Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Lucchetta, Marco (2012) New approaches for protein stabilization of white wines - Approcci innovativi per la stabilizzazione proteica dei vini bianchi. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi dottorato) - Versione sottomessa
5Mb

Abstract (inglese)

Protein instability results in the formation of haze and precipitates in bottled white wines with diminution of their commercial value. This alteration is due to the so-called pathogenesis related proteins (PR proteins) of the grape berry, which survive the fermentation process and pass into the wine where they are responsible for protein instability. Nowadays the main technique used to avoid protein stability in wines is their treatment with bentonite, which, however, causes wine losses and a reduction of the organoleptic quality.
The aims of this thesis were to find alternative techniques able to substitute the bentonite treatment in wine stabilization.
The first approach was to exploit the activity of different proteases secreted from phytopathogenic fungi, that were evaluated for their ability to degrade the grape proteins before the fermentation process. Partially purified proteases were obtained from culture media of Botrytis cinerea and Sclerotinia minor. The protease from B. cinerea was not able to degrade the grape proteins and the wine obtained showed increased protein instability. B. cinerea however was demonstrated to be able to remove the proteins from the grape juice by an oxidative mechanism involving the enzyme laccase. An aspartyl protease from S. minor was then partially purified from a culture medium which was able to increase the protease production. That protease degraded the grape proteins and reduced protein instability both in in vitro and microvinification trials. However, protease production by the fungus as well as its effectiveness were inconstant and seemed related to other unknown mechanisms.
The second approach was based on the application of pellets of metal oxides as adsorbents for grape proteins in white wine and juice during fermentation. Different juices and wines were completely stabilized after treatments with dosages from 15 to 25 g/L of metal oxides. An easy and practicable procedure to regenerate the metal oxides was developed, allowing to use them many times. Moreover, sensory analysis did not show significant differences among wines stabilized with bentonite and metal oxides.
Finally, the third approach was the treatment of the wine with polysaccharides, which are known to affect protein stability in wines. Carrageenan and pectin were added separately or in combination to a Chardonnay juice prior to fermentation. Both adsorbents removed proteins (up to 75%) thus increasing wine protein stability. Carrageenan was more effective than pectin in increasing wine protein stability

Abstract (italiano)

L’instabilità proteica causa la formazione di torbidità e precipitati in vini bianchi imbottigliati con conseguente diminuzione del loro valore commerciale. Questa alterazione è dovuta alle proteine legate alla patogenesi (PR proteins) presenti nell’uva, le quali resistono al processo di fermentazione e si ritrovano nel vino dove sono responsabili dell’instabilità proteica. Attualmente la principale tecnica utilizzata per evitare l’instabilità proteica è il trattamento con bentonite, il quale, purtroppo comporta perdite di vino e riduzione della sua qualità organolettica.
Gli obiettivi di questa tesi sono stati quelli di trovare tecniche alternative capaci di sostituire il trattamento con bentonite nella stabilizzazione dei vini bianchi.
Il primo approccio è stato la valutazione dell’attività di differenti proteasi secrete da funghi fitopatogeni che sono state valutate per la loro abilità nel degradare le proteine dell'uva prima del processo di fermentazione.
Proteasi parzialmente purificate sono state ottenute da culture di Botrytis cinerea e Sclerotinia minor. La proteasi di B. cinerea non si è dimostrata capace di degradare le proteine dell’uva anche se il fungo era comunque capace di rimuovere le proteine del mosto d’uva mediante un meccanismo ossidativo che coinvolge l’enzima laccasi.
Una aspartil proteasi da S. minor è stata parzialmente purificata da un mezzo culturale che favoriva la produzione di proteasi. Questa proteasi ha degradato le proteine dell’uva e ha ridotto l’instabilità proteica sia in vitro che in prove di microvinificazione. Comunque, la produzione di proteasi da parte del fungo e la sua efficacia erano incostanti e sembrano legate ad altri meccanismi non chiari.
Il secondo approccio ha riguardato l’applicazione di pellets di ossidi di metallo come adsorbenti delle proteine dell’uva, nel vino e nel mosto durante la fermentazione. Diversi mosti e vini sono stati completamente stabilizzati dopo trattamento con dosi comprese fra 15 e 25 g/L di ossidi di metallo. Si è quindi sviluppata una facile e pratica procedura per rigenerare gli ossidi di metallo, permettendo numerosi trattamenti con la stessa partita di materiale. Inoltre, l’analisi sensoriale non ha evidenziato differenze significative tra vini stabilizzati con bentonite ed ossidi di metallo.
In fine, il terzo approccio è stato il trattamento del vino con polisaccaridi, i quali sono noti per il loro effetto di interferenza sui meccanismi di formazione di torbidità proteica nei vini. Carragenano e pectina sono stati aggiunti separatamente o in combinazione a mosto di Chardonnay prima della fermentazione. Entrambi i polisaccaridi hanno rimosso le proteine (fino al 75%) aumentando la stabilità proteica. Il carragenano è risultato maggiormente efficace nell’incrementare la stabilità proteica rispetto alla pectina

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Curioni, Andrea
Dottorato (corsi e scuole):Ciclo 23 > Corsi per il 23simo ciclo > Viticoltura, enologia e marketing delle imprese vitivinicole
Data di deposito della tesi:31 Gennaio 2012
Anno di Pubblicazione:31 Gennaio 2012
Parole chiave (italiano / inglese):protein instability white wine, zirconia, titania, carrageenan, pectin, PR-proteins, proteases, Botrytis cinerea, Sclerotinia minor, laccase, instabilità proteica, diossido di zirconio, diossido di titanio, proteasi, haze, torbidità, zirconium dioxide, titanium dioxide, proteasi
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/15 Scienze e tecnologie alimentari
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Biotecnologie Agrarie
Codice ID:5002
Depositato il:29 Ott 2012 09:21
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Achaerandio I., Pachova V., Güell C. and López F. (2001). Protein Adsorption by Bentonite in a White Wine Model Solution: Effect of Protein Molecular Weight and Ethanol Concentration. Am. J. Enol. Vitic. 52(2): 122-126. Cerca con Google

Antoniw J.F., Ritter C.E., Pierpoint W.S. and van Loon L.C. (1980). Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. J. Gen. Virol. 47: 79-87. Cerca con Google

Asano K., Shinagawa K., Hashimoto N. (1982). Characterization of haze-forming proteins of beer and their roles in chill haze formation. J. Am. Soc. Brew. Chem. 40: 147-154. Cerca con Google

Bakalinsky A.T. and Boulton R. (1985). The Study of an Immobilized Acid Protease for the Treatment of Wine Proteins. Am. J. Enol. Vitic. 36(1): 23-29. Cerca con Google

Bayly F.C. and Berg H.W. (1967). Grape and wine proteins of white wine varietals. Am. J. Enol. Vitic. 1967, 18: 18-32. Cerca con Google

Bayonove C., Cabaroglu T., Dufour C., Razungles A., Sapis J.C., Baumes et al. (1995). Influence du collage sur le potentiel aromatique variétal du vin. Uruguay: XXIème Congrès de la Vigne e du Vin. Cerca con Google

Berg H.W. and Akiyoshi, M. (1961). Determination of protein stability in wine. American Journal of Enology and Viticulture 12: 107-110. Cerca con Google

Blade W.H. and Boulton R. (1988). Adsorption of protein by bentonite in a model wine solution. Am. J. Enol. Vitic. 39(3), 193-199. Cerca con Google

Boulton R. (1980). The nature of wine proteins. In proceeding of the sixth annual wine industry technology seminar of the wine institute (pp. 46-58). San Francisco, CA, USA. Cerca con Google

Boulton R.B., Singleton V.L., Bisson L.F. and Kunkee, R.E. (1996) Principles and practices of winemaking. Chapman e Hall. Cerca con Google

Bowles D.J. (1990) Defence-related proteins in higher plants. Annual Review of Biochemisty 59: 873-907. Cerca con Google

Brissonnet F. and Maujean A. (1993). Characterization of Foaming Proteins in a Champagne Base Wine. Am. J. Enol. Vitic. 44 (3), 297-301. Cerca con Google

Cabaroglu T., Canbas A., Lepoutre J.P. and Gunata Z. (2002). Free and bound volatile composition of red wines of Vitis vinifera L. cv. Okuzgozu and Bogazkere grown in Turkey. American Journal of Enology and Viticulture, 53(1): 63-68. Cerca con Google

Cabello-Pasini A., Victoria-Cota N., Macias-Carranza V., Hernandez-Garibay E. and Muñiz-Salazar R. (2005). Clarification of wines using polysaccharides extracted from seaweeds. Am. J. Enol. Vitic. 56(1): 52-59. Cerca con Google

Cilindre C., Castro A.J., Clément C., Jeandet P. and Marchal R. (2007). Influence of Botrytis cinerea infection on Champagne wine proteins (characterized by two-dimensional electrophoresis/immunodetection) and wine foaming properties. Food Chemistry 103(1): 139-149. Cerca con Google

Collinge D.B. and Slusarenko A.J. (1987) Plant gene expression in response to pathogens. Plant Molecular Biology 9: 389-410. Cerca con Google

Dambrouck T., Marchal R., Marchal-Delahaut L., Parmentier M., Maujean A., and Jeandet P. (2003). Immunodetection of Proteins from Grapes and Yeast in a White Wine. J. Agric. Food Chem., 51 (9): 2727 -2732. Cerca con Google

Dambrouck T., Marchal R., Cilindre C., Parmentier M. and Jeandet P. (2005). Determination of the grape invertase content (using PTA-ELISA) following various fining treatments versus changes in the total protein content of wine. Relationships with wine foamability J. Agric. Food Chem. 53: 8782-8789. Cerca con Google

Dawes H., Boyes S., Keene J., Heatherbell D. (1994). Protein instability of wines: influence of protein isoelectric point. Am. J. Enol. Vitic. 45: 3-319. Cerca con Google

De Bruijn J., Loyola C., Flores A., Hevia F., Melín P. and Serra I. (2009). Protein stabilisation of Chardonnay wine using trisacryl and bentonite: a comparative study. International Journal of Food Science and Technology 44: 330-336. Cerca con Google

Derckel J.P., Legendre L., Audran J.C., Haye B. and Lambert B. (1996). Chitinases of the grapevine (Vitis vinifera L.): Five isoforms induced in leaves by salicylic acid are constitutively expressed in other tissues. Plant Sci. 119: 31-37. Cerca con Google

Deytieux C., Geny L., Lapaillerie D., Claverol S., Bonneau M. and Donèche B. (2007) Proteome analysis of grape skins during ripening J. Experimental Botany 58:1851-1862. Cerca con Google

Dizy M. and Bisson L.F. (2000). Proteolytic Activity of Yeast Strains During Grape Juice Fermentation. Am. J. Enol. Vitic. 51(2): 155-167. Cerca con Google

Dong X. (2004) NPR1, all things considered. Current Opinion in Plant Biology 7: 547-552. Cerca con Google

Dubourdieu D., Serrano M., Vannier A.C., Ribèreau-Gayon P. (1988). Étude comparée des tests de stabilité protéique. Connaissance de la Vigne et du Vin 22: 261-273. Cerca con Google

Duboudieu D. and Canal-Lìaubère R.M. (1989). Influence of some colloids (polysaccharides and proteins) on the clarification and stabilization of wines. In proceeding of the seventh Australian wine industry technical conferences (pp. 180-185)[13-17 August 1989]. Cerca con Google

Dumon S. and Barnier H. (1992). Ultrafiltration of protein solutions on ZrO2 membranes. The influence of surface chemistry and solution chemistry on adsorption. J. Membrane Sci. 74: 289-302. Cerca con Google

Dupin I.V.S., McKinnon M.B., Ryon C., Boulay M., Markides A.J., Jones G.P., Williams P.J., Waters E.J. (2000). Saccharomyces cerevisiae mannoproteins that protect wine from protein haze: their release during fermentation and lees contact and proposal for their mechanism of action. J. Agric. Food Chem. 48,8: 3098-3105. Cerca con Google

Edens L., Dekker P., Van der Hoeven R., Deen F., de Roos A., Floris R. (2005). An extracellular prolyl endoprotease from Aspergillus niger and its use in the debittering of protein hydrolysates. Journal of Agriculture and Food Chemistry 53: 7950 -7957. Cerca con Google

Falconer R.J., Marangon M., Van Sluyter S.C., Neilson K.A., Chan C. and Waters E.J. (2010) Thermal stability of Thaumatin-like protein, chitinase and invertase isolated from Sauvignon blanc and Semillon juice and their role in haze formation in wine. J. Agric. Food Chem. 58: 975-980. Cerca con Google

Favaron F., Lucchetta M., Odorizzi S., Pais da Cunha A.T. and Sella L. (2009) The role of grape polyphenols on trans-resveratrol activity against Botrytis cinerea and of fungal laccase on the solubility of putative grape PR-proteins. J. Plant Pathology (2009) 91: 579-588. Cerca con Google

Feuillat M., Brillant G. and Rochard J. (1980). Mise en evidence d’une production de proteases exocellulaires par les levures au cours de la fermentation alcoolique du mout de raisin. Connaiss. Vigne Vin 14 : 37-52. Cerca con Google

Ferenczy S. (1966). Étude des protéine set des substances azotées. Bulletin de l’O.I.V. 93, 1311-1336. Cerca con Google

Ferreira R.B., Monteiro S., Picüarra-Pereira M.A., Tanganho M.C., Loureiro V.B. and Teixeira A.R. (2000). Characterisation of the proteins from grapes and wines by immunological methods. Am. J. Enol Vitic. 51(1): 22-28. Cerca con Google

Ferreira R.B., Piçarra - Pereira M.A., Monteiro S., Loureiro V.B., Teixeira A.R. (2002) The wine proteins” Review. Trends Food Sci. Tech. 12: 230-239. Cerca con Google

Flores J.H., Heatherbell D.A. and McDaniel M.R. (1990). Ultrafiltration of wine: effect of ultrafiltration on white Riesling and Gewürztraminer wine composition and stability. Am. J. Enol. Vitic. 41(3): 207-214. Cerca con Google

Francis I.L., Sefton M.A. and Williams P.J. (1994). The sensory effects of pre- or post-fermentation thermal processing on Chardonnay and Semillon wines. Am. J. Enol. Vitic. 45(2): 243-251. Cerca con Google

Fukuzaki S., Urano H., Nagata K. (1996). Adsorption of bovine serum albumin onto metal oxide surfaces. J. Ferment. Bioengin. 81: 163-167. Cerca con Google

Giananakis C., Bucheli C.S., Skene K.G.M., Robinson S.P. and Scott N.S. (1998). Chitinase and beta-1,3-glucanase in grapevine leaves: A possible defence against powdery mildew infection. Austral. J. Grape Wine Res. 4: 14-22. Cerca con Google

Girbau T., Stummer B.E., Pocock K.F., Baldock G.A., Scott E.S. and Waters E.J. (2004). The effect of Uncinula necator (powdery mildew) and Botrytis cinerea infection of grapes on the levels of haze-forming pathogenesis-related proteins in grape juice and wine. Austral. J. Grape Wine Res. 10: 125-133. Cerca con Google

Goncalves F., Heyraud A., De Pinho M. N. and Rinaudo M. (2002) Characterization of White Wine Mannoproteins. J. Agric. Food Chem. 50, 6097-6101. Cerca con Google

Gump B. M., Huang C.F. (1999). Removal of unstable protein in grape juice and wine by adsorbents resins. California Agricultural Technology Institute (CATI) Publications n. 990402 April. Cerca con Google

Hoffmann-Sommergruber K. (2002). Pathogenesis-related (PR)–Proteins identified as allergens. Biochem. Soc. Trans. 30: 930-935. Cerca con Google

Hoj P.B., Tattersall D.B., Adams K., Pocock K.F., Hayasaka Y., van Heeswijck R. and Waters E.J. (2001). The “haze proteins”of wine. A summary of properties, factors affecting their accumulation grapes, and the amount of bentonite required for their removal from wine. In proceeding of the AESV 50th anniversary meeting (pp. 149-154). Seattle, Washington, USA. Cerca con Google

Hsu J.C., Heatherbell D.A., Flores J.H. and Watson B. T. (1987a) Heat-Unstable Proteins in Grape Juice and Wine. II. Characterization and Removal by Ultrafiltration. American Journal of Enology and Viticulture 38: 17-22. Cerca con Google

Hsu J.C. and Heatherbell D.A. (1987b). Isolation and characterization of soluble proteins in grapes, grape juice and wine. Am. J. Enol. Vitic. 38(1): 6-10. Cerca con Google

Jach G., Gornhardt B., Mundy J., Logemann J., Pinsdorf E., Leah R., Schell J. e Maas C., (1995). Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J., 8: 97-109. Cerca con Google

Jakob L. (1962.) Des Weinblatt. 57: 805 Cerca con Google

Jayasankar S., Li Z. and Gray D.J. (2003). Constitutive expression of Vitis vinifera thaumatin-like protein after in vitro selection and its role in anthracnose resistance. Functional Plant Biology 30, 1105-1115. Cerca con Google

Kitajima S. and Sato F. (1999). Plant pathogenesis-related proteins. Journal of Biochemistry 125: 1-8. Cerca con Google

Kwon S.W. (2004). Profiling of soluble proteins in wine by nano-high-performance liquid chromatography/tandem mass spectrometry. J. Agric. Food Chem. 52(24): 7258-7263. Cerca con Google

Laborde J. (1904). Rev. Vitic. 21, p. 8. Cerca con Google

Lagace L.S. and Bisson L.F. (1990). Survey of yeast acid proteases for effectiveness of wine haze reduction. Am. J. Enol. Vitic. 41(2): 147-155. Cerca con Google

Lamikanra O. and Inyang I.D. (1988). Temperature influence on Miscadine wine protein characteristics. Am. J. Enol. Vitic. 41(2): 147-155. Cerca con Google

Lee T.H. (1985). Protein instability: Nature, characterization and removal by bentonite. In: Physical Stability of Wine. T. H. Lee (Ed.). pp 23-40. Austral. Soc. Vitic. Enol. Glen Osmond, Australia. Cerca con Google

Ledoux V., Dulau L. and Dubourdieu D. (1992). Interprétation de l’amélioration de la stabilité protéique des vins au cours de l’élevage sur lies. Journal International des Sciences de la Vigne et du Vin 26: 239-251. Cerca con Google

Lubbers S., Leger B., Charpentier C. and Feuillat M. (1993) Effet colloide protecteur d’extraits de parois de levures sur la stabilité tartrique d’une solution hydropalcoolique model. Journal international des sciences de la vigne et du vin 27: 13–22. Cerca con Google

Lugera C., Moreno-Arribas V., Pueyo E., Bortolomè B. and Polo M. C. (1998). Fractionation and partial characterization of protein fraction present at different stages of the production of sparkling wines. Food Chemistry 63: 465-461. Cerca con Google

Lurton L. and Guerreau J. (1988). Study of the proteolysis of wine yeast during storage of wine on its lees. Rev. Fr. Oenol. 113: 35-41. Cerca con Google

Marangon M., Vincenzi S., Lucchetta M. and Curioni A. (2010) Heating and reduction affect the reaction with tannins of wine protein fractions differing in hydrophobicity. Analytica chimica acta, 660: 110-118. Cerca con Google

Marangon M., Lucchetta M., Waters E.J. (2011). Protein stabilization of white wines using Zirconium Dioxide enclosed in a metallic cage. Australian Journal of Grape and Wine Research 17: 28-35. Cerca con Google

Marangon M., Van Sluyter S., Haynes P.A. and Waters E.J. (2009) Grape and wine proteins: their fractionation by hydrophobic interaction chromatography and identification by chromatography and proteomic analysis. J. Agric. Food Chem. 57: 4415-4425. Cerca con Google

Marangon M., Sauvage F.X., Waters E.J. and Vernhet A. (2011) Effects of ionic strength and sulfate upon thermal aggregation of grape chitinases and thaumatin-like proteins in a model system. J. Agric. Food Chem. 59: 2652-2662. Cerca con Google

Marchal R., Bouquelet S., Maujean A. (1996). Purification and partial biochemical characterization of glycoproteins in a champenois Chardonnay wine. J. Agric. Food Chem. 44(7): 1716-1722. Cerca con Google

Marchal R., Berthier L., Legendre L., Marchal-Delahaut L., Jeandet P. and Maujean A. (1998). Effects of Botrytis cinerea infection on the must protein electrophoretic characteristics. J. Agric. Food Chem. 46(12): 4945-4949. Cerca con Google

Marchal R., Warchol M., Cilindre C., Jeandet P. (2006). Evidence for protein degradation by Botrytis cinerea and relationships with alteration of synthetic wine foaming properties. J. Agric. Food Chem. 54: 5157-5165. Cerca con Google

Marchal R., Marchal-Delahaut L., Michels F., Parmentier M., Lallement A. and Jeandet P. (2002). Use of Wheat Gluten as Clarifying Agent of Musts and White Wines. Am. J. Enol. Vitic. 53(4): 308-314. Cerca con Google

McKinnon B.A. (1996). A study of protein haze prevention in model wine systems. B.Ag. Sci Honours Thesis, University of Adelaide, South Australia. Cerca con Google

Mesrob B., Gorinova N. and Tsakov D. (1983). Characterization of the electrical properties and molecular weights of the proteins in white wines. Nahrung, 27(8): 727. Cerca con Google

Miller G.C., Amon J.M., Gibson R.L. and Simpson R.F. (1985). Loss of wine aroma attribute to protein stabilization with bentonite or ultrafiltration. Aust. Grapegrower Winemaker 256: 49-50. Cerca con Google

Moine-Ledoux V. (1996). Recherches sur le rôle des mannoprotéines de levure vis-à-vis de la stabilization protéique e tartrique des vins. Thèse de doctorat, Université de Bordeaux II. Cerca con Google

Moine-Ledoux V., Dubourdieu D. (1999). An invertase fragment responsible for improving the protein stability of dry white wines. J. Sci. Food Agric. 79: 537-543. Cerca con Google

Monteiro S., Piçarra-Pereira M.A., Mesquita P.R., Loureiro B., Teixeira A. and Ferreira R.B. (2001) The wide diversity of structurally similar wine proteins. J. Agric. Food Chem. 49: 3999-4010. Cerca con Google

Monteiro S., Barakat M., Piçarra-Pereira M.A., Teixeira A.R and Ferreira R.B. (2003). Osmotin and thaumatin from grape: A putative general defense mechanism against pathogenic fungi. Phytopathol. 93: 1505-1512. Cerca con Google

Monteiro S., Piçarra-Pereira M.A., Loureiro V.B., Teixeira A.R. and Ferreira R.B. (2007) The diversity of pathogenesis-related proteins decreases during grape maturation. Phytochemistry 68: 416-425. Cerca con Google

Moretti R.H. and Berg H.W. (1965). Variability among wines to protein clouding. American Journal of Enology and Viticulture 16: 69-78. Cerca con Google

Pachova V., Ferrando M., Guell C. and Lòpez, F. (2002). Protein adsorption onto metal oxide materials in white wine model system. Journal of Food Science. 67: 2118-2121. Cerca con Google

Pashova V., Guell C. and Lòpez F. (2004a). White wine continuous protein stabilization by packed column. Journal of Agricoltural and Food Chemistry. 52: 1558-1563. Cerca con Google

Pashova V., Guell C., Pueyo E., Lòpez-Barajas M., Polo M.C. and Lopez F. (2004b). White wine protein stabilization by a continuos process using a packed column. Am. J. Enol. Vitic. 55: 195-198. Cerca con Google

Paetzold M., Dulau L. and Dubourdieu D. (1990). Fractionnement et caractèrisation des glycoproteins dans les mouts de raisins blancs. Journal International des Sciences de la Vigne et du Vin. 24: 13-28. Cerca con Google

Pastorello E.A., Farioli L., Pravettoni V., Ortolani C., Fortunato D., Giuffrida M.G., Perono Garoffo L., Calamari A.M, Brenna O. and Conti A. (2002). Identification of grape and wine allergens a san endochitinase 4, a lipid-transfer protein, and a thaumatin. J. Allergy Clin. Immunol. 111(2) : 350-359. Cerca con Google

Payne G., Ward E., Gaffney T., Goy P.A., Moyer M., Harper A., Meins Jr e Ryals J. (1990). “Evidence for a third structural class of β-1,3- glucanase in tobacco”. Plant Mol. Biol., 15: 797-808. Cerca con Google

Pellerin P., Waters E., Brillouet J-M., Moutounet M. (1994). Effect de polysaccharides sur la formation de trouble protéique dans un vin blanc. (Effect of polysaccharides on protein haze formation in a white wine) J. Int. Sci. Vigne Vin. 28: 23-225. Cerca con Google

Peng Z., Pocock K.F., Waters E.J., Francis I.L. and Wiliams P.J. (1997). Taste Properties of Grape (Vitis vinifera) Pathogenesis-Related Proteins Isolated from Wine. J. Agric. Food Chem. 45(12): 4639-4643. Cerca con Google

Peri C, Riva M. and Decio P. (1988). Crossflow membrane filtration of wines: comparison of performance of ultrafiltration, microfiltration, and intermediate cut-off membranes. Am. J. Enol. Vitic. 39(2): 162-168. Cerca con Google

Pocock K. F. and Rankine B. C. (1973) Heat test for detecting protein instability in wine. Australian Wine, Brewing and Spirit Review 91: 42-43. Cerca con Google

Pocock K.F., Hayasaka Y., McCarthy M.G. and Waters E.J. (2000). Thaumatin-like proteins and chitinases, the haze-forming proteins of wine, accumulate during ripening of grape (Vitis vinifera) berries and drought stress does not affect the final levels per berry at maturity. J. Agric. Food Chem. 48: 1637-1643. Cerca con Google

Pocock K.F., Hayasaka Y., Peng Z., Williams P.J. and Waters E.J. (1998). The effect of mechanical harvesting and long-distance transport on the concentration of haze-forming proteins in grape juice. Aust. J. Grape Wine Res. 4: 23-29. Cerca con Google

Pocock K. F., Alexander G.M., Hayasaka Y., Jones P.R. and Waters E.J. (2007) Sulfate- a candidate for the missing essential factor that is required for the formation of protein haze in white wine. J. Agric. Food Chem. 55: 1799-1807. Cerca con Google

Posada J., Almenar J., Garcia Galindo J. (1971). Practical approach on protein stabilizers. Proceedings European Brewing Convention 13: 379-391. Cerca con Google

Powers J.R., Nagel C.W. and Weller K. (1988). Protein Removal from a Wine by Immobilized Grape Proanthocyanidins. American Journal of Enology and Viticulture 39: 117-120. Cerca con Google

Puigdeu M., Lopeztamames E., Buxaderas S., Torreborant M. C., (1996). Influence of must racking and fining procedures on the composition of white wine. Vitis. 35, 141-145. Cerca con Google

Rankine B.C. and Pocock K.F. (1971). A new method for detecting protein instability in white wines. Australian Wine, Brewing and Spirit Review 90(10): 61. Cerca con Google

Ribéreau-Gayon J. and Peynaud E. (1961). Traité d’œnologie II. (Béranger : Paris). Cerca con Google

Ribéreau-Gayon J., Peynaud E., Ribéreau-Gayon P., Sudraud P., (1976). Sciences ed techniques du vin. Tome III, Vinifications-Transformation du Vin, Dunod, Paris. Cerca con Google

Ribéreau-Gayon P., Glories, Y., Maujean, A. and Dubourdieu, D. (2000) In: Handbook of enology. Volume 2: The chemistry of wine stabilization and treatments. Eds. Jon Wiley & Sons Inc. (New York, USA) pp. 272–299. Cerca con Google

Ribéreau-Gayon P., Glories Y., Maujean A., Dubourdie D. (2003). Trattato di enologia II. Edagricole. Cerca con Google

Roberts W., Selitrennikoff C.P. (1990). Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. Journal of General and Applied Microbiology 136: 1771-1778. Cerca con Google

Robinson S.P, Jacobs A.K. and Dry I.B. (1997). A class IV chitinases is highly expressed in grape berries during ripening. Plant Physiology 114: 771-778. Cerca con Google

Robinsons S.P. and Davies C. (2000) Molecular biology of grape berry ripening. Australian Journal of Grape Wine Research 6: 175-188. Cerca con Google

Ruiz-Larrea F., Lopez R., Santamaria P., Sacristan M., Ruiz M.C., Zarazaga M., Gutierrez A.R. and Torres C. (1998). Soluble proteins and free amino nitrogen content in must and wine of cv. Viura in La Rioja. Vitis 3: 139-142. Cerca con Google

Salazar F.N., Bruijn J.P.F., Seminario L., Güell C. and Lopéz F. (2007). Improvement of wine crossflow microfiltration by a new hybrid process. Journal of Food Engineering 79: 1329-1336. Cerca con Google

Salzman R.A., Tikhonova I., Bordelon B.P., Hasegawa P.M. and Bressan R.A. (1998). Coordinate accumulation of antifungal proteins and hexoses constitutes a developmentally controlled defense response during fruit ripening in grape. Plant Physiology 117: 465-472. Cerca con Google

Sarmento M.R., Oliveira J.C. and Boulton R.B. (2000a). Selection of low swelling materials for protein adsorption from white wines. International Journal of Food Science and Technology 35: 41-47. Cerca con Google

Sarmento M.R., Oliveira J.C., Slatner M. and Boulton R.B. (2000b). Influence of intrinsic factors on conventional wine protein stability tests. Food Control 11: 423-432. Cerca con Google

Sarry J.E., Sommerer N., Sauvage F.X., Bergoin A., Rossignol M., Albagnac G. and Romieu C. (2004) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Proteomics 4: 201-215. Cerca con Google

Saywell L.G. (1934). Clarification of wine. Ind. Eng. Chem. 26: 981-986. Cerca con Google

Siebert K.J., Troukhanova N.V., Lynn P.Y., (1996). Nature of polyphenolprotein interaction. J. Agric. Food Chem, 44: 80-85. Cerca con Google

Siebert K.J. (2006). Haze formation in beverages. LWT 39: 987-994. Cerca con Google

Schmidt S.A., Tan E.L, Brown S., Nasution U.J., Pettolino F., Macintyre O.J., De Barros Lopez, Waters E.J. and Anderson P.A. (2009). Hpf2 glycan structure is critical for protection against haze formation in white wine. J. Agric. Food Chem. 59: 3308-3315. Cerca con Google

Tattersall D.B., Van Heeswijck R. and Hoj P.B. (1997). Identification and characterization of a fruit-specific, thaumatin-like protein that accumulates at very high levels in conjunction with the onset of sugar accumulation and berry softening in grapes. Plant Physiol. 114: 759-769. Cerca con Google

Tattersall D.B., Pocock K.F., Hayasaka Y., Adams K., van Heeswijck R., Waters E.J. and Høj P.B. (2001). Pathogenesis related proteins – their accumulation in grapes during berry growth and their involvement in white wine heat instability. Current knowledge and future perspectives in relation to winemaking practices. In: Molecular Biology and Biotechnology of the Grapevine. Ed. K.A. Roubelakis-Angelakis (Kluwer Academic Publishers: Dordrecht, Netherlands), pp. 183-201. Cerca con Google

Toland T.M., Fugelsang K.C. and Muller C.J. (1996). Methods for estimating protein instability in white wines: a comparison. American Journal of Enology and Viticulture 47: 111-112. Cerca con Google

Van Loon L.C. and Strien E.A. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR1 type proteins. Physiol. Mol. Plant Pathol. 55: 85-97. Cerca con Google

Vincenzi S., Polesani M. and Curioni A. (2005a) Removal of Specific Protein Components by Chitin Enhances Protein Stability in a White Wine. American Journal of Enology and Viticulture 56: 246-254. Cerca con Google

Vincenzi S., Mosconi S., Zoccatelli G., Dalla Pellegrina C., Veneri G., Chignola R., Peruffo D.B. , Curioni A., Rizzi C. (2005b) Development of a new procedure for protein recovery and quantification in wine. Am. J. Enol. Vitic. 56: 182-187. Cerca con Google

Vincenzi S. and Curioni A. (2005) Anomalous electrophoretic behaviour of a chitinase isoform from grape berries and wine in glycol chitin-containing SDS-PAGE gels. Electrophoresis 26: 60-63. Cerca con Google

Waters E. J., Alexander G., Muhlack R., Pocock K. F., Colby C., O’Neill B. K., Høj P. B. and Jones P. (2005) Preventing protein haze in bottled white wine. Australian Journal of Grape and Wine Research 11: 215–225. Cerca con Google

Waters E.J., Wallace W. and Williams P.J. (1992) Identification of heat-unstable wine proteins and their resistance to peptidases. Journal of Agricultural and Food Chemistry 40: 1514-1519. Cerca con Google

Waters E.J., Wallace W., Tate M.E. and Williams P.J. (1993). Isolation and partial characterization of a natural haze protecting factors from wine. Journal of Agricoltural and Food Chemistry. 41: 724-730. Cerca con Google

Waters E.J., Hayasaka Y., Tattersall D.B., Adams K.S., Williams P.J. (1998). Sequence analysis of grape (Vitis vinifera) berry chitinases that cause haze formation in wines. Journal of Agricultural and Food Chemistry 46: 4950-4957. Cerca con Google

Waters E.J., Peng Z., Pocock K.F. and Williams P.J. (1995). Proteins in white wine. II. Their resistance to proteolysis is not due to their phenolic association or glycosilation. Aust. J. Grape Wine Res. 1: 94-99. Cerca con Google

Waters E.J., Shirley N.J., Williams P.J., (1996). Nuisance proteins of wine are grape pathogenesis-related proteins. Journal of Agricultural and Food Chemistry, 44: 3-5. Cerca con Google

Waters E.J., Pellerin P., Brillouet J. M. (1994). A wine arabingalactanprotein that reduces heat-induced wine protein haze. Biosci. Biotechnol. Biochem. 58: 43-48. Cerca con Google

Weetall H.H., Zelko J.T. and Bailey L.F. (1984) A new method for the stabilization of white wine. American Journal of Enology and Viticulture 35: 212-215. Cerca con Google

Yokotsuka K., Ebihara T. and Sato T. (1991). Comparison of soluble proteins in juice and wine from Koshu juice. Journal of Fermentation Technology 71: 248-253. Cerca con Google

Yokotsuka K., Yajima M., Toshihide M. (1997). Production of bottle-fermented sparkling wine using yeast immobilized in double-layer gel beads or strands. Am. J. Enol. Vitic. 48(4): 471-481. Cerca con Google

Zhou F., Menke L.H., Yoshioka K., Moder W., Shirano Y., Klessing D. F. (2004) High humidity suppresses ssi4-mediated cell death and disease resistance upstream of MAP kinase activation, H2O2 production and defence gene expression. The Plant Journal 39: 920-932 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record