Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Pivato, Micaela (2012) Insight into the aggregation process of alpha-synuclein
Structural study of alpha-synuclein covalent dimers.
[Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
4059Kb

Abstract (english)

Summary


My PhD thesis is composed of two parts. A part deals with the characterization of alpha-synuclein (aS) dimers aggregation properties in respect to those of aS. The experimental work was conducted at CRIBI laboratory, at University of Padua, and constitutes the main project in which I was involved. During the third year of my PhD I spent six months at the Biopolymer Mass Spectrometry Laboratory of Imperial College in London. I conducted a glycomic analysis of mice tissues and a pilot study on expression and biosynthesis of mixed linked glucans emicellulose.

Parkinson’s disease (PD) is a progressive, neurodegenerative disorder characterized by the loss of dopaminergic neurons in substantia nigra. The histological hallmarks of PD are intracellular inclusions, known as Lewy bodies (LBs), composed by filamentous and aggregated protein. The pathogenesis of the disease is still unclear, but a key step in the onset of PD is the aggregation of aS into amyloid fibrils, that deposit within LBs as the major component. Despite its importance in neurodegeneration, little is known about aS function, native physiological state and mechanism of aggregation. aS was recently described as a folded tetramer, but was generally considered a natively unfolded protein. aS is able to acquire alpha-helix conformation upon interaction with lipids and to convert to beta-structure in pathological processes. During the aggregation process, aS forms soluble oligomers, transient beta-structured intermediate between the physiological form of aS and amyloid fibrils.
Dimerization of aS could represent a critical, rate-limiting step in the aggregation and amyloid formation of the protein. Therefore, we decided to study the aggregation of several different dimers of aS, produced through molecular biology techniques. A cysteine residue has been added at the N-terminal or at the C-terminal of aS, therefore producing a dimer N-N or C-C linked through a disulfide bond. A N-C dimer, formed two consecutive aS molecules, was obtained as a single polypeptide chain. During the project, another dimer, called DC dimer, was produced in order to further draw up the hydrophobic regions, and avoid the interferences of side chains within the molecule. DC is constituted by two consecutive central, highly amyloidogenic regions, containing aS residues from 1 to104 joined to residues from 29 to 140. The dimers represent a suitable tool for the study of intramolecular aS interaction pathway. Some remarkable differences define and limit the mobility freedom of the dimers respect to aS, hypothetically differentiating the fibrillation process of the four protein structures.
The characterization of the dimers was performed using chemical and biophysical techniques in order to define their behaviour in solution as monomer. CD, IR and NMR spectroscopy studies show that all the dimers are unfolded. They undergo alpha-helical transition upon interaction with the detergent SDS. These results evidence that dimers strongly resemble aS conformational features. All the dimers were tested for the ability to form fibrils, by incubating the molecules under physiological buffer and at a protein concentration of 1 mg/ml. They show to be able to form fibrils, that are positive to Thioflavin T binding assay. Moreover, analysis of the structure of fibrils, conducted using circular dichroism (CD) and Fourier Transformed-IR (FTIR) spectroscopy, detects the structural transition from random to beta-sheet structure as attended for typical amyloid structure. Fibrils morphology was investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM) imaging. Fibrils derived from aS dimers are quite long, unbranched and formed by a single filament, a peculiar difference with aS fibril morphology. To identify which amino acids in the respective types of fibrils belong to the fibril core, proteolysis was performed. The rationale of this experiment reside in the fact that disordered regions of proteins are generally site of enzymatic attack and hydrolysis occurs at flexible chain region devoid of hydrogen-bonded secondary structure. Therefore, the prospects are to remove the flexible parts or tail from the amyloid core. Results showed that the core structures of the fibrils of the different molecules seems to be constituted by the same amino acidic region, which encompasses the segment 35-96, in analogy with previous studies. The kinetic of the process was analyzed by fluorescence techniques (ThT binding assay) and by evaluating the amount of protein present in fibrils on time. This calculation was indirectly performed measuring the absorbance of the supernatant obtained after centrifugation of each aliquot. NN and NC dimers show a slower kinetic of fibrillation than aS, while the rate of fibril formation of CC and DC dimers is faster than aS. Moreover, aggregation experiments on mixtures of aS in the presence of small amount of dimers were also conducted in order to check if the presence of dimer influence aS kinetic. Results evidenced the ability of CC dimer to affect the aggregation of aS. On the base of collected results, models of the dimer conformation within the fibrils are proposed.

The research experience performed at Imperial College London gave me the possibility to learn and apply advanced techniques in mass spectrometry analysis of small organic compound, using GC-MS and MALDI-TOF spectrometers.
N-acetylglucosaminyltransferase V (GlcNacT-V), encoded by the Mgat5 gene, is a medial Golgi enzyme which catalyzes the addiction of a beta-1,6-linked GlcNAc to the alpha-1,6 mannose of the trimannosyl N-glycan core. GlcNacT-V plays a pivotal role in the formation of tri- and tetra-antennary N-glycans on newly synthesized glycoprotein. This branch provides the preferred substrate for the enzymatic subsequent synthesis of polylactosamine chains and terminal modification including the Lewis antigens. In my study, glycomic analyses were performed to investigate possible changes in protein N-glycosylation in wild type conditions and in the absence of Mgat5 gene in C57B5 mice kidneys. In parallel, N-glycan profile of kidneys and spleens coming from mice treated with high fat diet GlcNAc supplementation were analyzed. Previous results demonstrate that the effects of GlcNAc salvage appear to increase flux to UDP-GlcNAc. Therefore we were interested to know whether this implementation affects N-glycan branching.
Results show that Mgat5 deficient mouse kidney display less amount of tri-antennary and tetra-antennary structure compared to controls. However, GlcNAc dietary salvage has no apparent effect on N-linked glycosylation in the kidney and spleen, even if the experiments conducted on cell lines demonstrate that increased influx of UDP-GlcNAc resulted on increased N-glycan branching. Moreover, the performance of optimized glycome procedure allowed the identification of more tri-antennary glycan structures than the one reported on CFG (Consortium of Functional Glycomics) database.

Abstract (italian)

Riassunto


La mia tesi di dottorato è composta di due sezioni. Una sezione riguarda la caratterizzazione di dimeri di alpha-sinucleina (aS) in confronto con le proprietà di aS, sia in soluzione che in esperimenti di aggregazione. Il lavoro sperimentale è stato condotto nel laboratorio di Chimica delle Proteine (CRIBI Biotechnology Center), presso l’Università degli studi di Padova, e costituisce il progetto principale nel quale sono stata coinvolta. Durante il mio terzo anno di dottorato ho trascorso 6 mesi al laboratorio Biopolymer Mass Spectrometry Laboratory presso l’Imperial College a Londra. In questo laboratorio sono stata coinvolta in due progetti: uno studio di analisi glicomica di tessuti murini e un progetto pilota sulla biosintesi di emicellulosa mixed linked glucans (MLG).

Il morbo di Parkinson è una malattia neurodegenerativa progressiva caratterizzata dalla perdita di neuroni dopaminergici nella substantia nigra. La principale caratteristica istologica della malattia è la presenza di inclusioni intracellulari, conosciute come corpi di Lewy, composti da aggregati proteici filamentosi. La patogenesi della malattia è ancora poco chiara, ma un passaggio chiave nello sviluppo della malattia è l’aggregazione di alpha-synuclein (aS) in fibrille amiloidi, che si accumulano dei corpi di Lewy e ne costituiscono il componente principale. Nonostante la sua importanza nella neurodegenerazione, si conoscono poco la funzione di aS, il suo stato nativo fisiologico e il meccanismo di aggregazione. aS è stata di recente descritta come un tetramero di proteine in alpha-elica, ma aS è stata generalmente descritta come una proteina natively unfolded. aS assume conformazione ad alpha-elica a seguito di interazione con lipidi e converte a struttura beta durante i processi patologici. Durante il processo di aggregazione, aS forma oligomeri solubili di struttura beta, transienti intermedi tra la forma fisiologica di aS e le fibrille amiloidi.
La dimerizzazione di aS può rappresentare un fattore limitante nell’aggregazione e nella formazione di struttura amiloide. Pertanto, abbiamo deciso di studiare l’aggregazione di diversi dimeri di aS, prodotti mediante biologia molecolare. E’ stato aggiunto un residuo di cisteina all’ N- o al C- terminale di aS, producendo quindi dimeri NN o CC, legati attraverso un legame disolfuro. Un dimero NC, formato da due molecole consecutive di aS, è stato ottenuto come singola catena polipeptidica. Durante il progetto è stato prodotto un altro dimero, chiamato DC, disegnato in modo da avvicinare ulteriormente le regioni idrofobiche di aS, ed evitare le interferenze provocate dalle catene laterali, che vengono a trovarsi all’interno della molecola nei dimeri NN, CC ed NC. Il dimero DC contiene i residui 1-104 uniti al segmento 29-140 di aS, ed è quindi costituito da due regioni centrali di aS, altamente amilodoigeniche, disposte in modo consecutivo. I dimeri rappresentano uno strumento adatto per lo studio delle interazioni intramolecolari di aS. Alcune differenze sostanziali definiscono e limitano la libertà di movimento dei dimeri rispetto ad aS, ipoteticamente differenziando il processo di fibrillazione delle cinque strutture proteiche.
La caratterizzazione dei dimeri è stata effettuata utilizzando tecniche biofisiche e chimiche al fine di definire il loro comportamento in soluzione come monomero. Studi di dicroismo circolare (CD), spettroscopia IR ed NMR hanno dimostrato che tutti i dimeri sono unfolded. Tutti effettuano transizione ad alpha-elica a seguito dell’interazione con il detergente SDS. Questi risultati provano che i dimeri hanno caratteristiche conformazionali simili ad aS.
Successivamente, è stata esaminata la capacità dei dimeri di formare fibrille, incubando le molecole in tampone fisiologico alla concentrazione di 1 mg/ml. Tiutti sono in grado di formare fibrille, che sono positive al saggio di legame alla Tioflavina T (ThT), generalmente utilizzato per determinare la presenza di struttura amiloide. Inoltre, le analisi della struttura delle fibrille, condotte usando CD e spettroscopia IR in trasformata di Fourier (FT-IR), rilevano la presenza di transizione strutturale da random a struttura beta come ci si aspetta per fibrille amiloidi. La morfologia delle fibrille è stata studiata mediante microscopia elettronica a trasmissione (TEM) e microscopia di forza atomica (AFM). Le fibrille derivate dai dimeri di aS sono abbastanza lunghe, non ramificate e a singolo filamento, una differenza peculiare rispetto alle fibrille di aS, che si presentano twisted e formate da più filamenti. Per identificare quali amminoacidi di ciascun dimero fosse coinvolto nel core fibrillare sono sati eseguiti esperimenti di proteolisi. Il razionale di questo esperimento risiede nel fatto che le regioni non strutturate delle proteine sono in genere sito di attacco enzimatico, e l’idrolisi si verifica quindi in regioni flessibili, sprovviste di legani idrogeno intermolecolari che stabilizzano una struttura secondaria. Quindi lo scopo dell’esperimento è di rimuovere le parti flessibili dal core amyloide. I risultati hanno mostrato come le strutture core delle fibrille dei diversi dimeri sembrino essere costituite dalla stessa regione amminoacidica, che comprende il segmento 35-96, in analogia con studi precedenti su aS. La cinetica del processo è stata analizzata con tecniche di fluorescenza (saggio ThT) e valutando la quantità di proteine presenti nel tempo. Questo calcolo è stato effettuato indirettamente misurando l’assorbanza del surnatante ottenuto dopo ultracentrifugazione delle aliquote prelevate da miscele di aggregazione a diversi tempi. I dimeri NN ed NC hanno mostrato una cinetica di aggregazione più lenta rispetto ad aS, mentre il tasso di formazione delle fibrille di CC e DC è più veloce. Inoltre, esperimenti di aggregazione su miscele di aS in presenza di piccole quantità di dimeri sono stati condotti al fine di verificare se la presenza del dimero influenzasse la cinetica di aS. I risultati hanno evidenziato la capacità del dimero CC di influenzare l’aggregazione di aS. Sulla base dei risultati ottenuti, sono stati proposti dei modelli sulla conformazione dei dimeri all’interno delle fibrille.

L’esperienza di ricerca svolta all’Imperial College London mi ha dato la possibilità di imparare e applicare tecniche avanzate di spettrometria di massa (MS) sull’analisi di composti organici, utilizzando gas cromatografia accoppiata ad MS (GC-MS) e spettrometri MALDI-TOF.
L’enzima N-acetylglucosaminyltransferase V (GlcNAc-V), codificato dal gene Mgat 5, è un enzima del Golgi che catalizza l’addizione di un GlcNAc in posizione beta-1,6 a un mannosio alpha-1,6 della struttura di base degli zuccheri legati a residui amminici (N-glicani). GlcNAc-V svolge un ruolo fondamentale nella formazione di N-glicani a tre- e quattro-antenne su una proteina appena glicosilata. Queste ramificazioni forniscono il substrato favorito per la successiva sintesi enzimatica di catene poli-lactosamminiche e per le modificazioni terminali, compresi gli antigeni di Lewis. Ho svolto analisi glicomiche su tessuti renali murini per studiare possibili cambiamenti nella N-glicosilazione in topi wild type e knock out per il gene Mgat 5. In parallelo, è stato analizzato il profilo glicomico di tessuti renali e di milza di topi alimentati con una dieta ricca di GlcNAc. Risultati precedenti avevano dimostrato un aumento nel flussio di UDP-GlcNAc (substrato di GlcNAc-V), perciò eravamo interessati a determinare se il maggione apporto di zucchero influenzasse le glicosilazioni proteiche.
I risultati hanno evidenziato come le glicoproteine dei topi ko per Mgat 5 hanno meno strutture a tre- e quattro-antenne nelle glicosilazioni rispetto ai controlli. L’apporto di GlcNAc nella dieta non ha alcun affetto apparente sulla struttura e composizione delle glicosilazioni dei tessuti analizzati, nonostante precedenti esperimenti condotti su linee cellulari abbiano avuto un diverso esito. Inoltre, le analisi che ho condotto hanno permesso di identificare glicosilazioni non ancora registrate nel database CFG (Consortium of Functional Glycomics) per i tessuti analizzati.

Statistiche Download
EPrint type:Ph.D. thesis
Tutor:Polverino de Laureto, Patrizia
Ph.D. course:Ciclo 24 > Scuole 24 > BIOSCIENZE E BIOTECNOLOGIE > BIOTECNOLOGIE
Data di deposito della tesi:30 January 2012
Anno di Pubblicazione:30 January 2012
Key Words:dimeri di alpha-sinucleina/ alpha-synuclein dimers
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Struttura di riferimento:Centri > Centro di ricerca Interdipartimentale Biotecnologie Innovative (CRIBI)
Codice ID:4905
Depositato il:20 Dec 2012 14:13
Simple Metadata
Full Metadata
EndNote Format

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record