Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Bianchini, Elisa (2012) V247M alpha-sarcoglycan mutant: uncovering the ERAD pathway of a type I membrane protein. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
5Mb

Abstract (inglese)

Misfolded/mutated proteins are identified by the endoplasmic reticulum (ER) quality control system (ER-QC) and eliminated through the ER-associated protein degradation (ERAD) pathway. The presence of structural defects identifies these proteins as ERAD-L, -M, or -C substrates and results in selection of distinct degradation pathways. ER-associated E3 ubiquitin ligases are key components of the ERAD machinery, and distinct E3 ligases seem to control specific ERAD pathways.
In human muscles, mutations on sarcoglycans, proteins that form a tetramer complex (alpha-beta-gamma-delta) associated to dystrophin, lead to a Limb Girdle Muscolar Dystrophy (LGMD). It has been demonstrated that the V247M alpha-sarcoglycan mutant, a type I membrane protein with a luminal defect, is ubiquitinated and degraded by the proteasome, the last ERAD component. Aim of this project is to investigate ERAD components involved in recognition, ubiquitination and retrotraslocation of the mutated protein. The attention has been focused particullary on the E3 ligases that seem to be crucial factors assuring both selectivity and specificity to ERAD pathways. Emerging literature regarding several diseases involving mutated/misfolded proteins augurs well for treatments that involved common or peculiar ER-QC and ERAD steps. Due to the fact that until now, there is no known therapy for muscular dystrophies, I believe this study is relevant both to disclose an important biological process but also to identify possible molecular targets to treat sarcoglycanopathies.
A set of ER chaperones and lectins recognize and transport misfolded proteins to the site of dislocation. Among these, I have demonstrated that the chaperone GRP94 is probably involved in V247M mutant recognition, while BiP and OS9 do not seem to be implicated, however, their role is still under investigation. Usually gp78 and HRD1 are the E3 ligases involved in the ERAD-L pathway of model substrates. By using mutated variants of, or siRNAs for these E3 candidates, my results show that HRD1, but not gp78, is specifically involved in the disposal of the alpha-sarcoglycan mutant. In addition, the E2 ubiquitin-conjugase enzyme UBC6e and the cargo receptor SEL1L, well-known HRD1 partners, cooperate in the disposal of V247M alpha-SG. Immunoprecipitation experiments validated the interaction of HRD1, UBC6e and SEL1L with the alpha-SG mutant. Moreover another E3 ligase, RFP2, is involved in the degradation of V247M alpha-SG being able both to co-immunoprecipitate with the protein and to block its disposal, if a mutated variant is expressed. The driving force to eradicate misfolded membrane proteins from the ER is usually provided by the AAA-ATPase p97. My experiments demonstrated that p97, together with the ER-associated Derlin-1, form the so-called "dislocon", the proteinaceous environment for the hydrophilic luminal domain of V247M mutant to cross the ER membrane.

These results describe for the first time the ERAD pathway for the disposal of the type I membrane protein V247M alpha-sarcoglycan, a pathway leaded by the E3 ligase HRD1. Moerover, recognition and delivery to proteasome of this mutant is also assisted by the E3 ubiquitin ligase RFP2.

In collaboration with Dr. R. Sacchetto (Dept. of Veterinary), I also carried out a study aimed to check whether the R164H mutant of the polytopic membrane protein SERCA1a is also an ERAD client. Mutations in SERCA1a are responsible for Brody Disease, a human inherited congenital disorder that affects skeletal muscles, because of SERCA1a loss of function. A similar muscular disorder, named congenital Pseudomyotonia, has been described in the Italian Chianina cattle. In affected animals and Brody’s patients, decreased calcium ATPase activity perfectly correlates with reduced expression of SERCA1a protein. I demonstrate that inhibition of proteasome not only rescued the expression of R164H SERCA1a mutant transfected in HEK-293 cells, but also restored the enzymatic activity.

Abstract (italiano)

Le proteine non correttamente ripiegate e/o mutate sono riconosciute dal sistema di controllo qualità del reticolo endoplasmatico (ER) (ER-QC) ed eliminate attraverso una specifica via, chiamata degradazione associata al reticolo (ERAD). La selezione avviene attraverso l’identificazione dei difetti strutturali da parte di specifiche proteine coinvolte nel controllo qualità del reticolo. La degradazione conseguente può essere suddivisa in tre vie: ERAD-L per proteine con difetti luminali, ERAD-M per difetti nella porzione di membrana ed ERAD-C in caso di difetti citosolici. Le E3 ubiquitin-ligasi risiedenti nel reticolo sono elementi chiave di ERAD e ciascuna sembra agire prevalentemente in una particolare via piuttosto che in un’altra, assicurando quindi lo specifico riconoscimento e smaltimento di proteine aventi difetti particolari, anche se non è ancora chiaro nei dettagli come ciò avvenga.
Nel muscolo, mutazioni a carico di proteine associate in un complesso tetramerico alla distrofina, chiamate sarcoglicani (alpha-beta-gamma-delta), causano nell’uomo distrofie muscolari chiamate distrofie dei cingoli. E’ stato precedentemente dimostrato che il mutante di alpha-sarcoglicano V247M, una proteina di tipo I con un difetto luminale, viene ubiquitinato e degradato dal proteasoma, tappa finale di ERAD. Scopo di questo studio è indagare i componenti del sistema degradativo atti a riconoscere questa proteina come mutante e le E3 ligasi coinvolte nella sua ubiquitinazione, processo fondamentale per l’indirizzamento al proteasoma. Il fine ultimo è chiaramente quello di individuare possibili bersagli farmacologici per lo sviluppo di una possibile terapia, non presente attualmente. Numerose patologie dovute a problemi di ripiegamento/mutazioni di proteine stanno emergendo, e con esse anche possibili trattamenti farmacologici che agiscono sui pathways di ER-QC ed ERAD.
Nel reticolo le proteine malripiegate e/o mutate sono ritenute in soluzione da chaperoni e lectine, che giocano un ruolo indispensabile in ER-QC e nel delivery dei substrati ai complessi formati dalle E3 ligasi. Tra questi ho dimostrato che GRP94 è coinvolta nel riconoscimento di V247M alpha-SG, mentre BiP e OS9 non sembrano implicati, anche se ulteriori studi a questo riguardo risultano necessari. In letteratura i substrati modello di proteine di tipo I con difetti luminali vengono degradati grazie all’azione di due E3 ligasi, chiamate gp78 e HRD1. Attraverso l’uso di E3 ligasi mutate nel sito catalitico e di RNAi ho dimostrato che V247M alpha-SG è degradato grazie all’azione di HRD1 ma non di gp78. Mediante saggi di immunoprecipitazione, ho anche dimostrato che HRD1 interagisce strettamente con il sarcoglicano mutato così come UBC6e, l’ubiquitin-coniugasi partner di HRD1, e SEL1L, il recettore associato alla ligasi. Un’altra ligasi, RFP2, si è dimostrata in grado sia di interagire con il sarcoglicano mutato, sia di bloccarne la degradazione se deleta del sito catalitico coinvolto nell’ubiquitinazione. Per permettere a molte delle proteine di membrana di essere estratte dal reticolo e dirette al citosol, dove risiede il proteasoma, la AAA-ATPasi p97 sembra avere un ruolo fondamentale, grazie alla forza motrice fornita dall’idrolisi dell’ATP e il supporto dato da Derlina-1. Ho dimostrato, grazie all’uso di un dominante negativo, che l’azione di p97 è necessaria per la retrotraslocazione di V247M alpha-SG e, grazie ad esperimenti di co-immunoprecipitazione, che il mutante interagisce strettamente sia con p97, sia con Derlina-1.

Questi risultati descrivono per la prima volta il pathway degradativo di alpha-sarcoglicano V247M, che, in qualità di proteina di membrana di tipo I con difetti nella porzione luminale, segue la via classica ERAD-L guidata dall’E3 ubiquitin-ligasi HRD1. Nel processo di riconoscimento e indirizzamento al proteasoma questo mutante è inoltre assistito dalla E3 ubiquitin-ligasi RFP2.

In un progetto in collaborazione con la Dr. R. Sacchetto (Dip. Scienze Sperimentali Veterinarie), mi sono occupata di un’altra proteina, SERCA1a. La proteina mutata è causa nell’uomo della miopatia di Brody e recentemente un fenotipo muscolare simile, chiamato Pseudomiotonia, è stato riscontrato anche in alcune vacche Italiane di razza Chianina che presentano la mutazione R164H a carico di SERCA1a. Sia nell’uomo che negli animali, la riduzione della attività della calcio ATPasi SERCA1a è correlata alla ridotta quantità di proteina presente nel muscolo.
L’espressione eterotopica di SERCA1a mi ha permesso di dimostrare che la proteina è degradata attraverso il proteasoma: l’inibizione dell’attività degradativa porta, infatti, a un aumento della quantità di proteina. Oltre ciò, studi funzionali mi hanno permesso di dimostrare che la proteina così recuperata è anche enzimaticamente attiva, indice del fatto che un suo recupero farmacologico potrebbe risultare efficace non solo nei casi di Pseudomiotonia ma anche in quelli di miopatia di Brody.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Sandona, Dorianna
Dottorato (corsi e scuole):Ciclo 24 > Scuole 24 > BIOSCIENZE E BIOTECNOLOGIE > NEUROBIOLOGIA
Data di deposito della tesi:31 Gennaio 2012
Anno di Pubblicazione:31 Gennaio 2012
Parole chiave (italiano / inglese):alfa-sarcoglicano, ERAD, proteina di membrana tipo I, HRD1, sistema ubiquitina-proteasoma /alpha-sarcoglicano, ERAD, type I membrane protein, HRD1, ubiquitin-proteasome system
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Scienze Biomediche Sperimentali
Codice ID:4953
Depositato il:06 Nov 2012 09:40
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Alcock F, Swanton E. Mammalian OS-9 is upregulated in response to endoplasmic reticulum stress and facilitates ubiquitination of misfolded glycoproteins. J Mol Biol. 2009 Jan 30;385(4):1032-42. Cerca con Google

Altier C, Garcia-Caballero A, Simms B, You H, Chen L, Walcher J, Tedford HW, Hermosilla T, Zamponi GW. The Cavβ subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nat Neurosci. 2011 Feb;14(2):173-80. Cerca con Google

Assereto S, Stringara S, Sotgia F, Bonuccelli G, Broccolini A, Pedemonte M, Traverso M, Biancheri R, Zara F, Bruno C, Lisanti MP, Minetti C. Pharmacological rescue of the dystrophin-glycoprotein complex in Duchenne and Becker skeletal muscle explants by proteasome inhibitor treatment. Am J Physiol Cell Physiol. 2006 Feb;290(2):C577-82. Cerca con Google

Bagola K, Mehnert M, Jarosch E, Sommer T. Protein dislocation from the ER. Biochim Biophys Acta. 2011 Mar;1808(3):925-36. Review. Cerca con Google

Ballar P, Ors AU, Yang H, Fang S. Differential regulation of CFTRDeltaF508 degradation by ubiquitin ligases gp78 and Hrd1. Int J Biochem Cell Biol. 2010 Jan;42(1):167-73. Cerca con Google

Ballar P, Pabuccuoglu A, Kose FA. Different p97/VCP complexes function in retrotranslocation step of mammalian ER-associated degradation (ERAD). Int J Biochem Cell Biol. 2011 Apr;43(4):613-21. Cerca con Google

Baranova A, Hammarsund M, Ivanov D, Skoblov M, Sangfelt O, Corcoran M, Borodina T, Makeeva N, Pestova A, Tyazhelova T, Nazarenko S, Gorreta F, Alsheddi T, Schlauch K, Nikitin E, Kapanadze B, Shagin D, Poltaraus A, Ivanovich Vorobiev A, Zabarovsky E, Lukianov S, Chandhoke V, Ibbotson R, Oscier D, Einhorn S, Grander D, Yankovsky N. Distinct organization of the candidate tumor suppressor gene RFP2 in human and mouse: multiple mRNA isoforms in both species- and human-specific antisense transcript RFP2OS. Gene. 2003 Dec 4;321:103-12. Cerca con Google

Bartoli M, Gicquel E, Barrault L, Soheili T, Malissen M, Malissen B, Vincent-Lacaze N, Perez N, Udd B, Danos O, Richard I. Mannosidase I inhibition rescues the human alpha-sarcoglycan R77C recurrent mutation. Hum Mol Genet. 2008 May 1;17(9):1214-21. Cerca con Google

Bebeacua C, Förster A, McKeown C, Meyer HH, Zhang X, Freemont PS. Distinct conformations of the protein complex p97-Ufd1-Npl4 revealed by electron cryomicroscopy. Proc Natl Acad Sci U S A. 2012 Jan 9. Cerca con Google

Bech-Otschir D, Helfrich A, Enenkel C, Consiglieri G, Seeger M, Holzhütter HG, Dahlmann B, Kloetzel PM. Polyubiquitin substrates allosterically activate their own degradation by the 26S proteasome. Nat Struct Mol Biol. 2009 Feb;16(2):219-25. Cerca con Google

Bernardi KM, Williams JM, Kikkert M, van Voorden S, Wiertz EJ, Ye Y, Tsai B. The E3 ubiquitin ligases Hrd1 and gp78 bind to and promote cholera toxin retro-translocation. Mol Biol Cell. 2010 Jan 1;21(1):140-51. Cerca con Google

Bernasconi R, Galli C, Calanca V, Nakajima T, Molinari M. Stringent requirement for HRD1, SEL1L, and OS-9/XTP3-B for disposal of ERAD-LS substrates. J Cell Biol. 2010 Jan 25;188(2):223-35. Cerca con Google

Bernasconi R, Pertel T, Luban J, Molinari M. A dual task for the Xbp1-responsive OS-9 variants in the mammalian endoplasmic reticulum: inhibiting secretion of misfolded protein conformers and enhancing their disposal. J Biol Chem. 2008 Jun 13;283(24):16446-54. Cerca con Google

Betto R, Senter L, Ceoldo S, Tarricone E, Biral D, Salviati G. Ecto-ATPase activity of alpha-sarcoglycan (adhalin). J Biol Chem. 1999 Mar 19;274(12):7907-12. Cerca con Google

Blaustein MP, Kao JPY and Matteson DR. Cellular Physiology. Mosby Physiology Monograph Series. Elsevier Mosby, Philadelphia, 328 pages (2004). Cerca con Google

Bloom J, Amador V, Bartolini F, DeMartino G, Pagano M. Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell. 2003 Oct 3;115(1):71-82. Cerca con Google

Bönnemann CG, Modi R, Noguchi S, Mizuno Y, Yoshida M, Gussoni E, McNally EM, Duggan DJ, Angelini C, Hoffman EP. Beta-sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex. Nat Genet. 1995 Nov;11(3):266-73. Cerca con Google

Bowles DE, McPhee SW, Li C, Gray SJ, Samulski JJ, Camp AS, Li J, Wang B, Monahan PE, Rabinowitz JE, Grieger JC, Govindasamy L, Agbandje-McKenna M, Xiao X, Samulski RJ. Phase 1 Gene Therapy for Duchenne Muscular Dystrophy Using a Translational Optimized AAV Vector. Mol Ther. 2011 Nov 8. doi: 10.1038/mt.2011.237. Cerca con Google

Bredt DS. Knocking signalling out of the dystrophin complex. Nat Cell Biol. 1999 Aug;1(4):E89-91. Cerca con Google

Brini M. Calcium-sensitive photoproteins. Methods. 2008 Nov;46(3):160-6. Cerca con Google

Brodsky JL, Skach WR. Protein folding and quality control in the endoplasmic reticulum: Recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol. 2011 Aug;23(4):464-75. Review. Cerca con Google

Brodsky JL, Wojcikiewicz RJ. Substrate-specific mediators of ER associated degradation (ERAD). Curr Opin Cell Biol. 2009 Aug;21(4):516-21. Review. Cerca con Google

Burr ML, Cano F, Svobodova S, Boyle LH, Boname JM, Lehner PJ. HRD1 and UBE2J1 target misfolded MHC class I heavy chains for endoplasmic reticulum-associated degradation. Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2034-9. Cerca con Google

Calì T, Galli C, Olivari S, Molinari M. Segregation and rapid turnover of EDEM1 by an autophagy-like mechanism modulates standard ERAD and folding activities. Biochem Biophys Res Commun. 2008 Jul 4;371(3):405-10. Cerca con Google

Campbell KP, Kahl SD. Association of dystrophin and an integral membrane glycoprotein. Nature. 1989 Mar 16;338(6212):259-62. Cerca con Google

Carre-Pierrat M, Lafoux A, Tanniou G, Chambonnier L, Divet A, Fougerousse F, Huchet-Cadiou C, Ségalat L. Pre-clinical study of 21 approved drugs in the mdx mouse. Neuromuscul Disord. 2011 May;21(5):313-27. Cerca con Google

Carrié A, Piccolo F, Leturcq F, de Toma C, Azibi K, Beldjord C, Vallat JM, Merlini L, Voit T, Sewry C, Urtizberea JA, Romero N, Tomé FM, Fardeau M, Sunada Y, Campbell KP, Kaplan JC, Jeanpierre M. Mutational diversity and hot spots in the alpha-sarcoglycan gene in autosomal recessive muscular dystrophy (LGMD2D). J Med Genet. 1997 Jun;34(6):470-5. Cerca con Google

Carvalho P, Goder V, Rapoport TA. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell. 2006 Jul 28;126(2):361-73. Cerca con Google

Carvalho P, Stanley AM, Rapoport TA. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell. 2010 Nov 12;143(4):579-91. Cerca con Google

Cassano M, Dellavalle A, Tedesco FS, Quattrocelli M, Crippa S, Ronzoni F, Salvade A, Berardi E, Torrente Y, Cossu G, Sampaolesi M. Alpha sarcoglycan is required for FGF-dependent myogenic progenitor cell proliferation in vitro and in vivo. Development. 2011 Oct;138(20):4523-33. Cerca con Google

Chan YM, Bönnemann CG, Lidov HG, Kunkel LM. Molecular organization of sarcoglycan complex in mouse myotubes in culture. J Cell Biol. 1998 Dec 28;143(7):2033-44. Cerca con Google

Chen J, Shi W, Zhang Y, Sokol R, Cai H, Lun M, Moore BF, Farber MJ, Stepanchick JS, Bönnemann CG, Chan YM. Identification of functional domains in sarcoglycans essential for their interaction and plasma membrane targeting. Exp Cell Res. 2006 May 15;312(9):1610-25. Cerca con Google

Chen J, Skinner MA, Shi W, Yu QC, Wildeman AG, Chan YM. The 16 kDa subunit of vacuolar H+-ATPase is a novel sarcoglycan-interacting protein. Biochim Biophys Acta. 2007 May;1772(5):570-9. Cerca con Google

Chiesa A, Rapizzi E, Tosello V, Pinton P, de Virgilio M, Fogarty KE, Rizzuto R. Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling. Biochem J. 2001 Apr 1;355(Pt 1):1-12. Cerca con Google

Christianson JC, Olzmann JA, Shaler TA, Sowa ME, Bennett EJ, Richter CM, Tyler RE, Greenblatt EJ, Wade Harper J, Kopito RR. Defining human ERAD networks through an integrative mapping strategy. Nat Cell Biol. 2011 Nov 27;14(1):93-105. doi: 10.1038/ncb2383. Cerca con Google

Christianson JC, Shaler TA, Tyler RE, Kopito RR. OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat Cell Biol. 2008 Mar;10(3):272-82. Cerca con Google

Christianson JC, Shaler TA, Tyler RE, Kopito RR. OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat Cell Biol. 2008 Mar;10(3):272-82. Cerca con Google

Ciechanover A. N-terminal ubiquitination. Methods Mol Biol. 2005;301:255-70. Cerca con Google

Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K, Abbs S, Garralda ME, Bourke J, Wells DJ, Dickson G, Wood MJ, Wilton SD, Straub V, Kole R, Shrewsbury SB, Sewry C, Morgan JE, Bushby K, Muntoni F. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet. 2011 Aug 13;378(9791):595-605. Cerca con Google

Cirak S, Feng L, Anthony K, Arechavala-Gomeza V, Torelli S, Sewry C, Morgan JE, Muntoni F. Restoration of the Dystrophin-associated Glycoprotein Complex After Exon Skipping Therapy in Duchenne Muscular Dystrophy. Mol Ther. 2011 Nov 15. doi: 10.1038/mt.2011.248. Cerca con Google

Costanzo LS. Physiology. Lippincott Williams & Wilkins, 2007. Cerca con Google

De Moor O, Dorgan CR, Johnson PD, Lambert AG, Lecci C, Maillol C, Nugent G, Poignant SD, Price PD, Pye RJ, Storer R, Tinsley JM, Vickers R, Well R, Wilkes FJ, Wilson FX, Wren SP, Wynne GM. Discovery and SAR of 2-arylbenzotriazoles and 2-arylindazoles as potential treatments for Duchenne muscular dystrophy. Bioorg Med Chem Lett. 2011 Aug 15;21(16):4828-31. Cerca con Google

Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem. 2009;78:399-434. Review. Cerca con Google

Dickens NJ, Beatson S, Ponting CP. Cadherin-like domains in alpha-dystroglycan, alpha/epsilon-sarcoglycan and yeast and bacterial proteins. Curr Biol. 2002 Mar 19;12(6):R197-9. Cerca con Google

Draviam RA, Shand SH, Watkins SC. The beta-delta-core of sarcoglycan is essential for deposition at the plasma membrane. Muscle Nerve. 2006 Dec;34(6):691-701. Cerca con Google

Draviam RA, Wang B, Shand SH, Xiao X, Watkins SC. Alpha-sarcoglycan is recycled from the plasma membrane in the absence of sarcoglycan complex assembly. Traffic. 2006 Jul;7(7):793-810. Cerca con Google

Drögemüller C, Drögemüller M, Leeb T, Mascarello F, Testoni S, Rossi M, Gentile A, Damiani E, Sacchetto R. Identification of a missense mutation in the bovine ATP2A1 gene in congenital pseudomyotonia of Chianina cattle: an animal model of human Brody disease. Genomics. 2008 Dec;92(6):474-7. Cerca con Google

Duggan DJ, Hoffman EP. Autosomal recessive muscular dystrophy and mutations of the sarcoglycan complex. Neuromuscul Disord. 1996 Dec;6(6):475-82. Cerca con Google

Durbeej M, Campbell KP. Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Curr Opin Genet Dev. 2002 Jun;12(3):349-61. Review. Cerca con Google

Eldridge AG, O'Brien T. Therapeutic strategies within the ubiquitin proteasome system. Cell Death Differ. 2010 Jan;17(1):4-13. Epub . Review. Cerca con Google

Eletto D, Dersh D, Argon Y. GRP94 in ER quality control and stress responses. Semin Cell Dev Biol. 2010 Jul;21(5):479-85. Review. Cerca con Google

Ellgaard L, Molinari M, Helenius A. Setting the standards: quality control in the secretory pathway. Science. 1999 Dec 3;286(5446):1882-8. Cerca con Google

Ernst R, Claessen JH, Mueller B, Sanyal S, Spooner E, van der Veen AG, Kirak O, Schlieker CD, Weihofen WA, Ploegh HL. Enzymatic blockade of the ubiquitin-proteasome pathway. PLoS Biol. 2011 Mar;8(3):e1000605. Cerca con Google

Ervasti JM, Campbell KP. Membrane organization of the dystrophin-glycoprotein complex. Cell. 1991 Sep 20;66(6):1121-31. Cerca con Google

Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP. Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature. 1990 May 24;345(6273):315-9. Cerca con Google

Fanin M, Duggan DJ, Mostacciuolo ML, Martinello F, Freda MP, Sorarù G, Trevisan CP, Hoffman EP, Angelini C. Genetic epidemiology of muscular dystrophies resulting from sarcoglycan gene mutations. J Med Genet. 1997 Dec;34(12):973-7. Cerca con Google

Feng Q, Sekula D, Müller R, Freemantle SJ, Dmitrovsky E. Uncovering residues that regulate cyclin D1 proteasomal degradation. Oncogene. 2007 Aug 2;26(35):5098-106. Cerca con Google

Gallastegui N, Groll M. The 26S proteasome: assembly and function of a destructive machine. Trends Biochem Sci. 2010 Nov;35(11):634-42. Cerca con Google

Gastaldello S, D'Angelo S, Franzoso S, Fanin M, Angelini C, Betto R, Sandonà D. Inhibition of proteasome activity promotes the correct localization of disease-causing alpha-sarcoglycan mutants in HEK-293 cells constitutively expressing beta-, gamma-, and delta-sarcoglycan. Am J Pathol. 2008 Jul;173(1):170-81. Cerca con Google

Gauss R, Jarosch E, Sommer T, Hirsch C. A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nat Cell Biol. 2006 Aug;8(8):849-54. Epub 2006 Jul 16. Cerca con Google

Gazzerro E, Assereto S, Bonetto A, Sotgia F, Scarfì S, Pistorio A, Bonuccelli G, Cilli M, Bruno C, Zara F, Lisanti MP, Minetti C. Therapeutic potential of proteasome inhibition in Duchenne and Becker muscular dystrophies. Am J Pathol. 2010 Apr;176(4):1863-77. Cerca con Google

Goyenvalle A, Seto JT, Davies KE, Chamberlain J. Therapeutic approaches to muscular dystrophy. Hum Mol Genet. 2011 Apr 15;20(R1):R69-78. Review. Cerca con Google

Greenblatt EJ, Olzmann JA, Kopito RR. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum. Nat Struct Mol Biol. 2011 Sep 11;18(10):1147-52. doi: 10.1038/nsmb.2111. Cerca con Google

Grünberg W, Sacchetto R, Wijnberg I, Neijenhuis K, Mascarello F, Damiani E, Drögemüller C. Pseudomyotonia, a muscle function disorder associated with an inherited ATP2A1 (SERCA1) defect in a Dutch Improved Red and White cross-breed calf. Neuromuscul Disord. 2010 Jul;20(7):467-70. Cerca con Google

Hack AA, Lam MY, Cordier L, Shoturma DI, Ly CT, Hadhazy MA, Hadhazy MR, Sweeney HL, McNally EM. Differential requirement for individual sarcoglycans and dystrophin in the assembly and function of the dystrophin-glycoprotein complex. J Cell Sci. 2000 Jul;113 ( Pt 14):2535-44. Cerca con Google

Han R, Kanagawa M, Yoshida-Moriguchi T, Rader EP, Ng RA, Michele DE, Muirhead DE, Kunz S, Moore SA, Iannaccone ST, Miyake K, McNeil PL, Mayer U, Oldstone MB, Faulkner JA, Campbell KP. Basal lamina strengthens cell membrane integrity via the laminin G domain-binding motif of alpha-dystroglycan. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12573-9. Cerca con Google

Hanson PI, Whiteheart SW. AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol. 2005 Jul;6(7):519-29. Cerca con Google

Hänzelmann P, Schindelin H. The structural and functional basis of the p97/valosin-containing protein (VCP)-interacting motif (VIM): mutually exclusive binding of cofactors to the N-terminal domain of p97. J Biol Chem. 2011 Nov 4;286(44):38679-90. Cerca con Google

Hebert DN, Bernasconi R, Molinari M. ERAD substrates: which way out? Semin Cell Dev Biol. 2010 Jul;21(5):526-32. Cerca con Google

Hegde NR, Chevalier MS, Wisner TW, Denton MC, Shire K, Frappier L, Johnson DC. The role of BiP in endoplasmic reticulum-associated degradation of major histocompatibility complex class I heavy chain induced by cytomegalovirus proteins. J Biol Chem. 2006 Jul 28;281(30):20910-9. Cerca con Google

Helenius A, Aebi M. Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem. 2004;73:1019-49. Review. Cerca con Google

Hoffman EP, Bronson A, Levin AA, Takeda S, Yokota T, Baudy AR, Connor EM. Restoring dystrophin expression in duchenne muscular dystrophy muscle progress in exon skipping and stop codon read through. Am J Pathol. 2011 Jul;179(1):12-22. Review. Cerca con Google

Hoffman EP, Brown, RH Jr, Kunkel LM. The protein product of the Duchenne muscular dystrophy locus. Cell 51: 919-928, 1987. Cerca con Google

Hoffman EP, Fischbeck KH, Brown RH, Johnson M, Medori R, Loike JD, Harris JB, Waterston R, Brooke M, Specht L, et al. Characterization of dystrophin in muscle-biopsy specimens from patients with Duchenne's or Becker's muscular dystrophy. N Engl J Med. 1988 May 26;318(21):1363-8. Cerca con Google

Hoseki J, Ushioda R, Nagata K. Mechanism and components of endoplasmic reticulum-associated degradation. J Biochem. 2010 Jan;147(1):19-25. Cerca con Google

Hosokawa N, Tremblay LO, Sleno B, Kamiya Y, Wada I, Nagata K, Kato K, Herscovics A. EDEM1 accelerates the trimming of alpha1,2-linked mannose on the C branch of N-glycans. Glycobiology. 2010 May;20(5):567-75. Cerca con Google

Hosokawa N, Wada I, Nagasawa K, Moriyama T, Okawa K, Nagata K. Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1-SEL1L ubiquitin ligase complex and BiP. J Biol Chem. 2008 Jul 25;283(30):20914-24. Cerca con Google

Hosokawa N, Wada I, Nagasawa K, Moriyama T, Okawa K, Nagata K. Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1-SEL1L ubiquitin ligase complex and BiP. J Biol Chem. 2008 Jul 25;283(30):20914-24. Cerca con Google

Iida Y, Fujimori T, Okawa K, Nagata K, Wada I, Hosokawa N. SEL1L protein critically determines the stability of the HRD1-SEL1L endoplasmic reticulum-associated degradation (ERAD) complex to optimize the degradation kinetics of ERAD substrates. J Biol Chem. 2011 May 13;286(19):16929-39. Cerca con Google

Ikeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series. EMBO Rep. 2008 Jun;9(6):536-42. Cerca con Google

Imamura M, Mochizuki Y, Engvall E, Takeda S. Epsilon-sarcoglycan compensates for lack of alpha-sarcoglycan in a mouse model of limb-girdle muscular dystrophy. Hum Mol Genet. 2005 Mar 15;14(6):775-83. Cerca con Google

Ishikura S, Weissman AM, Bonifacino JS. Serine residues in the cytosolic tail of the T-cell antigen receptor alpha-chain mediate ubiquitination and endoplasmic reticulum-associated degradation of the unassembled protein. J Biol Chem. 2010 Jul 30;285(31):23916-24. Cerca con Google

Ismail N, Ng DT. Have you HRD? Understanding ERAD is DOAble! Cell. 2006 Jul 28;126(2):237-9. Cerca con Google

Jarosch E, Taxis C, Volkwein C, Bordallo J, Finley D, Wolf DH, Sommer T. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol. 2002 Feb;4(2):134-9. Cerca con Google

Jung D, Duclos F, Apostol B, Straub V, Lee JC, Allamand V, Venzke DP, Sunada Y, Moomaw CR, Leveille CJ, Slaughter CA, Crawford TO, McPherson JD, Campbell KP. Characterization of delta-sarcoglycan, a novel component of the oligomeric sarcoglycan complex involved in limb-girdle muscular dystrophy. J Biol Chem. 1996 Dec 13;271(50):32321-9. Cerca con Google

Kaneko M, Koike H, Saito R, Kitamura Y, Okuma Y, Nomura Y. Loss of HRD1-mediated protein degradation causes amyloid precursor protein accumulation and amyloid-beta generation. J Neurosci. 2010 Mar 17;30(11):3924-32. Cerca con Google

Kikkert M, Doolman R, Dai M, Avner R, Hassink G, van Voorden S, Thanedar S, Roitelman J, Chau V, Wiertz E. Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum. J Biol Chem. 2004 Jan 30;279(5):3525-34. Cerca con Google

Kim TY, Kim E, Yoon SK, Yoon JB. Herp enhances ER-associated protein degradation by recruiting ubiquilins. Biochem Biophys Res Commun. 2008 May 2;369(2):741-6. Cerca con Google

Kobayashi T, Tanaka K, Inoue K, Kakizuka A. Functional ATPase activity of p97/valosin-containing protein (VCP) is required for the quality control of endoplasmic reticulum in neuronally differentiated mammalian PC12 cells. J Biol Chem. 2002 Dec 6;277(49):47358-65. Cerca con Google

Kobuke K, Piccolo F, Garringer KW, Moore SA, Sweezer E, Yang B, Campbell KP. A common disease-associated missense mutation in alpha-sarcoglycan fails to cause muscular dystrophy in mice. Hum Mol Genet. 2008 May 1;17(9):1201-13. Cerca con Google

Kokame K, Agarwala KL, Kato H, Miyata T. Herp, a new ubiquitin-like membrane protein induced by endoplasmic reticulum stress. J Biol Chem. 2000 Oct 20;275(42):32846-53. Cerca con Google

Kostova Z, Tsai YC, Weissman AM. Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation. Semin Cell Dev Biol. 2007 Dec;18(6):770-9. Review. Cerca con Google

Kühlbrandt W. Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol. 2004 Apr;5(4):282-95. Cerca con Google

Lee MJ, Lee BH, Hanna J, King RW, Finley D. Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol Cell Proteomics. 2011 May;10(5):R110.003871. Cerca con Google

Lenk U, Yu H, Walter J, Gelman MS, Hartmann E, Kopito RR, Sommer T. A role for mammalian Ubc6 homologues in ER-associated protein degradation. J Cell Sci. 2002 Jul 15;115(Pt 14):3007-14. Cerca con Google

Lerner M, Corcoran M, Cepeda D, Nielsen ML, Zubarev R, Pontén F, Uhlén M, Hober S, Grandér D, Sangfelt O. The RBCC gene RFP2 (Leu5) encodes a novel transmembrane E3 ubiquitin ligase involved in ERAD. Mol Biol Cell. 2007 May;18(5):1670-82. Cerca con Google

Lilley BN, Ploegh HL. A membrane protein required for dislocation of misfolded proteins from the ER. Nature. 2004 Jun 24;429(6994):834-40. Cerca con Google

Lilley BN, Ploegh HL. Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14296-301. Cerca con Google

Lynes EM, Bui M, Yap MC, Benson MD, Schneider B, Ellgaard L, Berthiaume LG, Simmen T. Palmitoylated TMX and calnexin target to the mitochondria-associated membrane. EMBO J. 2011 Nov 1;31(2):457-70. doi: 10.1038/emboj.2011.384. Cerca con Google

Määttänen P, Gehring K, Bergeron JJ, Thomas DY. Protein quality control in the ER: the recognition of misfolded proteins. Semin Cell Dev Biol. 2010 Jul;21(5):500-11. Review. Cerca con Google

MacLennan DH, Green NM. Pumping ions. Nature. 2000 Jun 8;405(6787):633-4. Cerca con Google

MacLennan DH, Rice WJ, Odermatt A. Structure/function analysis of the Ca2+ binding and translocation domain of SERCA1 and the role in Brody disease of the ATP2A1 gene encoding SERCA1. Ann N Y Acad Sci. 1997 Nov 3;834:175-85. Cerca con Google

Madsen L, Seeger M, Semple CA, Hartmann-Petersen R. New ATPase regulators--p97 goes to the PUB. Int J Biochem Cell Biol. 2009 Dec;41(12):2380-8. Cerca con Google

Marzec M, Eletto D, Argon Y. GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim Biophys Acta. 2011 Nov 3. Cerca con Google

Mayor T. Navigating the ERAD interaction network. Nat Cell Biol. 2011 Dec 22;14(1):46-7. doi: 10.1038/ncb2412. Cerca con Google

Mbonye UR, Wada M, Rieke CJ, Tang HY, Dewitt DL, Smith WL. The 19-amino acid cassette of cyclooxygenase-2 mediates entry of the protein into the endoplasmic reticulum-associated degradation system. J Biol Chem. 2006 Nov 24;281(47):35770-8. Cerca con Google

Mehnert M, Sommer T, Jarosch E. ERAD ubiquitin ligases: multifunctional tools for protein quality control and waste disposal in the endoplasmic reticulum. Bioessays. 2010 Oct;32(10):905-13. doi: 10.1002/bies.201000046. Review. Cerca con Google

Mendell JR, Rodino-Klapac LR, Rosales XQ, Coley BD, Galloway G, Lewis S, Malik V, Shilling C, Byrne BJ, Conlon T, Campbell KJ, Bremer WG, Taylor LE, Flanigan KM, Gastier-Foster JM, Astbury C, Kota J, Sahenk Z, Walker CM, Clark KR. Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann Neurol. 2010 Nov;68(5):629-38. Cerca con Google

Meyer HH, Shorter JG, Seemann J, Pappin D, Warren G. A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 2000 May 15;19(10):2181-92. Cerca con Google

Michele DE, Campbell KP. Dystrophin-glycoprotein complex: post-translational processing and dystroglycan function. J Biol Chem. 2003 May 2;278(18):15457-60. Review. Cerca con Google

Morito D, Hirao K, Oda Y, Hosokawa N, Tokunaga F, Cyr DM, Tanaka K, Iwai K, Nagata K. Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRDeltaF508. Mol Biol Cell. 2008 Apr;19(4):1328-36. Cerca con Google

Morito D, Hirao K, Oda Y, Hosokawa N, Tokunaga F, Cyr DM, Tanaka K, Iwai K, Nagata K. Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRDeltaF508. Mol Biol Cell. 2008 Apr;19(4):1328-36. Cerca con Google

Mueller B, Klemm EJ, Spooner E, Claessen JH, Ploegh HL. SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12325-30. Cerca con Google

Nakatsukasa K, Brodsky JL. The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic. 2008 Jun;9(6):861-70. Review. Cerca con Google

Nalepa G, Rolfe M, Harper JW. Drug discovery in the ubiquitin-proteasome system. Nat Rev Drug Discov. 2006 Jul;5(7):596-613. Cerca con Google

Navon A, Ciechanover A. The 26 S proteasome: from basic mechanisms to drug targeting. J Biol Chem. 2009 Dec 4;284(49):33713-8. Cerca con Google

Nigro V, Piluso G, Belsito A, Politano L, Puca AA, Papparella S, Rossi E, Viglietto G, Esposito MG, Abbondanza C, Medici N, Molinari AM, Nigro G, Puca GA. Identification of a novel sarcoglycan gene at 5q33 encoding a sarcolemmal 35 kDa glycoprotein. Hum Mol Genet. 1996 Aug;5(8):1179-86. Cerca con Google

Noguchi S, Wakabayashi E, Imamura M, Yoshida M, Ozawa E. Developmental expression of sarcoglycan gene products in cultured myocytes. Biochem Biophys Res Commun. 1999 Aug 19;262(1):88-93. Cerca con Google

Odermatt A, Taschner PE, Khanna VK, Busch HF, Karpati G, Jablecki CK, Breuning MH, MacLennan DH. Mutations in the gene-encoding SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase, are associated with Brody disease. Nat Genet. 1996 Oct;14(2):191-4. Cerca con Google

Ohlendieck K, Ervasti JM, Snook JB, Campbell KP. Dystrophin-glycoprotein complex is highly enriched in isolated skeletal muscle sarcolemma. J Cell Biol. 1991 Jan;112(1):135-48. Cerca con Google

Ozawa E, Mizuno Y, Hagiwara Y, Sasaoka T, Yoshida M. Molecular and cell biology of the sarcoglycan complex. Muscle Nerve. 2005 Nov;32(5):563-76. Review. Cerca con Google

Park E, Rapoport TA. Mechanisms of Sec61/SecY-Mediated Protein Translocation Across Membranes. Annu Rev Biophys. 2011 May 31. Cerca con Google

Passaquin AC, Renard M, Kay L, Challet C, Mokhtarian A, Wallimann T, Ruegg UT. Creatine supplementation reduces skeletal muscle degeneration and enhances mitochondrial function in mdx mice. Neuromuscul Disord. 2002 Feb;12(2):174-82. Cerca con Google

Pedemonte N, Zegarra-Moran O, Galietta LJ. High-throughput screening of libraries of compounds to identify CFTR modulators. Methods Mol Biol. 2011;741:13-21. Cerca con Google

Piccolo F, Roberds SL, Jeanpierre M, Leturcq F, Azibi K, Beldjord C, Carrié A, Récan D, Chaouch M, Reghis A, et al. Primary adhalinopathy: a common cause of autosomal recessive muscular dystrophy of variable severity. Nat Genet. 1995 Jun;10(2):243-5. Cerca con Google

Puckelwartz M, McNally EM. Emery-Dreifuss muscular dystrophy. Handb Clin Neurol. 2011;101:155-66. Cerca con Google

Pye VE, Beuron F, Keetch CA, McKeown C, Robinson CV, Meyer HH, Zhang X, Freemont PS. Structural insights into the p97-Ufd1-Npl4 complex. Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):467-72. Cerca con Google

Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, Dřevínek P, Griese M, McKone EF, Wainwright CE, Konstan MW, Moss R, Ratjen F, Sermet-Gaudelus I, Rowe SM, Dong Q, Rodriguez S, Yen K, Ordoñez C, Elborn JS; VX08-770-102 Study Group. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. 2011 Nov 3;365(18):1663-72. Cerca con Google

Reggiori F, de Haan CA, Molinari M. Unconventional use of LC3 by coronaviruses through the alleged subversion of the ERAD tuning pathway. Viruses. 2011 Sep;3(9):1610-23. Cerca con Google

Roberds SL, Anderson RD, Ibraghimov-Beskrovnaya O, Campbell KP. Primary structure and muscle-specific expression of the 50-kDa dystrophin-associated glycoprotein (adhalin). J Biol Chem. 1993 Nov 15;268(32):23739-42. Cerca con Google

Roberds SL, Leturcq F, Allamand V, Piccolo F, Jeanpierre M, Anderson RD, Lim LE, Lee JC, Tomé FM, Romero NB, et al. Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy. Cell. 1994 Aug 26;78(4):625-33. Cerca con Google

Rossi AE, Dirksen RT. Sarcoplasmic reticulum: the dynamic calcium governor of muscle. Muscle Nerve. 2006 Jun;33(6):715-31. Cerca con Google

Sandonà D, Betto R. Sarcoglycanopathies: molecular pathogenesis and therapeutic prospects. Expert Rev Mol Med. 2009 Sep 28;11:e28. Review. Cerca con Google

Sandonà D, Gastaldello S, Martinello T, Betto R. Characterization of the ATP-hydrolysing activity of alpha-sarcoglycan. Biochem J. 2004 Jul 1;381(Pt 1):105-12. Cerca con Google

Schröder M. Endoplasmic reticulum stress responses. Cell Mol Life Sci. 2008 Mar;65(6):862-94. Review. Cerca con Google

Schwartz AL, Ciechanover A. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol. 2009;49:73-96. Review. Cerca con Google

Sermet-Gaudelus I, Boeck KD, Casimir GJ, Vermeulen F, Leal T, Mogenet A, Roussel D, Fritsch J, Hanssens L, Hirawat S, Miller NL, Constantine S, Reha A, Ajayi T, Elfring GL, Miller LL. Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am J Respir Crit Care Med. 2010 Nov 15;182(10):1262-72. Cerca con Google

Shi W, Chen Z, Schottenfeld J, Stahl RC, Kunkel LM, Chan YM. Specific assembly pathway of sarcoglycans is dependent on beta- and delta-sarcoglycan. Muscle Nerve. 2004 Mar;29(3):409-19. Cerca con Google

Shimizu Y, Okuda-Shimizu Y, Hendershot LM. Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids. Mol Cell. 2010 Dec 22;40(6):917-26. Cerca con Google

Shimomura O, Johnson FH and Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol. 59, 223–239 (1962). Cerca con Google

Skoblov M, Shakhbazov K, Oshchepkov D, Ivanov D, Guskova A, Ivanov D, Rubtsov P, Prasolov V, Yankovsky N, Baranova A. Human RFP2 gene promoter: unique structure and unusual strength. Biochem Biophys Res Commun. 2006 Apr 14;342(3):859-66. Cerca con Google

Smith MH, Ploegh HL, Weissman JS. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science. 2011 Nov 25;334(6059):1086-90. Review. Cerca con Google

Soheili T, Gicquel E, Poupiot J, N'guyen L, Le Roy F, Bartoli M, Richard I. Rescue of sarcoglycan mutations by inhibition of endoplasmic reticulum quality control is associated with minimal structural modifications. Hum Mutat. 2011 Nov 16. doi: 10.1002/humu.21659. Cerca con Google

Sorokin AV, Kim ER, Ovchinnikov LP. Proteasome system of protein degradation and processing. Biochemistry (Mosc). 2009 Dec;74(13):1411-42. Cerca con Google

Sun F, Zhang R, Gong X, Geng X, Drain PF, Frizzell RA. Derlin-1 promotes the efficient degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) and CFTR folding mutants. J Biol Chem. 2006 Dec 1;281(48):36856-63. Cerca con Google

Tarnopolsky MA, Mahoney DJ, Vajsar J, Rodriguez C, Doherty TJ, Roy BD, Biggar D. Creatine monohydrate enhances strength and body composition in Duchenne muscular dystrophy. Neurology. 2004 May 25;62(10):1771-7. Cerca con Google

Tedesco FS, Hoshiya H, D'Antona G, Gerli MF, Messina G, Antonini S, Tonlorenzi R, Benedetti S, Berghella L, Torrente Y, Kazuki Y, Bottinelli R, Oshimura M, Cossu G. Stem cell-mediated transfer of a human artificial chromosome ameliorates muscular dystrophy. Sci Transl Med. 2011 Aug 17;3(96):96ra78. Cerca con Google

Tsai YC, Weissman AM. Ubiquitylation in ERAD: reversing to go forward? PLoS Biol. 2011 Mar;9(3):e1001038. Cerca con Google

Ushioda R, Hoseki J, Araki K, Jansen G, Thomas DY, Nagata K. ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science. 2008 Jul 25;321(5888):569-72. Cerca con Google

Vainzof M, Moreira ES, Canovas M, Anderson LV, Pavanello RC, Passos-Bueno MR, Zatz M. Partial alpha-sarcoglycan deficiency with retention of the dystrophin-glycoprotein complex in a LGMD2D family. Muscle Nerve. 2000 Jun;23(6):984-8. Cerca con Google

Vembar SS, Brodsky JL. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol. 2008 Dec;9(12):944-57. Review. Cerca con Google

Wang X, Herr RA, Chua WJ, Lybarger L, Wiertz EJ, Hansen TH. Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J Cell Biol. 2007 May 21;177(4):613-24. Cerca con Google

Weissman AM, Shabek N, Ciechanover A. The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation. Nat Rev Mol Cell Biol. 2011 Aug 23;12(9):605-20. doi: 10.1038/nrm3173. Cerca con Google

Williams C, van den Berg M, Sprenger RR, Distel B. A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p. J Biol Chem. 2007 Aug 3;282(31):22534-43. Cerca con Google

Winder SJ. The complexities of dystroglycan. Trends Biochem Sci. 2001 Feb;26(2):118-24. Cerca con Google

Wolf DH, Stolz A. The Cdc48 machine in endoplasmic reticulum associated protein degradation. Biochim Biophys Acta. 2012 Jan;1823(1):117-24. Cerca con Google

Worton RG. Dystrophin: the long and short of it. (Editorial) J. Clin. Invest. 93: 4, 1994. Cerca con Google

Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell. 2009 Apr 3;137(1):133-45. Cerca con Google

Yamada M, Mizuno Y, Mochizuki H. Parkin gene therapy for alpha-synucleinopathy: a rat model of Parkinson's disease. Hum Gene Ther. 2005 Feb;16(2):262-70. Cerca con Google

Ye Y, Meyer HH, Rapoport TA. Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J Cell Biol. 2003 Jul 7;162(1):71-84. Cerca con Google

Ye Y, Meyer HH, Rapoport TA. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature. 2001 Dec 6;414(6864):652-6. Cerca con Google

Ye Y. Diverse functions with a common regulator: ubiquitin takes command of an AAA ATPase. J Struct Biol. 2006 Oct;156(1):29-40. Cerca con Google

Younger JM, Chen L, Ren HY, Rosser MF, Turnbull EL, Fan CY, Patterson C, Cyr DM. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell. 2006 Aug 11;126(3):571-82. Cerca con Google

Zhong X, Shen Y, Ballar P, Apostolou A, Agami R, Fang S. AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation. J Biol Chem. 2004 Oct 29;279(44):45676-84. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record