Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000 November 9;408(6809):239-47. Cerca con Google

(56) Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002 January;82(1):47-95. Cerca con Google

(57) Davies MJ. Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 2003 June 6;305(3):761- 70. Cerca con Google

(58) Liochev SI, Fridovich I. The relative importance of HO* and. Free Radic Biol Med 1999 March;26(5-6):777-8. Cerca con Google

(59) Stadtman ER, Berlett BS. Fenton chemistry. Amino acid oxidation. J Biol Chem 1991 September 15;266(26):17201-11. Cerca con Google

(60) Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis 2000 March;21(3):361-70. Cerca con Google

(61) Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 2001 December 1;31(11):1287-312. Cerca con Google

(62) Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 2000 August;29(3-4):222-30. Cerca con Google

(63) Pacifici RE, Davies KJ. Protein, lipid and DNA repair systems in oxidative stress: the free-radical theory of aging revisited. Gerontology 1991;37(1-3):166-80. Cerca con Google

(64) Sitte N, Huber M, Grune T et al. Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB J 2000 August;14(11):1490-8. Cerca con Google

(65) Halliwell B. The role of oxygen radicals in human disease, with particular reference to the vascular system. Haemostasis 1993 March;23 Suppl 1:118-26. Cerca con Google

(66) Okado-Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J Biol Chem 2001 October 19;276(42):38388-93. Cerca con Google

(67) Weisiger RA, Fridovich I. Superoxide dismutase. Organelle specificity. J Biol Chem 1973 May 25;248(10):3582-92. Cerca con Google

(68) Ursini F, Maiorino M, Brigelius-Flohe R et al. Diversity of glutathione peroxidases. Methods Enzymol 1995;252:38-53. Cerca con Google

(69) Urso ML, Clarkson PM. Oxidative stress, exercise, and antioxidant supplementation. Toxicology 2003 July 15;189(1-2):41-54. Cerca con Google

(70) Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic Biol Med 2007 July 1;43(1):4-15. Cerca con Google

(71) Meister A. Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem 1994 April 1;269(13):9397-400. Cerca con Google

(72) MacLean PD, Drake EC, Ross L, Barclay C. Bilirubin as an antioxidant in micelles and lipid bilayers: its contribution to the total antioxidant capacity of human blood plasma. Free Radic Biol Med 2007 August 15;43(4):600-9. Cerca con Google

(73) Waring WS. Uric acid: an important antioxidant in acute ischaemic stroke. QJM 2002 October;95(10):691-3. Cerca con Google

(74) Votyakova TV, Reynolds IJ. DeltaPsi(m)-Dependent and –independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 2001 October;79(2):266-77. Cerca con Google

(75) Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 1973 July;134(3):707-16. Cerca con Google

(76) Giorgio M, Migliaccio E, Orsini F et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 2005 July 29;122(2):221-33. Cerca con Google

(77) Trinei M, Giorgio M, Cicalese A et al. A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 2002 May 30;21(24):3872-8. Cerca con Google

(78) Orsini F, Migliaccio E, Moroni M et al. The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. J Biol Chem 2004 June 11;279(24):25689-95. Cerca con Google

(79) Zaccagnini G, Martelli F, Fasanaro P et al. p66ShcA modulates tissue response to hindlimb ischemia. Circulation 2004 June 15;109(23):2917- 23. Cerca con Google

(80) Taylor SW, Fahy E, Murray J, Capaldi RA, Ghosh SS. Oxidative posttranslational modification of tryptophan residues in cardiac mitochondrial proteins. J Biol Chem 2003 May 30;278(22):19587-90. Cerca con Google

(81) Murray J, Taylor SW, Zhang B, Ghosh SS, Capaldi RA. Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry. J Biol Chem 2003 September 26;278(39):37223-30. Cerca con Google

(82) Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003 October 15;552(Pt 2):335-44. Cerca con Google

(83) Barja G. Mitochondrial free radical production and aging in mammals and birds. Ann N Y Acad Sci 1998 November 20;854:224-38. Cerca con Google

(84) Barrientos A, Moraes CT. Titrating the effects of mitochondrial complex I impairment in the cell physiology. J Biol Chem 1999 June 4;274(23):16188-97. Cerca con Google

(85) Petrosillo G, Ruggiero FM, Pistolese M, Paradies G. Ca2+-induced reactive oxygen species production promotes cytochrome c release from rat liver mitochondria via mitochondrial permeability transition (MPT)- dependent and MPT-independent mechanisms: role of cardiolipin. J Biol Chem 2004 December 17;279(51):53103-8. Cerca con Google

(86) Di LF, Bernardi P. Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovasc Res 2005 May 1;66(2):222-32. Cerca con Google

(87) Di LF, Bernardi P. Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res 2006 May 1;70(2):191-9. Cerca con Google

(88) Petronilli V, Cola C, Massari S, Colonna R, Bernardi P. Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria. J Biol Chem 1993 October 15;268(29):21939-45. Cerca con Google

(89) Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabo I, Zoratti M. Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem 1992 February 15;267(5):2934-9. Cerca con Google

(90) Bernardi P. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by the proton electrochemical gradient. Evidence that the pore can be opened by membrane depolarization. J Biol Chem 1992 May 5;267(13):8834-9. Cerca con Google

(91) Halestrap AP, Kerr PM, Javadov S, Woodfield KY. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta 1998 August 10;1366(1-2):79-94. Cerca con Google

(92) Zoratti M, Szabo I. The mitochondrial permeability transition. Biochim Biophys Acta 1995 July 17;1241(2):139-76. Cerca con Google

(93) Di LF, Bernardi P. Mitochondrial function as a determinant of recovery or death in cell response to injury. Mol Cell Biochem 1998 July;184(1- 2):379-91. Cerca con Google

(94) Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 2000 October 2;192(7):1001-14. Cerca con Google

(95) Brill A, Torchinsky A, Carp H, Toder V. The role of apoptosis in normal and abnormal embryonic development. J Assist Reprod Genet 1999 November;16(10):512-9. Cerca con Google

(96) Steller H. Mechanisms and genes of cellular suicide. Science 1995 March 10;267(5203):1445-9. Cerca con Google

(97) Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis 2000 March;21(3):485-95. Cerca con Google

(98) Haunstetter A, Izumo S. Future perspectives and potential implications of cardiac myocyte apoptosis. Cardiovasc Res 2000 February;45(3):795- 801. Cerca con Google

(99) Badley AD, Dockrell D, Paya CV. Apoptosis in AIDS. Adv Pharmacol 1997;41:271- 94. Cerca con Google

(100) Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996 July 12;86(1):147-57. Cerca con Google

(101) Ankarcrona M, Dypbukt JM, Bonfoco E et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995 October;15(4):961-73. Cerca con Google

(102) Qian T, Herman B, Lemasters JJ. The mitochondrial permeability transition mediates both necrotic and apoptotic death of hepatocytes exposed to Br-A23187. Toxicol Appl Pharmacol 1999 January 15;154(2):117-25. Cerca con Google

(103) Jennings RB, Ganote CE. Mitochondrial structure and function in acute myocardial ischemic injury. Circ Res 1976 May;38(5 Suppl 1):I80-I91. Cerca con Google

(104) Di LF, Canton M, Menabo R, Kaludercic N, Bernardi P. Mitochondria and cardioprotection. Heart Fail Rev 2007 December;12(3-4):249-60. Cerca con Google

(105) Bernardi P, Krauskopf A, Basso E et al. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 2006 May;273(10):2077-99. Cerca con Google

(106) Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res 2003 August 22;93(4):292-301. Cerca con Google

(107) Ide T, Tsutsui H, Hayashidani S et al. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 2001 March 16;88(5):529-35. Cerca con Google

(108) Marin-Garcia J, Goldenthal MJ, Moe GW. Abnormal cardiac and skeletal muscle mitochondrial function in pacing-induced cardiac failure. Cardiovasc Res 2001 October;52(1):103-10. Cerca con Google

(109) Quigley AF, Kapsa RM, Esmore D, Hale G, Byrne E. Mitochondrial respiratory chain activity in idiopathic dilated cardiomyopathy. J Card Fail 2000 March;6(1):47-55. Cerca con Google

(110) Casademont J, Miro O. Electron transport chain defects in heart failure. Heart Fail Rev 2002 April;7(2):131-9. Cerca con Google

(111) Lewandowski ED. Cardiac carbon 13 magnetic resonance spectroscopy: on the horizon or over the rainbow? J Nucl Cardiol 2002 July;9(4):419- 28. Cerca con Google

(112) Murray AJ, Anderson RE, Watson GC, Radda GK, Clarke K. Uncoupling proteins in human heart. Lancet 2004 November 13;364(9447):1786-8. Cerca con Google

(113) Marin-Garcia J, Goldenthal MJ, Moe GW. Mitochondrial pathology in cardiac failure. Cardiovasc Res 2001 January;49(1):17-26. Cerca con Google

(114) Scheubel RJ, Tostlebe M, Simm A et al. Dysfunction of mitochondrial respiratory chain complex I in human failing myocardium is not due to disturbed mitochondrial gene expression. J Am Coll Cardiol 2002 December 18;40(12):2174-81. Cerca con Google

(115) Neubauer S. The failing heart--an engine out of fuel. N Engl J Med 2007 March 15;356(11):1140-51. Cerca con Google

(116) Radford NB, Wan B, Richman A et al. Cardiac dysfunction in mice lacking cytochrome-c oxidase subunit VIaH. Am J Physiol Heart Circ Physiol 2002 February;282(2):H726-H733. Cerca con Google

(117) Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR, Wallace DC. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 1997 July;16(3):226- 34. Cerca con Google

(118) Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha. Proc Natl Acad Sci U S A 2006 June 27;103(26):10086-91. Cerca con Google

(119) Watanabe K, Fujii H, Takahashi T et al. Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem 2000 July 21;275(29):22293-9. Cerca con Google

(120) Li Y, Huang TT, Carlson EJ et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 1995 December;11(4):376-81. Cerca con Google

(121) Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 2003;65:45-79. Cerca con Google

(122) Kang PM, Izumo S. Apoptosis in heart: basic mechanisms and implications in cardiovascular diseases. Trends Mol Med 2003 April;9(4):177-82. Cerca con Google

(123) Molkentin JD, Lu JR, Antos CL et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998 April 17;93(2):215-28. Cerca con Google

(124) Wilkins BJ, De Windt LJ, Bueno OF et al. Targeted disruption of NFATc3, but not NFATc4, reveals an intrinsic defect in calcineurinmediated cardiac hypertrophic growth. Mol Cell Biol 2002 November;22(21):7603-13. Cerca con Google

(125) Molkentin JD, Dorn II GW. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol 2001;63:391-426. Cerca con Google

(126) Frey N, McKinsey TA, Olson EN. Decoding calcium signals involved in cardiac growth and function. Nat Med 2000 November;6(11):1221-7. Cerca con Google

(127) Sugden PH. Signalling pathways in cardiac myocyte hypertrophy. Ann Med 2001 December;33(9):611-22. Cerca con Google

(128) Dorn GW, Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 2005 March;115(3):527-37. Cerca con Google

(129) Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002 May 31;296(5573):1655-7. Cerca con Google

(130) Shioi T, Kang PM, Douglas PS et al. The conserved phosphoinositide 3- kinase pathway determines heart size in mice. EMBO J 2000 June 1;19(11):2537-48. Cerca con Google

(131) Patrucco E, Notte A, Barberis L et al. PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and - independent effects. Cell 2004 August 6;118(3):375-87. Cerca con Google

(132) DeBosch B, Treskov I, Lupu TS et al. Akt1 is required for physiological cardiac growth. Circulation 2006 May 2;113(17):2097-104. Cerca con Google

(133) Antos CL, McKinsey TA, Frey N et al. Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A 2002 January 22;99(2):907-12. Cerca con Google

(134) Bueno OF, De Windt LJ, Tymitz KM et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J 2000 December 1;19(23):6341-50. Cerca con Google

(135) Sanna B, Bueno OF, Dai YS, Wilkins BJ, Molkentin JD. Direct and indirect interactions between calcineurin-NFAT and MEK1-extracellular signal-regulated kinase 1/2 signaling pathways regulate cardiac gene expression and cellular growth. Mol Cell Biol 2005 February;25(3):865- 78. Cerca con Google

(136) Liao P, Georgakopoulos D, Kovacs A et al. The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proc Natl Acad Sci U S A 2001 October 9;98(21):12283-8. Cerca con Google

(137) Petrich BG, Molkentin JD, Wang Y. Temporal activation of c-Jun Nterminal kinase in adult transgenic heart via cre-loxP-mediated DNA recombination. FASEB J 2003 April;17(6):749-51. Cerca con Google

(138) Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 2005 March;115(3):500-8. Cerca con Google

(139) Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 2007 February;49(2):241-8. Cerca con Google

(140) Sugden PH, Clerk A. Oxidative stress and growth-regulating intracellular signaling pathways in cardiac myocytes. Antioxid Redox Signal 2006 November;8(11-12):2111-24. Cerca con Google

(141) Nakamura K, Fushimi K, Kouchi H et al. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 1998 August 25;98(8):794-9. Cerca con Google

(142) Luo JD, Xie F, Zhang WW, Ma XD, Guan JX, Chen X. Simvastatin inhibits noradrenaline-induced hypertrophy of cultured neonatal rat cardiomyocytes. Br J Pharmacol 2001 January;132(1):159-64. Cerca con Google

(143) Kwon SH, Pimentel DR, Remondino A, Sawyer DB, Colucci WS. H(2)O(2) regulates cardiac myocyte phenotype via concentrationdependent activation of distinct kinase pathways. J Mol Cell Cardiol 2003 June;35(6):615-21. Cerca con Google

(144) Hirotani S, Otsu K, Nishida K et al. Involvement of nuclear factorkappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation 2002 January 29;105(4):509-15. Cerca con Google

(145) Yamaguchi O, Higuchi Y, Hirotani S et al. Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling. Proc Natl Acad Sci U S A 2003 December 23;100(26):15883-8. Cerca con Google

(146) Siwik DA, Pagano PJ, Colucci WS. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol 2001 January;280(1):C53-C60. Cerca con Google

(147) Siwik DA, Colucci WS. Regulation of matrix metalloproteinases by cytokines and reactive oxygen/nitrogen species in the myocardium. Heart Fail Rev 2004 January;9(1):43-51. Cerca con Google

(148) Zima AV, Blatter LA. Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 2006 July 15;71(2):310-21. Cerca con Google

(149) Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970 August 15;227(5259):680-5. Cerca con Google

(150) Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 1979 September;76(9):4350-4. Cerca con Google

(151) Claycomb WC, Lanson NA, Jr., Stallworth BS et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A 1998 March 17;95(6):2979-84. Cerca con Google

(152) Scorrano L, Penzo D, Petronilli V, Pagano F, Bernardi P. Arachidonic acid causes cell death through the mitochondrial permeability transition. Implications for tumor necrosis factor-alpha aopototic signaling. J Biol Chem 2001 April 13;276(15):12035-40. Cerca con Google

(153) Eisenhofer G, Friberg P, Rundqvist B et al. Cardiac sympathetic nerve function in congestive heart failure. Circulation 1996 May 1;93(9):1667- 76. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record