Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Gallina, Giovanna (2008) Caratterizzazione morfologica e molecolare di tumori stromali gastrointestinali (GIST) sincroni in popolazione adulta non sindromica. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

Purpose: Gastrointestinal stromal tumors (GIST) are commonly regarded as solitary tumors, and the occurrence of multiple lesions is considered an extraordinary event restricted to pediatric GISTs and rare hereditary conditions. Beyond these well-defined situations, the presentation of multiple synchronous lesions is commonly viewed as the result of the metastatic spreading of a single primitive GIST. Based on this axiom, patients with multifocal disease are by default classified as advanced stage and treated as such. Whether, indeed, the detection of several lesions in sporadic adult GIST patients may be suggestive of phenomena of tumor multiplicity still needs to be clarified.
Experimental design: From a multicentric series of 442 consecutive cases, 79 of which diagnosed with advanced disease, we selected 5 patients who presented up to 4 distinct GIST nodules. Five additional cases with silimar characteristics were retrieved by collaborators. Clonal relationships of the synchronous lesions was assessed by comparing c-KIT/PDGFRA mutation and microsatellite pattern .
Results: An independent origin of the syncronous lesions was assessed in 6 out of the 10 cases analyzed. Interestingly, in one patient one of the lesions stemmed from the peritoneum, ordinarily regarded as a site of metastasis.
Conclusions: Our data indicate that a significant fraction of GIST patients with multifocal manifestations are actually affected by multiple primary GISTs, suggesting that mesenchymal cells of these subjects are somehow primed to transformation Thus, in the presence of multifocal GIST manifestations, an accurate characterization of the different tumor localizations should be taken into account for a proper patient staging and planning of the therapy.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Dei Tos, Angelo Paolo
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Key Words:gist multipli
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/06 Oncologia medica
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Pediatria
Codice ID:486
Depositato il:17 Oct 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. The spontaneous regression of cancer. A review of cases from 1900 to 1987. Acta Oncol 1990, 29:545-550 Cerca con Google

2. Bronte V, Wang M, Overwijk WW, Surman DR, Pericle F, Rosenberg SA, Restifo NP. Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J. Immunol. 1998;161:5313–5320 Cerca con Google

3. Bronte V, Chappell DB, Apolloni E, Cabrelle A, Wang M, Hwu P, Restifo NP. Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J. Immunol. 1999;162:5728–5737 Cerca con Google

4. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J. Immunol. 2004;172:989–999 Cerca con Google

5. Bronte V, Apolloni E, Cabrelle A, Ronca R, Serafini P, Zamboni P, Restifo NP, Zanovello P. Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+ T cells. Blood. 2000;96:3838–3846 Cerca con Google

6. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 2004;6:409–421 Cerca con Google

7. Kusmartsev S, Gabrilovich DI. STAT1 signaling regulates tumor-associated macrophagemediated T cell deletion. J. Immunol. 2005;174:4880–4891 Cerca con Google

8. Young MR, Wright MA, Matthews JP, Malik I, Prechel M. Suppression of T cell proliferation by tumor-induced granulocyte-macrophage progenitor cells producing transforming growth factor-beta and nitric oxide. J. Immunol. 1996;156:1916–1922 Cerca con Google

9. Serafini P, De Santo C, Marigo I, Cingarlini S, Dolcetti L, Gallina G, Zanovello P, Bronte V. Derangement of immune responses by myeloid suppressor cells. Cancer Immunol. Immunother. 2003;53:64–72 Cerca con Google

10. Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat. Rev. Immunol. 2004;4:941–952 Cerca con Google

11. Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, Salup R, Jove R, Gabrilovich D. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J. Immunol. 2004;172:464–474 Cerca con Google

12. Salvadori S, Martinelli G, Zier K. Resection of solid tumors reverses T cell defects and restores protective immunity. J. Immunol. 2000;164:2214–2220 Cerca con Google

13. Sinha P, Clements VK, Ostrand-Rosenberg S. Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J. Immunol. 2005;174:636–645 Cerca con Google

14. Takeda K, Hatakeyama K, Tsuchiya Y, Rikiishi H, Kumagai K. A correlation between GM-CSF gene expression and metastases in murine tumors. Int. J. Cancer. 1991;47:413–420 Cerca con Google

15. Young MR, Garrity T, Pandit R, Wright MA, Benefield J, Keni S. Increased recurrence and metastasis in patients whose primary head and neck squamous cell carcinomas secreted granulocyte-macrophage colony-stimulating factor and contained CD34+ natural suppressor cells. Int. J. Cancer. 1997;74:69–74 Cerca con Google

16. Pak AS, Wright MA, Collins SL, Petruzzelli GJ, Young MR. Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34+ cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin. Cancer Res. 1995;1:95–103 Cerca con Google

17. Mach N and Dranoff G. Cytokine-secreting tumor cell vaccines Curr Opin Immunol 2000;12:571-575. Cerca con Google

18. Ageitos AG, Ino K, Ozerol I, Tarantolo S, Heimann DG and Talmadge JE. Restoration of T and NK cell function in GM-CSF mobilized stem cell products from breast cancer patients by monocyte depletion. Bone Marrow Transplant 1997; 20:117-123 Cerca con Google

19. Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat. Rev. Immunol. 2005;5:641–654. Cerca con Google

20. Barbul. Arginine and immune function. Nutrition 2000; 6(1): 53-8; discussion 59-62 Cerca con Google

21. Rodriguez Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigenspecific T-cell responses. Cancer Res 2004;64(16): 5839-49 Cerca con Google

22. Chang C, Liao JC, Kuo L. Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res 2001;61(3): 1100-6 Cerca con Google

23. Zhang M, Caragine T, Wang H, Cohen PS, Botchkina G, Soda K, Bianchi M, Ulrich P, Cerami A, Sherry B, Tracey KJ.Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: a counterregulatory mechanism that restrains the immune response. J Exp Med 1997;185(10): 1759-68 Cerca con Google

24. Davel LE, Jasnis MA, de la Torre E, Gotoh T, Diament M, Magenta G, Sacerdote de Lustig E, Sales ME. Arginine metabolic pathways involved in the modulation of tumor-induced angiogenesis by macrophages. FEBS Lett 2002;532(1-2): 216-20 Cerca con Google

25. Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 2002;168:689–695 Cerca con Google

26. Pericle F, Kirken RA. Immunocompromised tumor-bearing mice show a selective loss of STAT5a/b expression in T and B lymphocytes. J Immunol 1997;159(6): 2580-5 Cerca con Google

27. Mannick J, Hausladen A, Liu L, Hess DT, Zeng M, Miao QX, Kane LS, Gow AJ, Stamler JS. Fasinduced caspase denitrosylation.” Science 1999;284(5414):651-4 Cerca con Google

28. Munder M, Eichmann K, Mor? JM, Centeno F, Soler G, Modolell M. Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells.” J Immunol 1999;163(7): 3771-7 Cerca con Google

29. Gordon S. Alternative activation of macrophages. Nat. Rev. Immunol. 2003;3:23–35 Cerca con Google

30. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumorassociated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–555 Cerca con Google

31. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005;7:211–21 Cerca con Google

32. Mach N, Dranoff G. Cytokine-secreting tumor cell vaccines. Curr. Opin. Immunol. 2000;12:571– 575 Cerca con Google

33. Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I. High-dose granulocytemacrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res. 2004;64:6337–6343 Cerca con Google

34. Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, Donaldson DD, Chen W, Wahl SM, Ledbetter S, Pratt B, Letterio JJ, Paul WE, Berzofsky JA. Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 2003;198(11): 1741-52 Cerca con Google

35. Rubin B.P. Gastrointestinal stromal tumors: an update. Histopahol. 2006; 48:83-96 Cerca con Google

36. Appelman HD, Hellwigh EB. Cellular leiomyomas of the stomach in 49 patients. Arch. Pathol. Lab. Med. 2006;101:373-377 Cerca con Google

37. Golden T, Stout AP. Smooth muscle tumors of the gastrointestinal tract and retroperioneal tissues. Surg.Gynecol. Obstet. 1941;73:784-810 Cerca con Google

38. Appelman HD Smooth muscle tumors of the gastrointestinal tract. What we know now that Stout didn’t know. Am. J. Surg. Pathol. 1986;10 (Suppl.1):83-99 Cerca con Google

39. Mazur MT, Clark HB. Gastric stromal tumors. Reappraisal of histogenesis. Am. J. Surg. Pathol. 1983;7:507-519 Cerca con Google

40. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, Kawano K, Hanada M, Kurata A, Takeda M, Muhammad Tunio G, Matsuzawa Y, Kanakura Y, Shinomura Y, Kitamura Y. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998;279 (5350):557-580 Cerca con Google

41. Nilsson B, Bumming P, Meis-Kindblom JM, Oden A, Dortok A, Gustavsson B, Sablinska K, Kindblom LG. Gastrointestinal stromal tumors: the incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era-a population-based study in western Sweden. Cancer 2005;103 (4):821-829 Cerca con Google

42. DeMatteo RP, Lewis JJ, Leung D, Mudan SS, Woodruff JM, Brennan MF. Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg 2000;231:51-58 Cerca con Google

43. Miettinen M, Sarlomo-Rikala M, Sobin LH, Lasota J. Gastrointestinal stromal tumors and leiomyosarcomas in the colon: a clinicopathologic, immunohistochemical, and molecular genetic study of 44 cases. Am J Surg Pathol 2000;24:1339-1352 Cerca con Google

44. Miettinen M, Sobin LH, Lasota J. Gastrointestinal stromal tumors of the stomach: a clinicopathologic, immunohistochemical, and molecular genetic study of 1765 cases with long-term follow-up. Am J Surg Pathol 2005;29:52-68 Cerca con Google

45. Miettinen M, Kopczynski J, Makhlouf HR. Gastrointestinal stromal tumors, intramural leiomyomas, and leiomyosarcomas in the duodenum: a clinicopathologic, immunohistochemical, and molecular genetic study of 167 cases. Am J Surg Pathol 2003;27:625-641 Cerca con Google

46. Reith JD, Goldblum JR, Lyles RH, Weiss SW. Extragastrointestinal (soft tissue) stromal tumors: an analysis of 48 cases with emphasis on histologic predictors of outcome. Mod Pathol 2000;13:577-585 Cerca con Google

47. Miettinen M, Monihan JM, Sarlomo-Rikala M. Gastrointestinal stromal tumors/smooth muscle tumors (GISTs) primary in the omentum and mesentery: clinicopathologic and immunohistochemical study of 26 cases. Am J Surg Pathol 1999;23:1109-1118 Cerca con Google

48. Demetri GD, Benjamin R, Blanke CD. NCCN task force report: optimal management of patient with gastrointestinal stromal tumor (GIST) expansion and update of NCCN clinical practice guidelines. J Natl Comp Cancer Network 2004;2 (suppl 1): S1-S26 Cerca con Google

49. Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 1996;111: 492-515 Cerca con Google

50. Kindblom LG, Remotti HE, Aldenborg F, Meis-Kindblom JM. Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol 1998;152: 1259-1269 Cerca con Google

51. Kluppel M, Huizinga JD, Malysz J, Bernstein A. Developmental origin and Kit-dependent development of the interstitial cells of cajal in the mammalian small intestine. Dev Dyn 1998;211: 60-71 Cerca con Google

52. Fletcher CD, Berman JJ, Corless. Diagnosis of gastrointestinal stromal tumors: A consensus approach. Hum Pathol 2002;33:459-465 Cerca con Google

53. Sarlomo-Rikala M, Kovatich AJ, Barusevicius A, Miettinen M. CD117: a sensitive marker for gastrointestinal stromal tumors that is more specific than CD34. Mod Pathol 1998;11: 728- 734 Cerca con Google

54. West RB, Corless CL, Chen X, Rubin BP, Subramanian S, Montgomery K, Zhu S, Ball CA, Nielsen TO, Patel R, Goldblum JR, Brown PO, Heinrich MC, van de Rijn M. The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. Am J Pathol. Jul 2004;165:107-13 Cerca con Google

55. Miettinen M, Lasota J. Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol 2006;23: 70-83 Cerca con Google

56. Huizinga JD, Thuneberg L, Kluppel M. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 1995;373; 347– 349 Cerca con Google

57. Maeda H, Yamagata A, Nishikawa S. Requirement of c-kit for development of intestinal pacemaker system. Development 1992;116:369–75 Cerca con Google

58. Qiu FH, Ray P, Brown K. Primary structure of c-kit: relationship with the CSF-1/PDGF receptor kinase family—oncogenic activation of v-kit involves deletion of extracellular domain and C terminus. EMBO J 1998;7:1003–1011 Cerca con Google

59. Huang E, Nocka K, Beier DR. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 1990;63:225– 233 Cerca con Google

60. Stenman G, Eriksson A, Claesson-Welsh L. Human PDGFA receptor maps to the same region on chromosome 4 as the KIT oncogene. Genes Chromosomes Cancer 1989;1:155–158 Cerca con Google

61. Pawson T. Regulation and targets of receptor tyrosine kinases. Eur J Cancer 2002;38 (suppl 5):S3–S10 Cerca con Google

62. Blume-Jensen P, Claesson-Welsh L, Siegbahn A, Zsebo KM, Westermark B, Heldin CH. Activation of the human c-kit product by ligand-induced dimerization mediates circular actin reorganization and chemotaxis. Embo J 1991;10:4121-4128 Cerca con Google

63. Heinrich MC, Rubin BP, Longley BJ, Fletcher JA. (2002) Biology and genetic aspects of astrointestinal stromal tumors: KIT activation and cytogenetic alterations. Hum Pathol 33:484-495 Cerca con Google

64. Duensing A, Medeiros F, McConarty B. Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene 2004;23:3999–4006 Cerca con Google

65. Bauer S, Yu LK, Demetri GD, Fletcher JA. Heat shock protein 90 inhibition in imatinibresistant gastrointestinal stromal tumor. Cancer Res 2006;66:9153-9161 Cerca con Google

66. Kitamura Y, Hirota S. Kit as a human oncogenic tyrosine kinase. Cell Mol Life Sci 2004;61:2924–2931 Cerca con Google

67. Corless CL, Fletcher JA, Heinrich MC. Biology of gastrointestinal stromal tumors. J Clin Oncol 2004;22:3813–3825 Cerca con Google

68. Heinrich MC, Corless CL, Duensing A. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 2003;299:708–710 Cerca con Google

69. Sreekantaiah C, Davis JR, Sandberg AA. Chromosomal abnormalities in leiomyosarcomas. Am. J. Pathol.1993;142:293–30 Cerca con Google

70. O'Leary T, Ernst S, Przygodzki R. Loss of heterozygosity at 1p36 predicts poor prognosis in gastrointestinal stromal/smooth muscle tumors. Lab. Invest. 1999;79:1461–1467 Cerca con Google

71. Rubin BP, Singer S, Tsao C. KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res 2001;61:8118–8121 Cerca con Google

72. Lux ML, Rubin BP, Biase TL. KIT extracellular and kinase domain mutations in gastrointestinal stromal tumors. Am. J. Pathol. 2000;156:791–795 Cerca con Google

73. Longley BJ, Reguera MJ, Ma Y. Classes of c-KIT activating mutations: proposed mechanisms of action and implications in disease classification and therapy. Leuk Res 2001;25:571–576 Cerca con Google

74. Lasota J, Jasinski M, Sarlomo-Rikala M, Miettinen M. Mutations in exon 11 of c-kit occur preferentially in malignant versus benign gastrointestinal stromal tumors and do not occur in leiomyomas or leiomyosarcomas. Am J Pathol 1999);54:53–60 Cerca con Google

75. Taniguchi M, Nishida T, Hirota S. Effect of c-kit mutation on prognosis of gastrointestinal stromal tumors. Cancer Res 1999;59:4297–4300 Cerca con Google

76. Heinrich MC, Corless CL, Demetri CG. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003:21:4342–4349 Cerca con Google

77. Lux ML, Rubin BP, Biase TL. et al. KIT extracellular and kinase domain mutations in gastrointestinal stromal tumors. Am J Pathol 2000;156:791–795 Cerca con Google

78. Antonescu CR, Sommer G, Sarran L. et al. Association of KIT exon 9 mutations with nongastric primary site and aggressive behavior: KIT mutation analysis and clinical correlates of 120 gastrointestinal stromal tumors. Clin Cancer Res 2003;9:3329–3337 Cerca con Google

79. Lasota J, Wozniak A, Sarlomo-Rikala M. et al. Mutations in exons 9 and 13 of KIT gene are rare events in gastrointestinal stromal tumors: a study of two hundred cases. Am J Pathol 2000;157:1091–1095 Cerca con Google

80. Lasota J, Kopczynski J, Sarlomo-Rikala M. et al. KIT 1530ins6 mutation defines a subset of predominantly malignant gastrointestinal stromal tumors of intestinal origin. Hum Pathol 2003;34:1306–1312 Cerca con Google

81. Corless CL, Schroeder A, Griffith D. et al. PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol 2005;23:5357–5364 Cerca con Google

82. Li FP, Fletcher JA, Heinrich MC, et al. Familial Gastrointestinal Stromal Tumor Syndrome: Phenotypic and Molecular Features in a Kindred. J Clin Oncol 2005; 23:2735-2743 Cerca con Google

83. Lasota J, Miettinen M. A new familial GIST identified. Am J Surg Pathol 2006; 30:1342 Cerca con Google

84. Hartmann K, Wardelmann E, Ma Y, et al. Novel germline mutation of KIT associated with familial gastrointestinal stromal tumors and mastocytosis. Gastroenterology 2005; 129:1042-6 Cerca con Google

85. Kim HJ, Lim SJ, Park K, Yuh YJ, Jang SJ, Choi J. Multiple gastrointestinal stromal tumors with a germline c-kit mutation. Pathol Int 2005; 55:655-9 Cerca con Google

86. Carballo M, Roig I, Aguilar F, et al. Novel c-KIT germline mutation in a family with gastrointestinal stromal tumors and cutaneous hyperpigmentation. Am J Med Genet 2005; 132:361-4 Cerca con Google

87. Takazawa Y, Sakurai S, Sakuma Y, et al. Gastrointestinal stromal tumors of neurofibromatosis type I (von Recklinghausen's disease). Am J Surg Pathol 2005; 29:755-63 Cerca con Google

88. Zöller ME, Rembeck B, Od? A, Samuelsson M, Angervall L. Malignant and benign tumors in patients with neurofibromatosis type 1 in a defined Swedish population. Cancer 1997; 79:2125-31 Cerca con Google

89. Carney JA. Gastric stromal sarcoma, pulmonary chondroma and extra-adrena paraganglioma (Carney triad): natural history, Cerca con Google

90. DeMatteo RP, Heinrich MC, El Rifai WM et al. Clinical management of gastrointestinal stromal tumors: before and after STI-571. Hum. Pathol. 2002;33; 466– 477 Cerca con Google

91. Mauro MJ, Druker BJ. STI571: a gene product-targeted therapy for leukemia. Curr. Oncol. Rep. 2001; 3; 223– 227 Cerca con Google

92. Heinrich MC, Griffith DJ, Druker BJ et al. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 2000; 96; 925– 932 Cerca con Google

93. Demetri GD, von Mehren M, Blanke CD et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 2002; 347; 472– 480 Cerca con Google

94. Antonescu CR, Besmer P, Guo T, Arkun K, Hom G, Koryotowski B, Leversha MA, Jeffrey PD, Desantis D, Singer S, Brennan MF, Maki RG, DeMatteo RP. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res. 2005;11(11):4182-90 Cerca con Google

95. Kang DY, Park CK, Choi JS, et al. Multiple Gastrointestinal Stromal Tumors: Clinicopathologic and Genetic Analysis of 12 Patients. Am J Surg Pathol 2007; 31:224–32 Cerca con Google

96. Haller F Schulten HJ, Armbrust T, Langer C, Gunawan B, Füzesi L. Multicentric sporadic gastrointestinal stromal tumors (GISTs) of the stomach with distinct clonal origin: differential diagnosis to familial and syndromal GIST variants and peritoneal metastasis. AM J Surg Pathol 2007; 31:933-7 Cerca con Google

97. Hu X, Forster J, Damjanov I. Primary malignant gastrointestinal stromal tumor of the liver. Arch Pathol Lab Med. 2003; 127:1606-8 Cerca con Google

98. Todoroki T, Sano T, Sakurai S, et al. Primary omental Gastrointestinal stromal tumor (GIST). World J Surg Oncol 2007; 5:66 Cerca con Google

99. Ha PK, Califano JA. The molecular biology of mucosal field cancerization of the head and neck. Crit Rev Oral Biol Med. 2003;14:363-9 Cerca con Google

100. Agaimy A, Wunsch PH, Sobin LH, Lasota J, Miettinen M. Occurrence of other malignancies in patients with gastrointestinal stromal tumors. Sem diagn Pathol 2006; 23:120-9 Cerca con Google

101. Abraham SC, Krasinskas AM, Hofstetter WL, Swisher SG, Wu TT. "Seedling" mesenchymal tumors (gastrointestinal stromal tumors and leiomyomas) are common incidental tumors of the esophagogastric junction. Am J Surg Pathos 2007; 31; 1629-35 Cerca con Google

102. ESMO Coordinating authors for the ESMO Guidelines Working Group: J.-Y. Blay, A. Le Cesne Gastrointestinal stromal tumors: ESMO Clinical Recommendations for diagnosis, treatment and follow-up. Ann Oncol 2007; 18: ii27-ii29 Cerca con Google

103. Debiec-Rychter M, Sciot R, Le Cesne A, et al. EORTC Soft Tissue and Bone Sarcoma Group; The Italian Sarcoma Group; Australasian GastroIntestinal Trials Group. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumors. Eur J Cancer 2006; 42:1093- 103 Cerca con Google

104. den Dunnen JT, Antonarakis SE. Nomenclature for the description of human sequence variations. Hum Genet 2001;109:121-4 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record