Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Janna, Carlo (2008) Modellazione Numerica del Comportamento Meccanico delle Faglie Regionale per il Confinamento Geologico della CO2 Antropica. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
11Mb

Abstract (inglese)

The pressure variation induced by CO2 injection into deep geological formations and the resulting stress perturbation may activate pre-existing faults or cause the generation of new ones. These fractures may represent a preferential path for the escape of the injected gas, damage or even break the injection/extraction wells, give rise to microseismic phenomena and have an impact on the ground deformations.
Numerical simulations by traditional finite elements (FE) cannot address this problem due to the compatibility condition which prevents relative movements between adjacent elements. In this PhD thesis, an appopriate class of FE, called interface elements (IE), is developed in order to simulate discontinuous displacement fields in the porous medium. Several numerical problems are related to this formulation because the IE add strong non-linearities to the equilibrium equations and the arising algebraic system typically has a large condition number. These issues have been deeply investigated developing special time-stepping techniques to deal with the non-linearity and studying ad hoc preconditioners for the iterative solution to the linearized systems.
The numerical tools have been finally used in a realistic field example of CO2 sequestration in a depleted gas reservoir. The efficiency of the proposed numerical schemes has been tested with several aspects concerning the possible enviromental impact analysed.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Gambolati, Giuseppe
Correlatore:Ferronato, Massimiliano
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE > METODI MATEMATICI E NUMERICI
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):Elementi Finiti, Sistemi Lineari Sparsi, Elementi di Interfaccia, Geomeccanica,
Settori scientifico-disciplinari MIUR:Area 01 - Scienze matematiche e informatiche > MAT/08 Analisi numerica
Area 04 - Scienze della terra > GEO/05 Geologia applicata
Struttura di riferimento:Dipartimenti > Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate
Codice ID:490
Depositato il:07 Ott 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Abriola L. M., Pinder G. F. (1985). A multiphase approach to the modeling of porous media contamination by organic compounds 1. Equation development. Water Resor. Res. 21(1), 11–18 Cerca con Google

[2] Adenekan A. E., Patzek T. W., Pruess, K. (1993). Modeling of multiphase transport of multicomponent organic contaminants and heat in the subsuface: Numerical model formulation. Water Resor. Res. 29(11), 3727–3740 Cerca con Google

[3] Aitchison G. D., Bishop A. W. (1960). Discussion Proc. Conf. pore pressure. Butterwprths, London, UK Cerca con Google

[4] Allen M. B., Behie G. A., Trangenstein J. A. (1988). Multiphase flow in porous media. Springer-Verlag, New York, Nyù Cerca con Google

[5] Amestoy P. R., Davis T. A., Duff I. S. (1996). An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl. 17, 886–905 Cerca con Google

[6] Amestoy P. R., Puglisi C. (2000). An Unsymmetrized Multifronatl LU factorization. SIAM J. Matrix Anal. App. 4(2), 553–569 Cerca con Google

[7] Angeleri F., Sonnad V., and Bathe K. L. (1989). Studies of finite element procedures. An evaluation of preconditioned iterative solvers. Computers & Structures 32, 671–677 Cerca con Google

[8] D’Azevedo E. F., Fortsyth P. A., Tang W. P. (1992). Ordering methods for preconditioned Cerca con Google

conjugate gradient methods applied to unstructured grid problems. SIAM J. Matrix. Anal. Appl. 13, 944–961. Cerca con Google

[9] Aziz K., Settari A. (1979). Petroleum reservoir simulation. Applied Science Publishers, London, UK Cerca con Google

[10] Bandis S., Lumsden A., Barton N. (1983). Fundamentals of rock joints deformation. International Journal of Rock Mechanics and Mining Sciences 20, 249–268 Cerca con Google

[11] Barton N. (1973). Review of a new shear stress criterion for rock joints. Engineering Geology 7, 287–332 Cerca con Google

[12] Barton N., Choubey, V. (1977). The shear strenght of rock joints in theory and practice. Rock Mechanics 20(1), 1–54 Cerca con Google

[13] Barton N., Bandis S., Bakhtar K. (1985). Strength deformation and conductivity coupling of rock joints. International Journal of Rock Mechanics and Mining Sciences 22, 121–140 Cerca con Google

[14] Bathe K. J. (1996). Finite Element Procedures. Pretince-Hall. Cerca con Google

[15] Battistelli A., Calore C., Pruess K. (1997). The simulator TOUGH2/EWASG for modelling geothermal reservoirs with brines and non-condensible gas. Geothermics 26(4), 437–464 Cerca con Google

[16] Baú D., Gambolati G., and Teatini P. (1999). Residual land subsidence over depleted gas fields in the Northern Adriatic basin. Environmental & Engineering Geosciences 4, 389–405 Cerca con Google

[17] Baú D., Ferronato M., Gambolati G., and Teatini P. (2002). Basin-scale compressibbility of the northern Adriatic by the radioactive marker technique. Gèotechnique 52(8), 605–616 Cerca con Google

[18] Bear J. (1979). Hydraulics of Groundwater. McGraw-Hill, New York, NY Cerca con Google

[19] Beer. G. (1985). An isoparametric joint/interface element for finite element analysis. International Journal of Numerical Methods in Engineering 21, 585–600 Cerca con Google

[20] Bear J., Verruijt A. (1987). Modelling groundwater flow and pollution. Reidel Publications, Dordecht, Holland Cerca con Google

[21] Benzi M., Th?ma M., Meyer C. D. (1996). A sparse approximate inverse preconditioner for the conjugate gradient method. SIAM J. Sci. Comput. 17, 1135–1149 Cerca con Google

[22] Benzi M., Cullum K., Th?ma M. (2000). Robust approximate inverse preconditioning for the conjugate gradient method. SIAM J. Sci. Comput. 22, 1318–1332 Cerca con Google

[23] Benzi M. (2002). Preconditioning Techniques for Large Linear Systems: A Survey. Journal of Computational Physics 182, 418–477 Cerca con Google

[24] Bergamaschi L., Gondzio J., Zilli G. (2004). Preconditioning indefinite systems in interior point methods for optimization. Computational Optimization and Applications 28, 149–171 Cerca con Google

[25] Bergamaschi L., Gondzio J., Venturin M., Zilli G. (2007). Inexact constraint preconditioners for linear systems arising in interior point methods. Cerca con Google

[26] Bergamaschi L., Ferronato M., Gambolati G. (2007). Novel preconditioners for the iterative solution to FE-discretized coupled consolidation equations. Computer Methods in Applied Mechanics and Engineering 196, 2647–2656 Cerca con Google

[27] Bergamaschi L, Ferronato M, Gambolati G. (2007). A mixed constraint preconditioner for the projective solution to FE coupled consolidation equations. SIAM J. Sci. Comput., submitted. Cerca con Google

[28] Biot M. A. (1941). General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164. Cerca con Google

[29] Biot M. A. (1955). Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185. Cerca con Google

[30] Bishop A. W. (1959). The principle of effective stress. Teknik Ukeblad 39, 859–863. Cerca con Google

[31] Bishop A. W., Blight G. E. (1963). Some aspects of effective stress in saturated and partly saturated soils. G´eotechnique 13, 177–197 Cerca con Google

[32] Böllhofer M., Saad Y. (2006). Multilevel preconditioners constructed from inversebased ILUs. SIAM J. Sci. Comput. 27(5), 1627–1650 Cerca con Google

[33] Borja R. I. (2005). On the mechanical energy and effective stress in saturated and unsaturated porous continua. International journal of solids and structures 43, 1764– 1786 Cerca con Google

[34] Brooks R. H., Corey A. T. (1964). Hydraulic properties of porous media. Hydrology paper 3, Colorado State University, Fort Collins, CO Cerca con Google

[35] Brutsaert W. and Corapcioglu M. Y. (1976). Pumping of aquifer with visco-elastic properties. ASCE J. Hydraul. 102(11), 1663–1675. Cerca con Google

[36] Carman P. C. (1937). Fluid flow through a granular bed. Trans. Instn. chem. Engrs.(London) 15, 150–156 Cerca con Google

[37] Cassiani G., Zoccatelli C. (2000). Toward a reconciliation between laboratory and in-situ measurements of soil and rock compressibility. In Land Subsidence (Proc. 6th Int. Symp. on Land Subsidence), Vol. 2, 3–15 Cerca con Google

[38] Cescotto S., Charlier R. (1993). Frictional contact finite elements based on mixed variational principles. International Journal of Numerical Methods in Engineering 36, 1681–1701 Cerca con Google

[39] Chierici G. L. (1989). Principi di Ingegneria dei Giacimenti Petroliferi. Agip, Milano, Italy Cerca con Google

[40] Chow E., Saad Y. (1997). ILUS: An incomplete LU preconditioner in sparse skyline format. Int. J. Numer. Methods Fluids 25, 739–748 Cerca con Google

[41] Cline A. K., Moler C. B., Stewart G. W., Wilkinson J. H. (1979). An estimate for the condition number of a matrix. SIAM J. Numer. Anal. 16, 368–375 Cerca con Google

[42] Comerlati A., Gambolati G., Janna C. (2006). Reordering for the iterative solution of hybrid elastic structures. In B. H. V. Topping, G. Montero, and R. Montenegro, editors, Proceedings of the Eighth International Conference on Computational Structures Technology, Stirlingshire, United Kingdom. Civil-Comp Press. Paper 175. Cerca con Google

[43] Comerlati A., Ferronato M., Gambolati G. Putti M., Teatini P. (2006). Fluiddynamic and geomechanical effects of CO2 sequestration below the Venice lagoon. Enviromental & Engineering geoscience Vol. XII (3),211–226 Cerca con Google

[44] Comerlati A., Hassanizadeh S. M., Putti M. (2007). Carbon dioxide sequestration in deep saline aquifers: general aspects, processes and modelling. sottomesso a Critical reviews in enviromental science and technology. Cerca con Google

[45] Craig, R. F. (1974). Soil mechanics. Spon, London Cerca con Google

[46] Darcy H., (1956). Le Fontaines Publique de la Vile Dijon. Victor Dalmont, Paris, France Cerca con Google

[47] Davis T. A., Duff I. S. (1997). An unsymmetric-pattern multifrontal method for sparse LU factorization SIAM J. Matrix Anal. Appl. 18(1), 140–158 Cerca con Google

[48] Davis T. A., Gilbert R., Larimore S. I., Ng E. G. Y. (2000). A column approximate minimum degree ordering algorithm. Technical Report RAL-TR-2000-005 Cerca con Google

[49] Day, R. A., Potts, D. M. (1994). Zero thickness interface elements – numerical stability and applications. International Journal for Numerical and Analytical Methods in Geomechanics 18, 689–708 Cerca con Google

[50] Desai C. S. , Zaman M. M., Lightner J. G., Siriwardane H. J.(1984). Thin-layer element for interfaces and joints. International Journal for Numerical and Analytical Methods in Geomechanics 8, 19–43 Cerca con Google

[51] Dollar H. S., Gould N. I. M., Wathen A. J. (2004). On implicit-factorizationi constraint preconditioners. Technical Report RAL-TR-2004-036 Cerca con Google

[52] Dollar H. S., Gould N. I. M., W. H. A. Schilders, Wathen A. J. (2005). On iterative methods and implicit-factorization preconditioners for regularized saddle-point systems. Technical Report RAL-TR-2005-011 Cerca con Google

[53] Dongarra J. J., Du Croz J. J., Duff I. S., Hammarling S. (1990). A set of level 3 basic linear algebra subprograms. ACM Trans. Math. Software 16, 1–17 Cerca con Google

[54] Dongarra J. J., Duff I. S., Sorensen D. C., and van der Vorst H. A. (1998). Numerical linear algebra for high-performance computers. SIAM, Philadelphia, PA. Cerca con Google

[55] Doornhof D. (1992). Surface subsidence in The Netherland: the Groningen gas field. Geologie en Mijnbouw 71, 119–130. Cerca con Google

[56] Duff I. S., Reid J. K. (1981). MA32 - A package for solving unsymmetric systems using the frontal method. Technical Report R-10079 Cerca con Google

[57] Duff I. S., Reid J. K. (1983). The multifrontal solution of indefinite sparse symmetric linear systems. ACM Trans. Math. software 9, 302–325 Cerca con Google

[58] Duff I. S., Reid J. K. (1984). The multifrontal solution of unsymmetric sets of linear systems. SIAM J. Sci. Statist. Comput. 5, 633–641 Cerca con Google

[59] Duff I. S., Erisman A. M., and Reid J. K. (1986). Direct Methods for Sparse Matrices. Clarendon Press, Oxford, UK. Cerca con Google

[60] Duff, I. S., Meurant, G. A. (1989). The effect of ordering on preconditioned conjugate gradients. BIT 29, 635–657. Cerca con Google

[61] Duff I. S. (2002) MA57-A new code for the solution of sparse symmetric definite and indefinite systems. Technical Report RAL-TR-2002-024 Cerca con Google

[62] Durazzi C., Ruggiero V. (2003). Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic problems. Numerical Linear Algebra with Applications 10, 673–688 Cerca con Google

[63] Elman H. C., Agron E. (1993). Ordering techniques for the preconditioned conjugate gradient method on parallel computers. Comput. Phys. Comm. 14, 253–269. Cerca con Google

[64] Elman H. C., Silvester D. J., Wathen A. J. (2002). Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations. Numerische Mathematik 90, 665–688 Cerca con Google

[65] Fair G. M., Hatch L. P. (1933). Fundamental factors governing the streamline flow of water through sand. J. Am. Wat. Wks. Ass. 25, 1551–1565 Cerca con Google

[66] Ferronato M., Gambolati G., Teatini P. (2001). Ill-conditioning of finite element poroelasticity equations. Int. J. of Solids and Structures 38, 5995–6014 Cerca con Google

[67] Ferronato M., Gambolati G., Teatini P. (2004). On the role of reservoir geometry in waterdrive hydrodynamics. Journal of Petroleum Science and Engineering 44, 205–221 Cerca con Google

[68] Ferronato M., Janna C., Gambolati G. (2008). Mixed constraint precoditioning in computational contact mechanics. Computer Methods in Applied Mechanics and Engineering, submitted Cerca con Google

[69] Ferronato M., Gambolati G., Janna C., Teatini P. Numerical modelling of regional faults in land subsidence prediction above gas/oil reservoirs. Int. J. for Numerical and Analytical Meth. in Geomech, DOI: 10.1002/nag640 Cerca con Google

[70] Francavilla A., Zienkiewicz O. C. (1975). A note on numerical computation of elastic contact problems. International Journal of Numerical Methods in Engineering 9, 913– 924 Cerca con Google

[71] Frank R., Guenot A., Humbert P. (1982). Numerical analysis of contacts in geomechanics. In Proceedings of the 4th International Conference on Numerical Methods in Geomechanics, Edmonton, Canada, 37–42 Cerca con Google

[72] Frankel S. (1950). Convergence rates of iterative treatments of partial differential equations. MTAC, 65–75 Cerca con Google

[73] Fredrich J. T. , Arguello J. G., Deitrick G. L., De Rouffignac E. P. (2000). Geomechanical modeling of reservoir compaction, surface subsidence, and casing damage at the Belridge diatomite field. SPE Reservoir Evaluation & Engineering 3, 348–359 Cerca con Google

[74] Gambolati G. (1973). Equation for one-dimensional vertical flow of groundwater 1. The rigorous theory. Water Resources Research 9(4), 1022–1028 Cerca con Google

[75] Gambolati G., Freeze R. A. (1973). Mathematical simulation of the subsidence of Venice. 1. Theory. Water Resources Research 9(3), 721–733 Cerca con Google

[76] Gambolati G., Gatto P., Freeze R. A. (1974). Mathematical simulation of the subsidence of Venice. 2. Results. Water Resources Research 10(3), 563–577 Cerca con Google

[77] Gambolati G., Ricceri G., Bertoni W. Brighenti G., Vuillermin E. (1991). Mathematical simulation of the subsidence of Ravenna. Water Resources Research 27(11), 2899–2918 Cerca con Google

[78] Gambolati G., Teatini P. (1998). CENAS: Coastline Evolution of the Upper Adriatic Sea de to rise and natural and anthropogenic land subsidence. Water Sci. Technol. Libr. vol. 28, Kluwer Acad., Norwell, Mass. Cerca con Google

[79] Gambolati G., Teatini P., Tommasi L. (1999). Stress-Strain analysis in productive gas/oil reservoirs. International Journal of Numerical and Analytical Methods in Geomechanics 23, 1495–1519 Cerca con Google

[80] Gambolati G., Teatini P., Ba`u D., Ferronato M. (1998). Importance of poroelastic coupling in dynamically active aquifers of the Po river basin, Italy. Water Resources Research vol. 36(9), 2443–2459 Cerca con Google

[81] Gambolati G., Ferronato M., Teatini P., Deidda R., Lecca G. (2001). Finite element analysis of land subsidence above depleted reservoirs with the pore pressure gradient and total stress formulations. Int. J. of Numerical and Analytical Methods in Geomechanics 25, 307–327 Cerca con Google

[82] Geertsma J. (1966). Problems of rock mechanics in petroleum production engineering. In Proc. 1st Cong. Int. Soc. of Rock Mechanics, Lisbon, 585–594 Cerca con Google

[83] Geertsma J. (1973). A basic theory of subsidence due to reservoir compaction: the homogeneous case. Verhandelingen Kon. Ned. Geol. Mijnbouwk Gen. 28, 43–62 Cerca con Google

[84] Geertsma J. (1973). Land subsidence above compacting oil and gas reservoirs. Journal of Petroleum Science 25, 734–744 Cerca con Google

[85] Gentier S., Poinclou C. (2002). Comportement hydrom´ecanique d’une fracture en cisaillement limit´e `a des d´eplacements tangentiels de faibles amplitudes. In Rapport BRGM-Eni-Agip, 18–26 Cerca con Google

[86] Gonella M., Gambolati G., Giunta G., Putti M., and Teatini P. (1998). Prediction of land subsidence due to groundwater withdrawal along the Emilia-Romagna coast. In G. Gambolati, editor, CENAS, Coastline Evolution of the Upper Adriatic Sea due to Sea Level Rise and Natural and Anthropogenic Land Subsidence, Water Science & Technology Library, n.28, pages 151–168. Kluwer Academic Publ. Cerca con Google

[87] Goodman R. E., Taylor R. L., Brekke T. L. (1968). A model for the mechanics of jointed rock. ASCE Journal of Soil Mechanics and Foundation Division 94, 637–659 Cerca con Google

[88] Goodman R. E (1974). The mechanical properties of joints. In Proceedings of the 3rd Congr. Int. soc. Rock. Mech., vol. 1a, 127–140 Cerca con Google

[89] Goodman R. E (1976). Methods of Geological Engineering in Rock Discontinuities. West Publ., St. Paul (MN), 1976. Cerca con Google

[90] Graham E., Forsyth P. A. (1999). Preconditioning methods for very ill-conditioned three-dimensional linear elasticity problems. Int. J. Numer. Methods Eng. 44, 77–99 Cerca con Google

[91] Griffith D. V. (1985). Numerical modelling of interfaces using conventional finite elements. In Proceedings of the 5th International Conference on Numerical Methods in Geomechanics, Nagoya, Japan, 837–844 Cerca con Google

[92] Harris Galveston Coastal Subsidence District (1982). Water Management Study: Phase 2 and Supplement 1. Houston, Texas. 68 pp. Cerca con Google

[93] Helm D. C. (1975). One-dimensional simulation of aquifer system compaction near Pixley, California, 1. Constant parameters. Water Resources Research 11,(3), 465–478 Cerca con Google

[94] Helm D. C. (1976). One-dimensional simulation of aquifer system compaction near Pixley, California, 2. Stress-dependent parameters. Water Resources Research 12,(3), 375–391 Cerca con Google

[95] Hermann L. R. (1978). Finite element analysis of contact problems. ASCE Journal of Engineering Mechanics Division, 104: 1043–1057, 1978. Cerca con Google

[96] Hestenes M. R., Stiefel E. L, (1952). Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards Section B 49, 409-436 Cerca con Google

[97] Heuze F. E., Barbour T. G. (1982). New models for rock joints and interfaces. ASCE J. Geotech. Eng. Div. 108, 757–776 Cerca con Google

[98] Hladík I., ReedM. B., Swoboda G. (1997). Robust preconditioners for linear elasticity FEM analyses. Int. J. Numer. Methods Eng. 40, 2109–2127 Cerca con Google

[99] Hrenikoff A. (1941). Solution of problems in elasticity by the framework method. J. Appl. Mech. A8, 169–175 Cerca con Google

[100] HSL Archive - a catalogue of subroutines. (2004). Aea Technology, Engineering Software, CCLRC. http://www.cse.clrc.ac.uk/nag/hsl. Vai! Cerca con Google

[101] Hubbert M. K. (1940). The theory of groundwater motion. Journal of geology 48, 785–944 Cerca con Google

[102] Irons B. M. (1970). A frontal solution program for finite elements analysis. Int. J. Numer. Methods Eng. 2, 5–32 Cerca con Google

[103] Janna C, Comerlati A, Gambolati G. (2007). A comparison of projective and direct solvers for Finite Elements in elastostatics. Advances in Engineering Software, submitted. Cerca con Google

[104] Katona M. G. (1983). A simple contact-friction interface element with application to buried culverts. International Journal for Numerical and Analytical Methods in Geomechanics 7, 371–384 Cerca con Google

[105] Keller C., Gould N. I. M., Wathen A. J. (2000). Constraint preconditioning for indefinite linear systems. SIAM J. Matrix Anal. Appl. 21(4), 1300–1317 Cerca con Google

[106] Kelley C. T. (1995). Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia, USA Cerca con Google

[107] Kershaw D. S. (1978). The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations. J. Comp. Phys. 26, 43–65. Cerca con Google

[108] Kilic S. A., Saied F., and Sameh A. (2004). Efficient iterative solvers for structural dynamics problems. Computers & Structures 82, 2363–2375. Cerca con Google

[109] Kozeny J. (1933). Theorie und Berechnung der Brunnen. Wasserkraft und Wasserwirtschaft 28, 88–92, 101–105, 113–116 Cerca con Google

[110] Lai J. Y., Booker J. R. (1991). A residual force finite element approach to soilstructure interaction analysis. International Journal for Numerical and Analytical Methods in Geomechanics 15, 181–203 Cerca con Google

[111] Lee A. L., Gonzales M. H., Eakin B. E. (1966). The viscosity of natural gases. J. Pet. Technol. August 1966, 997–1000 Cerca con Google

[112] Lei X. Y., Swoboda G., Zenz G. (1995). Application of contact-friction interface element to tunnel excavation in faulted rock. Computers & Geotechnics 17, 349–370 Cerca con Google

[113] Lewis R. W., Schrefler B. A. (1978). A fully coupled consolidation model of the subsidence of Venice. Water Resour. Res. 14(2), 223–230. Cerca con Google

[114] Lewis R. W., Schrefler B. A. (1987). The finite element method in the deformation and consolidation of porous media. J. wiley, Chichester, UK Cerca con Google

[115] Lewis W. R., Schrefler B. A., and Simoni L. (1991). Coupling versus uncoupling in soil consolidation. Int. J. Numer. Analytic. Methods Geomech. 15, 533–548. Cerca con Google

[116] Li N., Saad Y., Chow E. (2003). Crout version of ILU for general sparse matrices. SIAM J. Sci. Comput. 25(2), 716–728 Cerca con Google

[117] Lin C., Moré J. J. (1999). Incomplete Cholesky factorizations with limited memory. SIAM J. Sci. Comput. 21(1), 24–45 Cerca con Google

[118] Liu J. W. H. (1990). The role of the elimination trees in sparse factorization. SIAM J. Matrix Anal. Appl. 11), 134–172 Cerca con Google

[119] Liu J. W. H. (1992). The multifronatal method for sparse matrix solution: theory and practice. SIAM Rev. 34, 82–109 Cerca con Google

[120] Makurat A., Barton N., Rad N. S., Bandis S. (1990). Joint conductivity variation due to normal and shear deformation. In Rock Joints, Barton & Stephansson (eds.), 535–540. A.A. Balkema Publ., Rotterdam. Cerca con Google

[121] Maksimovich, M. (1996). The shear strenght components for a rough rock joint. Int. J. Rock Mech. Sci. Geomech. 33, 769–783 Cerca con Google

[122] Martin J. C., Serdengecti S. (1984). Subsidence over oil and gas fields. In T. Holzer, editor, Man-Induced Land Subsidence, Rev. Eng. Geol., vol. VI, Boulder (CO). Geol. Soc. of America. Cerca con Google

[123] Matheron, G. (1969). Le krigeage universel. Technical Report 1, Paris school of Mines. Cah. Cent. Morphol. Math., Fontainbleau. Cerca con Google

[124] Matheron, G. (1971). The theory of regionalized variables and its applications. Technical Report 5, Paris school of Mines. Cah. Cent. Morphol. Math., Fontainbleau. Cerca con Google

[125] Mattavelli L., Novelli L. (1990). Geochemistry and habitat of the oils in Italy. Am. Assoc. Petr. Geol. B. 74, 1623–1639 Cerca con Google

[126] McCain W. D.(1990). The properties of petroleum fluids. PenWell Books, Tulsa, Oklaoma. Cerca con Google

[127] McHenry D.(1943). A lattice analogy for the solution of plane stress problems. J. Inst. Civ. Eng. 21, 59–82 Cerca con Google

[128] Karypis G. , Kumar V. (1998). METIS. A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. Version 4.0. University of Minnesota, Department of computer science / Army HPC research center, Minneapolis, MN 55455. Cerca con Google

[129] Mualem Y. (1976). A new model predicting the hydraulic conductivity of unsaturated media. Water Resour. Res. 13(3), 3033–3040 Cerca con Google

[130] NAM (1995). Subsidence caused by natural gas production. Technical Report, Nam, Assen Cerca con Google

[131] Narasimhan T. N., Goyal K. P. (1984). Subsidence due to geothermal fluid withdrawal. In T. Holzer, editor, Man-Induced Land Subidence, Rev. Eng. Geol., vol. VI, Boulder (Co). Geological Society of America. Cerca con Google

[132] Newmark N. M. (1949). Numerical methods of analysis in bars, plates and elastic bodies, in Numerical Methods of Analysis in Engineering, L. E. Grinter, MacMillan, 1949. Cerca con Google

[133] Nutting P. G. (1930). Physical analysis of oil sands. Bull. Am. Ass. petrol. Geol. 14, 1337–1349 Cerca con Google

[134] Ortega J. M. (1991). Orderings for conjugate gradient preconditionings. SIAM J. Optim. 1, 565–582. Cerca con Google

[135] Patton F. D. (1966). Multiple modes of shear failure in rocks. In Proceedings 1st Congr. Int. Soc. Rock Mech., 503–524 Cerca con Google

[136] Pottgens, J. J. E., Browner F. .J. J. (1991). Land subsidence due to gas extraction in the northern part of the Netherlands. In Land subsidence (Proc. of Houston Symposium), Pub. 200, 99–108 Cerca con Google

[137] Pruess K. (1997). Numerical modelling of aquifer disposal of of CO2. In SPE/EPA/DOE Exploration and Production Enviromental conference, San Antonio, Texas. Paper SPE 66537 Cerca con Google

[138] Rathfelder K. M. (1989). Numerical simulation of soil vapor extraction systems. Ph.D. thesis, Department of Civil Engineering, University of California, Los Angeles, CA Cerca con Google

[139] Raven K.G., Gale J.E. (1985). Water flow in a natural rock fracture as a function of stress and sample size. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 22(4), 251–261 Cerca con Google

[140] Rivera A., Ledoux E., and de Marsily G. (1991). Nonlinear modeling of groundwater flow and total subsidence of the Mexico City aquifer-aquitard system. In A. I. Johnson, editor, Land Subsidence (Proc. IV Int. Symposium on Land Subsidence), 44–58. IAHS Publ. no. 200. Cerca con Google

[141] Rutqvist J., Tsang C. F. (2002). A study of caprock hydromechanical changes associated with CO2-injection into a brine formation. Environmental Geology 42, 296– 305 Cerca con Google

[142] Saad Y. (1994). ILUT: A dual threshold incomplete ILU factorization. Num. Lin. Alg. Appl. 1, 387–402. Cerca con Google

[143] Saad Y. (1996). ILUM: a multi-elimination ILU preconditioner for general sparse matrices. SIAM Journal on Scientific Computing 17(4), 830–847 Cerca con Google

[144] Saad Y., Zhang J. (1999). BILUM: Block version of multi-elimination and multilevel ILU preconditioner for general sparse linear systems. SIAM Journal on Scientific Computing 20(6), 2103–2121 Cerca con Google

[145] Saad Y., Suchomel B. (2002). ARMS: an algebraic recursive multilevel solver for general sparse linear systems Numerical linear algebra with applications 9, 359-378 Cerca con Google

[146] Saad Y. (2003). Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA. Cerca con Google

[147] Sachdeva T. D., Ramakrishnan C. V. (1981). A finite element solution for the two dimensional elastic contact problem. International Journal of Numerical Methods in Engineering 17, 1257–1271 Cerca con Google

[148] Saint-George P., Warzee G., Notay Y., Beauwens R. (1999). Problem-dependent preconditioners for iterative solvers in FE elastostatics. Computers & Structures 73, 33–43 Cerca con Google

[149] Schrefler B. A., Zhan X. (1993). A fully coupled model for water flow and airflow in deformable porous media. Water Resor. Res. 29, 155–167 Cerca con Google

[150] Schrefler B. A. (1984). The finite element method in soil consolidation (with application to surface subsidence). Ph.D. Thesis, University College of Swansea, UK [151] Schrefler B. A., Scotta R. (2001). A fully coupled dynamic model for two phase flow in deformable porous media. Computer Methods in applied mechanics and engineering 190, 3223–3246 Cerca con Google

[152] Segall. P. (1989). Earthquakes triggered by fluid extraction. Geology 17, 942–946 Cerca con Google

[153] Silvester D. J., Elman H. C., Kay D., Wathen A. J. (2001). Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow. Journal of Computational and Applied Mathematics 128, 261–279 Cerca con Google

[154] Skinas C. A., Bandis S., Demiris C. A. (1990). Experimental investigation and modelling of rock joints behavior under constant stiffness. In N. Barton and O. Stephansson (eds.), Rock Joints: Proceedings of the International Symposium on Rock Joints, A. A. Balkema Publ., 301–307. Loen, Norway, 1990. Cerca con Google

[155] Standing M. B. (1977). Volumetric and phase behaviour of oil field hydrocarbon systems. Society of Petroleum Enigineers of AIM, Dallas, TX. Cerca con Google

[156] Stotland S. A. , Ortega J. M. (1997). Orderings for parallel conjugate gradients preconditioners. SIAM J. Sci. Comp. 18, 854–868. Cerca con Google

[157] Tarjan R. E. (1983). Data structures and network algorithms. SIAM, Philadelphia. Cerca con Google

[158] Terzaghi K. (1925). Erdbaumechanik auf Bodenphysikalischer Grundlage. F. Deuticke, Wien. Cerca con Google

[159] Terzaghi K., Peck R. B. (1967). Soil mechanics in Engineering Practice (2nd ed). J. Wiley, New York, NY Cerca con Google

[160] Theis C. V. (1935). The relationship between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Eos transactions AGU 16, 519–524 Cerca con Google

[161] Toh K. C., Phoon K. K., Chan S. H. (2004). Block preconditioners for symmetric indefinite linear systems. Int. J. Num. Met. Eng. 60, 1361–1381. Cerca con Google

[162] Tracy J., Neuzil C., (1981). Flow through fracture. U.S. Geological Survey. Cerca con Google

[163] Tsang Y. (1984). The effect of tortuosity of fluid flow through a single fracture. Water Resour. Res. 20, 1209–1215 Cerca con Google

[164] Tsang Y., Tsang C. (1988). Flow channelling in a single fracture as a twodimensionally strongly heterogeneous permeable medium. Water Resour. Res. 25, 2076–2080 Cerca con Google

[165] Van Der Vorst H. A. (2003) Iterative Krylov Methods for Large Linear Systems. Cambridge University Press, Cambridge. Cerca con Google

[166] Van Genuchten M. T. (1980). A closed-form equation for predicting the idraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44, 892–898 Cerca con Google

[167] Vargaftik N. B., Vinogradov N. B., Yargin V. S. (1996). Handbook of physical properties of liquids and gases. Third edition. Begell House, New York, NY Cerca con Google

[168] Verruijt J. (1969). Elastic storage of aquifers. In Flow through porous media, R. De Wiest editor, Academic Press, New York, NY, 331–376 Cerca con Google

[169] Wriggers P, Zavarise G. (2004). Computational contact mechanics. In E. Stein, R. de Borst and T.J.R. Hughes, editors, Encyclopedia of Computational Mechanics, John Wiley & Sons, Volume 2, 195–226 Cerca con Google

[170] Young D. M. (1950). Iterative methods for solving partial differential equations of elliptic type. Ph.D. thesis, Harvard University, Cambridge (MA) Cerca con Google

[171] Zienkiewicz O. C., Taylor R. L. (2000). The Finite Element Method. 1: The basis, volume 1. Butterworth and Heneimann, 5th edition. 689 pp. Cerca con Google

[172] Zienkiewicz O. C., Taylor R. L. (2000). The Finite Element Method. 2: Solid Mechanics, volume 2. Butterworth and Heneimann, 5th edition. 495 pp. Cerca con Google

[173] Zimmerman R.W., Bodvarsson G.S. (1992). Hydraulic conductivity of rock fractures. Transport in Porous Media 23, 1–30 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record