Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Cesca, Matteo (2008) Studio dei meccanismi di deposizione dei Debris Flow: integrazioni tra esperienze di laboratorio, analisi di campo e modellazioni numeriche. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
13Mb

Abstract (inglese)

This research is related to the study and modelling of the depositional processes of debris flows and an understanding of the related rheological behaviour. The main aims of this study are to analyse the depositional features of a debris flow, to verify the possible contribution of laboratory tests, carried out by means of a tilting-plane rheometer, to determine the rheological parameters and to investigate the reliability and limitations of computer models employed for debris flow simulation and rheological parameter determination.
The laboratory tests were been carried out at the Institute for Hydrological and Geological Protection of the Italian National Research Council (CNR IRPI) in Padova. The physical model consists of a 2 x 1 m tilting plane with inclination from 0° to 38°, on which a steel tank with a removable gate has been installed. A fixed horizontal plane (1.5 x 1 m), with an artificial roughness to simulate natural basal friction, served as the deposition area. In total, 93 laboratory tests were carried out: 62 tests simulated the quasi-static formation of a fan (with the tank installed at the lower end of the tilting plane), the remaining 31 examined dynamic fan formation by the means of a flume. The steel tank, with a removable gate facing the deposition plane, is parallelepiped with a square base (15 x 15 cm and 33 cm high) having a maximum volume of 7 dm3. The laboratory tests were conducted using three different materials: plastic cylinders with a diameter and height of 3 mm; medium to fine gravel; and debris-flow matrix (with a diameter < 19 mm), varying amounts of water were added to the debris-flow matrix to test solid concentrations in a range between 0.45 and 0.67. Data analysis included the development of semi-empirical equations for runout distance, the maximum width of the deposit and total travel distance. An energy balance approach was tested in order to determinate the rheological parameters of the debris-flow matrix, this method is based on the comparison between the potential energy of the mass stored in the tank and the work made in the process of deposit formation.
The field sites related to the debris-flow events are located upstream of the town of Cortina d'Ampezzo (Fiames locality, Belluno, Italy), where an intense rainstorm triggered six debris flows during the afternoon of 5th July 2006. Immediately following the event, field surveys were carried out in the study area. These field surveys made it possible to measure several features, including the debris-flow deposits, main channels and initiation areas. Samples taken from the debris-flow deposits have been used for laboratory tests. Total travel distances and the runout distance on fans measured in the field were compared with formulas found in the literature (empirical/statistical and physically oriented) and also compared to the results of the laboratory tests. An estimation of shear stress from the field site was calculated using Johnson's (1970) formula.
The Fiames debris-flow event of 5th July 2006 and the laboratory tests (dynamic runs) were simulated using FLO-2D, while RAMMS (Rapid Mass MovementS) was used solely to simulate the Fiames event. FLO-2D (O'Brien, 2003) is a two-dimensional flood routing model with a rigid bed (debris-flow simulations) or a mobile bed (sediment transport simulations), it simulates water flows in wide rivers as well as non-Newtonian flows over alluvial fans. FLO-2D numerically routes a flood hydrograph while predicting the area of inundation, the maximum depth and the flow velocity in each cell of the square grid system derived from input topographic data. RAMMS was developed in 2005 by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf and the Swiss Federal Institute for Snow and Avalanche Research (SLF), Davos. RAMMS uses a one-phase approach based on Voellmy rheology (Voellmy, 1955; Salm et al. 1990). The input file combines the total volume of the debris flow located in a release area with a mean depth. The model predicts the area of inundation, the maximum depth and the flow velocity in each triangular-shape cell of the input DTM.
The limitations of the numerical simulations relating to the laboratory tests were investigated to verify to what extent rheological parameters could be determined using this indirect method. The analysis of the Fiames event enabled understanding of the rheological behaviour related to the dolomitic debris-flows and the influence exerted by the input parameters on the final results. Finally, some improvements to the RAMMS model were proposed to obtain simulations in keeping with the events observed in the field.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:D'Agostino, Vincenzo
Correlatore:Marchi, Lorenzo
Dottorato (corsi e scuole):Ciclo 20 > Corsi per il 20simo ciclo > IDRONOMIA AMBIENTALE
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):Debris flow, Runout, Laboratory flumesm, Numerical modelling, FLO-2D, RAMMS, Dolomites
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/08 Idraulica agraria e sistemazioni idraulico-forestali
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:495
Depositato il:21 Ott 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. ABBOTT J., MONDY A., GRAHAM, L. E H. BRENNER. 1993. Techniques for analyzing the behavior of concentrated suspensions. In M.C. Roco (ed), Particulate Two-Phase Flow. Newton, Butterworth-Heinemann: 3-32 Cerca con Google

2. ANCEY, C. 1999. Rhéologie des laves torrentielles. Final scientific report PNRN 1998-99. CEMAGREF, Grenoble, France. Cerca con Google

3. AYOTTE, D. E O. HUNGR. 2000. Calibration of a runout prediction model for debris flow and avalanches. In "Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment". Rotterdam, Wieczorek & Naeser (eds) Balkema: 505-514. Cerca con Google

4. BAGNOLD, R.A. 1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proceeding of the Royal Society of London, series A, vol. 225: 49-63. Cerca con Google

5. BARDOU E. 2005. Typologie des laves torrentielles: reconnaissance et caractérisation rhéologique. Contributo del Corso “Laves torrentielles/Debris flow” dell’Università Europea d’Estate sui rischi naturali, UEE 2005, 19-24 settembre 2005, Villa Cameron, Courmayeur (AO). Cerca con Google

6. BARDOU E., ANCEY C., BONNARD, C. E VULLIET. 2003. Classification of debris-flow deposits for hazard assessment in alpine areas. In D. Rickenmann & C.L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment; Proceedings of the 3rd International DFHM Conference. Davos, Switzerland, Semptember 10-12, 2003. Rotterdam, Millpress: 799-808. Cerca con Google

7. BATHURST J.C., BURTON, A. E T.J. WARD. 1997. Debris flow run-out and landslide sediment delivery model tests. Journal of Hydraulic Engeneering, ASCE, 123 (5): 410-419. Cerca con Google

8. BENDA, L.E. E T.W. CUNDY. 1990. Predicting depostion of debris flows in mountain channels. Canadian Geotechnical Journal, 27: 409-417. Cerca con Google

9. BENINI, G. 2000. Sistemazioni idraulico-forestali. UTET — Unione Tipografico-Editrice Torinese, Torino. Cerca con Google

10. BERTI, M. E A. SIMONI. 2007. Prediction of debris flow inundation areas using empirical mobility relationships. Geomorphology, 90: 144-161. Cerca con Google

11. BERTOLO, P. E F. WIECZOREK. 2005. Calibration of numerical models for small debris flows in Yosemite Valley, California, USA. Natural Hazards and Earth System Sciences, 5: 993-1001. Cerca con Google

12. BURTON, A. E J.C. BATHURST. 1998. Physically based modelling of shallow landslide sediment yield at a catchment scale. Environmental Geology, 35: 89-99. Cerca con Google

13. CANNON, S.H. 1989. An approach for estimating debris flow runout distances. Proceedings ot the Conference XX, International Erosion Control Association, Vancouver, British Columbia: 457-468. Cerca con Google

14. CASTIGLIONI, G.B. 1971. Le calamità naturali nelle Alpi. Estratto dagli Atti del XXI Congresso Geografico Italiano. Verbania, 1971. Padova: Istituto di Fisica Terrestre, Geodesia e Geografia Fisica; pubblicazione n. 195. Cerca con Google

15. CHAU K.T., CHAN L.C.P., LUK, S.T. E W.H. WAI. 2000. Shape of deposition fan and runout distance of debris-flow: effects of granular and water contents. In "Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment". Rotterdam, Wieczorek & Naeser (eds) Balkema: 387-395. Cerca con Google

16. CHOW V.T., MAIDMENT, D.R. E L.W. MAYS. 1988. Applied hydrology. New York, McGraw-Hill. Cerca con Google

17. COROMINAS, J. 1996. The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal, 33: 260-271. Cerca con Google

18. COSTA, J.E. 1984. Physical geomorphology of debris flows. In J.E. Costa & P.J. Fleisher (eds), Developments and Applications of Geomorphology. New York, Springer-Verlag: 268-317. Cerca con Google

19. COUSSOT P., LAIGLE D., ARATTANO M., DEGANUTTI, A. E L. MARCHI. 1996. Determinazione delle caratteristiche reologiche di un debris flow. In Atti del XXV Convegno di Idraulica e Costruzioni Idrauliche. Torino, 16-18 settembre. Torino: Politecnico di Torino, Dipartimento di Idraulica, Trasporti e Infrastrutture Civili: 124-135. Cerca con Google

20. COUSSOT P., LAIGLE D., ARATTANO M., DEGANUTTI, A. E L. MARCHI. 1998. Direct determination of rheological characteristics of debris flow. Journal of Hydraulic Engineering, ASCE, 124 (8): 865-868. Cerca con Google

21. COUSSOT, P. E J.M. PIAU. 1995. The effects of an addition of force-free particles on the rheological properties of fine suspensions. Canadian Geotechnical Journal, 32: 263-270. Cerca con Google

22. COUSSOT, P. E S. PROUST. 1996. Slow unconfined spreading of a mudflow. Journal of Geophysical Research, 101 (B11): 217-229. Cerca con Google

23. COUSSOT P, RAYNAUD, J.S. E C. ANCEY. 2003. Combined MRI-rheometry determination of the behavior of mud suspensions. In D. Rickenmann & C.L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment; Proceedings of the 3rd International DFHM Conference. Davos, Switzerland, Semptember 10-12, 2003. Rotterdam, Millpress: 291-301. Cerca con Google

24. CROSTA G.B., CUCCHIARO, S. E P. FRATTINI. 2003. Validation of semi-empirical relationships for the definition of debris-flow behavior in granular materials. In D. Rickenmann & C.L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment; Proceedings of the 3rd International DFHM Conference. Davos, Switzerland, Semptember 10-12, 2003. Rotterdam, Millpress: 821-831. Cerca con Google

25. DAIDO, A. 1971. On the occurrence of mud-debris flow. Bulletin Disaster Prevention Research Institute Kyoto University, Part 2, 21 (187): 109-135. Cerca con Google

26. D'AGOSTINO, V. E L. MARCHI. 2003. Geomorphological estimation of debris-flow volumes in alpine basins. In D. Rickenmann & C.L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment; Proceedings of the 3rd International DFHM Conference. Davos, Switzerland, Semptember 10-12, 2003. Rotterdam, Millpress: 1097-1106. Cerca con Google

27. D'AGOSTINO, V. E P.R. TECCA. 2006. Some considerations on the application of FLO-2D model for debris flow hazard assessment. In G. Lorenzini, C.A. Brebbia & D.E. Emmanouloudis (eds), Monitoring, Simulation, Prevention and Remediation of Dense and Debris Flows. Southampton, WIT Press: 159-170. Cerca con Google

28. DEGANUTTI A.M., TECCA P.R., GENEVOIS, R. E A. GALGARO. 2003. Field and laboratory study on the deposition features of a debris flow. In D. Rickenmann & C.L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment; Proceedings of the 3rd International DFHM Conference. Davos, Switzerland, Semptember 10-12, 2003. Rotterdam, Millpress: 833-841. Cerca con Google

29. EVANS S.G., HUNGR, O. E J.J. CLAGUE. 2001. Dynamics of The 1984 rock avalanche and associated distal debris flow on Mount Cayley, British Columbia, Canada: implications for landslide hazard assessment on dissected volcanoes. Engineering Geology, 61: 29-51. Cerca con Google

30. FANNIN, R.J. E M.P. WISE. 2001. An empirical-statistical model for debris flow travel distance. Canadian Geotechnical Journal, 38: 982-994. Cerca con Google

31. FEI, X.J. 1981. Bingham yield stress of sediment water mixtures with hyperconcentration. J. Sediment Res., 3: 19-28. Cerca con Google

32. GHILARDI P., NATALE, L. E F. SAVI. 2003. Experimental investigation and mathematical simulation of debris-flow runout distance and deposition area. In D. Rickenmann & C.L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment; Proceedings of the 3rd International DFHM Conference. Davos, Switzerland, Semptember 10-12, 2003. Rotterdam, Millpress: 601-610. Cerca con Google

33. GREGORETTI, C. 2000. The initiation of debris flow at high slopes: experimental results. Physics and Chemistral on Earth (B), 25 (4): 387-390. Cerca con Google

34. HAPPEL, J. E H. BRENNER. 1965. Low Reynolds number hydrodynamics. Ed. Prectice-Hall, Englewood Cliffs, New Jersey. Cerca con Google

35. HEIM, A. 1882. Zeitschrift der Deutschen Geologischen Gesellschaft. Bergsturz und Menschenleben, Zurich 1932 (in tedesco). Cerca con Google

36. HERSCHEL, W.H. E R. BULKLEY. 1926. Measurement of consistency as applied to rubber-benzene solutions. Am. Soc. Test. Proc., 26: 621-633. Cerca con Google

37. HÜBL, J. E H. STEINWENDTNER. 2001. Two-Dimensional Simulation of Two Viscous Debris Flow in Austria. Phys. Chem. Earth, 26 (9): 639-644. Cerca con Google

38. HUIZINGA, R.J. 1996. Verification of vertically rotating flume using non-Newtonian fluids. Journal of Hydraulic Engineering, ASCE, 122 (8): 456-459. Cerca con Google

39. HUNGR, O. 1992. Runout prediction for flow-slides and avalanches: Analytical methods. In Proceedings of the Geotechnical and Natural Hazards Symposium, Vancouver, British Columbia: 139-144. Cerca con Google

40. HUNGR, O. 1995. A model for the runout analysis of rapid flow slides, debris flows and avalanches. Canadian Geotechnical Journal, 32: 610-623. Cerca con Google

41. HUNGR, O. E S.G. EVANS. 1996. Rock avalanche runout prediction using a dynamic model. Proceeding of 7th International Symposium on Landslides, Trondheim, Norway, 1: 233-238. Cerca con Google

42. HUNGR, O. E S.G. EVANS. 1997. A dynamic model for landslides with changing mass. Proceeding of IAEG International Symposium on Engineering Geology and the Environment, vol. 1, Athens, Greece: 719-724. Cerca con Google

43. HUNGR O., MORGAN, G.C. E R. KELLERHALS. 1984. Quantitative analysis of debris torrent hazards for design of remedial measures. Canadian Geotechnical Journal, 21: 663-677. Cerca con Google

44. HÜRLIMANN M., RICKENMANN, D. E C. GRAF. 2003. Field and monitoring data of debris-flow events in the Swiss Alps. Canadian Geotechnical Journal, 40 (1): 161-175. Cerca con Google

45. IKEYA, H. 1979. Introduction to Sabo Works: the preservation of land against sediment disaster (first English ed). The Japan Sabo Association, Tokyo. Cerca con Google

46. IKEYA, H. 1989. Debris flow and its countermeasures in Japan. Bulletin International Association of Engineering Geologists, 40: 15-33. Cerca con Google

47. IVERSON, R.M. 1997. The physics of debris flows. Reviews of Geophysics, 35: 245-296. Cerca con Google

48. IVERSON, R.M. 2003. The debris-flow rheology myth. In D. Rickenmann & C.L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment; Proceedings of the 3rd International DFHM Conference. Davos, Switzerland, Semptember 10-12, 2003. Rotterdam, Millpress: 303-314. Cerca con Google

49. IVERSON R.M., COSTA, J.E. E R.G. LAHUSEN. 1992. Debris-flow flume at H.J. Andrews experimental forest, Oregon. USGS Open-File Report: 92-483. Cerca con Google

50. IVERSON, R.M. E R.P. DENLINGER. 2001. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. Journal of Geophysical Research, 106: 537-552. Cerca con Google

51. IVERSON, R.M. E R.P. DENLINGER. 2001. Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical prediction and experimental tests. Journal of Geophysical Research, 106: 553-566. Cerca con Google

52. IVERSON R.M., SCHILLING, S.P. E J.W. WALLACE. 1998. Objective delineation of lahar-inundation hazard zones. Geological Society of America Bulletin, 110 (8): 972-984. Cerca con Google

53. JOHNSON, A.M. 1970. Physical processes in Geology. Freeman, Cooper & C., San Francisco. Cerca con Google

54. JOHNSON, A.M. E J.R. RODINE. 1984. Debris flow. Brundsen D and Prior DB (Eds), Slope instability. New York, John Wiley & Sons: 257-361. Cerca con Google

55. JULIEN, P.Y. E Y. LAN. 1991. Rheology of hyperconcentrations. Journal of Hydraulic Engineering, ASCE, 117 (3): 346-353. Cerca con Google

56. KANG, Z. E S. ZHANG. 1980. A preliminary analysis of the characteristics of debris flow. Proceedings of the International Symposium on River Sedimentation. Beijing, China: 133-142 (in cinese).ù Cerca con Google

57. KOSTASCHUK R.A., MACDONALD, G.M. E P.E. PUTNAM. 1986. Depositional process and alluvial fan-drainage basin morphometric relationships near Banff, Alberta, Canada. Earth Surface Processes Landforms, 11: 471-484. Cerca con Google

58. KYTOMAA, H.K. E C.M. ATKINSON. 1993. Sound propagation in suspensions and acoustic imaging of their microstructure. Mech. Mater., 16 : 189-197. Cerca con Google

59. LAIGLE D., HECTOR A.F., HÜBL,, J. E D. RICKENMANN. 2003. Comparison of numerical simulations of muddy debris flow spreading to records of real events. In D. Rickenmann & C.L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment; Proceedings of the 3rd International DFHM Conference. Davos, Switzerland, Semptember 10-12, 2003. Rotterdam, Millpress: 635-646. Cerca con Google

60. LANCASTER S.T., HAYES, S.K. E G.E. GRANT. 2003. Effects of wood on debris flow runout in small mountain watersheds. Water Resources Research, 39 (6): 1168-1189. Cerca con Google

61. LEE J., COWIN, S.C. E J.S. TEMPLETON III. 1974. An experimental study of the kinematics of flow through hoppers. Trans. Soc. Rheol., 18: 247-269. Cerca con Google

62. LIU, X. 1996. Size of a debris flow deposition: model experiment approach. Environmental Geology, 28 (2): 70-77. Cerca con Google

63. LOCAT, J. 1997. Normalized rheological behaviour of fine muds and their flow properties in a pseudoplastic regime. In Procs. of 1st International Conference on Debris Flow Hazards Mitigation. San Francisco, ASCE: 260-269. Cerca con Google

64. MAJOR, J.J. 1997. Depositional processes in large-scale debris-flow experiments. The Journal of Geology, 105: 345-366. Cerca con Google

65. MAJOR, J.J. E T.C. PIERSON. 1992. Debris flow rheology: experimental analysis of fine-grained slurries. Water Resources Research, 28 (3): 841-857. Cerca con Google

66. MAJOR, J.J. E B. VOIGHT. 1986. Sedimentology and clast orientation of the 18 May 1980 southwest-flank lahars, Mount St. Helens, Washington. Journal Sedimentary Petrology, 56: 691-705. Cerca con Google

67. MALET J.P., REMAITRE A., MAQUAIRE O., ANCEY, C. E J. LOCAT. 2003. Flow susceptibility of heterogeneous marly formations: implications for torrent hazard control in the Barcellonette Basin (Alpes-de-Haute-Provence, France). In D. Rickenmann & C.L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment; Proceedings of the 3rd International DFHM Conference. Davos, Switzerland, Semptember 10-12, 2003. Rotterdam, Millpress: 351-362. Cerca con Google

68. MARCHETTI, M. 2000. Geomorfologia fluviale. Pitagora Editrice, Bologna. Cerca con Google

69. MARCHI L., ARATTANO, M. E M. DEGANUTTI. 2002. Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology, 46 (1/2): 1-17. Cerca con Google

70. MARTINO, R. 2003. Experimental analysis on the rheological properties of a debris-flow deposit. In D. Rickenmann & C.L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment; Proceedings of the 3rd International DFHM Conference. Davos, Switzerland, Semptember 10-12, 2003. Rotterdam, Millpress: 363-373. Cerca con Google

71. MCDOUGALL, S.D. E O. HUNGR. 2003. Objectives for the development of an integrated three-dimensional continuum model for the analysis of landslide runout. In D. Rickenmann & C.L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment; Proceedings of the 3rd International DFHM Conference. Davos, Switzerland, Semptember 10-12, 2003. Rotterdam, Millpress: 481-490. Cerca con Google

72. MIZUYAMA, T. 1977. Bedload transport in steep channels. Ph.D. Dissertation, Kyoto University (in giapponese). Cerca con Google

73. MIZUYAMA, T. E S. UEHARA. 1983. Experimental study of the depositional process of debris flow. Japanese Geomorphological Union, 4 (1): 49-63. Cerca con Google

74. O'BRIEN, J.S. 1986. Physical processes, rheology and modeling of mudflows. Doctoral dissertation, Colorado State University, Fort Collins, Colorado. Cerca con Google

75. O'BRIEN, J.S. 2003. FLO-2D user manual, version 2003.06. Nutrioso, Arizona. Cerca con Google

76. O'BRIEN, J.S. E P.Y. JULIEN. 1985. Physical properties and mechanics of hyperconcentrated sediment flows. Proceeding of the Speciality Conference on Delineation of Landslides, Flash Flood and Debris Flow Hazard in Utah. Utah Water Research Laboratory: 260-279. Cerca con Google

77. O'BRIEN, J.S. E P.Y. JULIEN. 1986. Rheology of non-Newtonian fine sediment mixtures. Proceeding of ASCE Speciality Conference on Aerodynamics, Fluid Mechanics and Hydraulics. ASCE, Minneapolis: 989-996. Cerca con Google

78. O'BRIEN, J.S. E P.Y. JULIEN. 1988. Laboratory analysis of mudflow properties. Journal of Hydraulic Engineering, ASCE, 114 (8): 877-887. Cerca con Google

79. O'BRIEN J.S., JULIEN, P.Y. E T. FULLERTON. 1993. Two-dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering, ASCE, 119 (2): 244-261. Cerca con Google

80. OKUDA, S. E H. SUWA. 1984. Some relationships between debris flow motion and microtopography for the Kamikamihori fan, North Japan Alps. In "Catchment Experiments in Fluvial Geomorphology". Burt & Walling (eds) GeoBooks, Norwich: 447-464. Cerca con Google

81. OKUDA S., SUWA H., OKUNISHI K., YOKOYAMA, K. E M. NAKANO. 1980. Observations on the motion of a debris flow and its geomorphological effects. Zeitschrift für Geomorphologie N.F., Suppl. Bd., 35: 142-163. Cerca con Google

82. OKURA Y., KITAHARA H., SAMMORI, T. E A. KAWANAMI. 2000. The effects of rockfall volume on runout distance. Engineering Geology, 58 (2): 109-124. Cerca con Google

83. PASHIAS N., BOGER D.V., SUMMERS, J. E D.J. GLENISTER. 1996. A fifty cent rheometer for yield stress measurement. Journal of Rheology, 40: 1179-1189. Cerca con Google

84. PETRASCHEK, A. E H. KIENHOLZ. 2003. Hazard assessment and mapping for mountain risks in Switzerland. In D. Rickenmann & C.L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment; Proceedings of the 3rd International DFHM Conference. Davos, Switzerland, Semptember 10-12, 2003. Rotterdam, Millpress: 25-38. Cerca con Google

85. PHILLIPS, C.J. E T.R.H. DAVIES. 1991. Determining rheological properties of debris flow material. Geomorphology, 4: 101-110. Cerca con Google

86. PIERSON, T.C. 1986. Flow behaviour of channelized debris flows, Mount St Helens, Washington. In A.D. Abrahams (ed), Hillslope Processes. Boston, Allen and Unwin: 269-296. Cerca con Google

87. PIERSON, T.C. 1995. Flow characteristics of large eruption-triggered debris flows at snow-clad volcanoes: Constraints for debris-flow models. Journal of Volcanology and Geothermal Research, 66: 283-294. Cerca con Google

88. RICKENMANN, D. 1994. An alternative equation for the mean velocity in gravel-bed rivers and mountain torrents. Proceeding of the National Conference on Hydraulic Engineering. Buffalo N.Y, ASCE: 672-676. Cerca con Google

89. RICKENMANN, D. 1999. Empirical relationships for debris flow. Natural Hazards, 19: 47-77. Cerca con Google

90. RICKENMANN, D. 2005. Runout prediction methods. In "Debris-Flow Hazards and Related Phenomena". Chichester, Jakob & Hungr (eds) Praxis: 305-324. Cerca con Google

91. RICKENMANN, D. E T. KOCH. 1997. Comparison of debris flow modelling approaches. In Procs. of 1st International Conference on Debris Flow Hazards Mitigation. San Francisco, ASCE: 576-585. Cerca con Google

92. RICKENMANN D., LAIGLE D., MCARDELL, B.W. E J. HÜBL,. 1993.Comparison of 2D debris-flow simulation models with field events. Computational Geosciences, 10: 241-264. Cerca con Google

93. RICKENMANN, D. E M. ZIMMERMANN. 1993. The 1987 debris flows in Switzerland: Documentation and analysis. Geomorphology, 8: 175-189. Cerca con Google

94. SALM, B. 1966. Contribution to avalanche dynamics. In Procs. of International Symposium on Scientific Aspects of Snow and Ice Avalanches. IAHS, Christchurch (New Zealand): 199-214. Cerca con Google

95. SALM B., BURKARD, A. E H. GUBLER. 1990. Berechnung von Fliesslawinen, eine Anleitung für Praktiker mit Beispielen. Eigdenossichen Institut für Schnee und Lawinenforschung SLF Davos, Rapporto n.47. Cerca con Google

96. SHAKESBY, R.A. E J.A. MATTHEWS. 2002. Sieve deposition by debris flow on a permeable substrate, Leirdalen, Norway. Earth Surface Processes and Landforms, 27: 1031-1041. Cerca con Google

97. SHIEH, C.-L. E Y-F. TSAI. 1997. Experimental study on the configuration of debris-flow fan. In "Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment" - Cheng-Lung Chen (eds), ASCE: 133-142. Cerca con Google

98. SOSIO R., CROSTA, G.B. E P. FRATTINI. 2006. Field observation, rheological testing and numerical modelling of a debris-flow event. Earth Surface Processes and Landforms, 32: 290-306. Cerca con Google

99. SUWA, H. E S. OKUDA. 1983. Deposition of debris flows on a fan surface, Mt. Yakedake, Japan. Geomorphologie, Suppl. Band 46: 79-101. Cerca con Google

100. VOELLMY, A. 1955. Ueber die Zerstoeerunskraft von Lawinen Schweizerische Bauzeitung. English version "On the destructive force of avalanches" translated by Tate R.E. (1964), ed. US Department of Agriculture Forest Service. Cerca con Google

101. TAKAHASHI, T. 1977. Study on the occurrence and movement of debris flow. Annual Report of Disaster Prevention Research Institute, Kyoto University, No. 20-B-2: 405-435 (in giapponese). Cerca con Google

102. TAKAHASHI, T. 1978. Mechanical characteristics of debris flow. Journal of the Hydraulic Division, ASCE, 104: 1153-1169. Cerca con Google

103. TAKAHASHI, T. 1980. Debris flow on prismatic open channel. Journal of the Hydraulic Division, ASCE, 106: 381-396. Cerca con Google

104. TAKAHASHI, T. 1981. Debris flow. Annual review of Fluid Mechanics, 13: 57-77. Cerca con Google

105. TAKAHASHI, T. 1991. Debris flow. IAHR Monograph Series. Rotterdam, Balkema Publishers. Cerca con Google

106. TECCA P.R., DEGANUTTI A.M., GENEVOIS, R. E A. GALGARO. 2003. Velocity distribution in a coarse debris flow. In D. Rickenmann & C.L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment; Proceedings of the 3rd International DFHM Conference. Davos, Switzerland, Semptember 10-12, 2003. Rotterdam, Millpress: 905-916. Cerca con Google

107. TECCA P.R., GALGARO A., GENEVOIS, R. E A.M. DEGANUTTI. 2003. Development of a remotely controlled debris flow monitoring system in the Dolomites (Acquabona, Italy). Hydrological Processes, 17: 1771-1784. Cerca con Google

108. THOMAS, D.G. 1963. Non-Newtonian suspension. Part I: physical properties and laminar transport characteristics. Ind. Eng. Chem., 55 (11): 9-18. Cerca con Google

109. TOYOS G., ORAMAS DORTA D., OPPENHEIMER C., PARESCHI M.T., SULPIZIO, R. E G. ZANCHETTA. 2007. GIS-assisted modelling for debris flow hazard assessment based on the events of May 1998 in the area of Sarno, Southern Italy: Part I. Maximum run-out. Earth Surface Processes and Landforms, 32: 1491-1502. Cerca con Google

110. VAN DINE, D.F. 1996. Debris flow control structures for forest engineering. Ministry of Forests Research Program, Working Paper 22/1996. Government of the Province of British Columbia, Vancouver. Cerca con Google

111. VANDRE, B.C. 1985. Ruud Creek debris flow. Delineation of Landslide, Flash Flood and Debris Flow Hazards in Utah, General Series Rep. UWRL/G-85/03, D.S. Bowles ed., Utah Water Res. Lab., Utah State Univ., Logan, Utah: 117-131. Cerca con Google

112. VAN STEIJN, H. E J.P. COUTARD. 1989. Laboratory experiments with small debris flows: physical properties related to sedimentary characteristics. Earth Surface Processes and Landforms, 14 (6-7): 587-596. Cerca con Google

113. VOELLMY, A. 1955. Ueber die Zerstoeerunskraft von Lawinen Schweizerische Bauzeitung. English version "On the destructive force of avalanches" translated by Tate R.E. (1964), ed. US Department of Agriculture Forest Service. Cerca con Google

114. ZIMMERMANN M., MANI P., GAMMA P., GSTEIGER P., HEINIGER, O. E G. HUNZIKER. 1997. Murganggefahr und Klimaän-.derung-ein GIS-basierter Ansatz. Schlussbericht NFP31, ETH, Zurich. (in tedesco) Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record