Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Dalle Nogare, Daniela (2008) Modeling catalytic methane partial oxidation with detailed chemistry. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

Detailed mechanisms are being promising, but they are not extensively used yet. Particularly in multi-phase reactions, their interaction with the transport phenomena is often underrated.
Partial oxidation of methane in monolithic reactors (structured or foam-like) showed competitive in converting natural gas into syngas, an intermediate for the syntheses of higher hydrocarbons and methanol, or a new form of energy vector. Because of that, very many experimental data have been produced. In the present work this process is modeled, coupling transport phenomena and detailed kinetics.
Several 1D models, of increasing accuracy, are applied to the square channel monolith: from the ideal PFR to a lumped model including solid conduction and both heat and mass transfer coefficients. Results show how the apparent stoichiometry changes if diffusional resistances are taken in account, slowing down the kinetics. The same geometry is solved also with the CFD, and results are compared to pseudo-homogeneous models. Also, the obtaining of the transfer coefficient by means of CFD is discussed.
The foam monolith is modeled both with the PFR model and with a lumped model accounting for transport resistances, gas phase axial diffusion and solid conduction and radiation. Results are validated through spatially resolved measurements of temperature and composition. Differences between the bulk and the boundary layer compositions are ascribed to mass transfer resistances, as well as to the surface production rates.
Sherwood numbers obtained from heat transfer correlations don't often agree with those calculated with the CFD, particularly if the reaction is fast: we suggest that Sh correlations should also account for the reaction order.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Canu, Paolo
Correlatore:Schmidt, Lanny D.
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > INGEGNERIA INDUSTRIALE > INGEGNERIA CHIMICA
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):modeling, methane, partial oxidation, catalytic, detailed chemistry, lumped model, Sherwood, CFD
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/23 Chimica fisica applicata
Struttura di riferimento:Dipartimenti > Dipartimento di Principi e Impianti di Ingegneria Chimica "I. Sorgato"
Codice ID:508
Depositato il:01 Ott 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] M. Bizzi, L. Basini, G. Saracco, V. Specchia, Short contact time catalytic partial oxidation of methane: analysis of transport phenomena effects, Chem. Eng. J., 90 (2002) 97-106. Cerca con Google

[2] M. Bizzi, L. Basini, G. Saracco, V. Specchia, Modeling a transport phenomena limited reactivity in short contact time catalytic partial axidation reactors, Ind. Eng. Chem. Res., 42 (2003) 62-71. Cerca con Google

[3] M. Bizzi, G. Saracco, R. Schwiedernoch, O. Deutschmann, Modeling the partial oxidation of methane in a fixed bed with detailed chemistry, AIChE J., 50 [6] (2004) 1289-99. Cerca con Google

[4] H. W. Brauer, F. Fetting, Stofftransport bei Wandreaktion im Einlaufgebiet eines Strömungsrohres, Chemie Ing. Tech. 38 (1966) 30-35. Cerca con Google

[5] G. Buzzi-Ferraris, BzzMath 5.0, Vai! Cerca con Google

[6] Cantera: D.G. Goodwin, An open-source, extensible software suite for CVD process simulation. In Proceedings of CVD XVI and EuroCVD Fourteen, M Allendorf, Maury, and F Teyssandier (Eds.), Electrochemical Society, (2003) 155-162. Cerca con Google

[7] P. Canu, S. Vecchi, CFD simulation of reactive flows: catalytic combustion in a monolith, AIChE J. 48 [12] (2002) 2921-2935. Cerca con Google

[8] CHEMKIN, ReactionDesign. Cerca con Google

[9] N.J. Degenstein, PhD Thesis, University of Minnesota, 2007. Cerca con Google

[10] O. Deutschmann, L. Schmidt, Modeling the partial oxidation of methane in a short-contact-time reactor, AIChE J., 44 (1998) 2465-77. Cerca con Google

[11] Vai! Cerca con Google

[12] S. Eriksson, A. Schneider, F. Mantzaras, M. Wolf, S. Järås, Experimental and numerical investigation of supported rhodium catalysts for partial oxidation of methane in exhaust gas diluted reaction mixtures, Chem. Eng. Sci., 62 [15] (2007) 3991-4011. Cerca con Google

[13] FLUENT 6.3, Ansys. Cerca con Google

[14] J. G. Fourie, J. P. Du Plessis, Effective and coupled thermal conductivities of isotropic open-cellular foams, AIChE J., 50 [3] (2004) 547-556. Cerca con Google

[15] L. Giani, G. Groppi, E. Tronconi, Mass-transfer characterization of metallic foams as supports for structured catalysts, Ind. Eng. Chem. Res., 44 (2005) 4993-5002. Cerca con Google

[16] L. Giani, G. Groppi, E. Tronconi, Heat transfer characterization of metallic foams, Ind. Eng. Chem. Res., 44 (2005) 9078-9085. Cerca con Google

[17] C.T. Goralski Jr., R.P. O'Connor, L.D. Schmidt, Modeling homogeneous and heterogeneous chemistry n the production of syngas from methane, Chem. Eng. Sci., 55 (2000) 1357-1370. Cerca con Google

[18] U. Grigull, H. Tratz, Thermischer Einlauf in ausgebildeter laminarer Rohrströmung, Int. J. Heat Mass Transfer, 8 (1965) 669-678. Cerca con Google

[19] GRI-Mech 3.0, Vai! Cerca con Google

[20] D. P. H. Hasselman, K. Y. Donaldson, Jeng Liu, L. J. Gauckler, P. D. Ownby, Thermal conductivity of a particulate-diamond-reinforced cordierite matrix composite, J. Am. Ceram. Soc., 77 [7] (1994) 1757-60. Cerca con Google

[21] D.A. Hickman, L.D. Schmidt, Steps in CH4 oxidation on Pt and Rh surfaces - High-temperature reactor simulations, AIChE J., 39 (1993) 1164-1177. Cerca con Google

[22] R. Horn, N.J. Degenstein, K.A. Williams, L.D. Schmidt, Spatial and temporal profiles in millisecond partial oxidation processes, Catal. Lett. 110 (2006) 169. Cerca con Google

[23] R. Horn, K.A. Williams, N.J. Degenstein, L.D. Schmidt, Syngas by catalytic partial oxidation of methane on rhodium: mechanistic conclusions from spatially resolved measurements and numerical simulations, J. Catal. 242 (2006) 92-102. Cerca con Google

[24] R. Horn, K. A. Williams, N. J. Degenstein, A. Bitsch-Larsen, D. Dalle Nogare, S. A. Tupy, L. D. Schmidt, Methane catalytic partial oxidation on autothermal Rh and Pt foam catalyst: Oxidation and reforming zones, transport effects, and approach to thermodynamic equilibrium, J. Catal., 249 [2] (2007) 380-393. Cerca con Google

[25] R. Horn, K. A. Williams, N.J. Degenstein, A. Bitsch-Larsen, D. Dalle Nogare, S. A. Tupy, L. D. Schmidt, Methane catalytic partial oxidation on autothermal Rh and Pt foam catalyst: Oxidation and reforming zones, transport effects, and approach to thermodynamic equilibrium, J. Catal., 249 [2] (2007) 380-393. Cerca con Google

[26] F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 5th Edition, Wiley. Cerca con Google

[27] S.T. Kolaczkowski, Catal. Today, Modeling catalytic combustion in monolithic reactors - challenges faced, Catal. Today, 47 (1999) 209-218. Cerca con Google

[28] D. Kunii, K. Suzuki, Particle-to-fluid heat and mass transfer in packed beds of fine particles, Chem. Eng. Sci., 10 [7] (1967) 845-852. Cerca con Google

[29] O. Levenspiel, Chemical Reaction Engineering, 3rd Ed., 1999, John Wiley and Sons. Cerca con Google

[30] M. Maestri, A. Beretta, G. Groppi, E. Tronconi, P. Forzatti, Comparison among structured and packed-bed reactors for the catalytic partial oxidation of CH4 at short contact times, Cat. Today, 105 (2005) 709-717. Cerca con Google

[31] Matlab, MathWorks. Cerca con Google

[32] Multiphysics, COMSOL. Cerca con Google

[33] P.A. Nelson, T.R. Galloway, Particle-to-fluid heat and mass transfer in dense systems of fine particles, Chem. Eng. Sci., 30 (1975) 1-6. Cerca con Google

[34] L.D. Pfefferle, Heterogeneous/homogeneous reactions and transport coupling for catalytic combustion systems: a review of model alternatives, Cat. Today, 26 (1995) 255-265. Cerca con Google

[35] A. Scarabello, Two-stage route catalytic combustion of methane for gas turbine applications: experimental study of catalyst preparation and preformance, MS thesis, Università di Padova, 2003/04. Cerca con Google

[36] R.K. Shah, A. L. London, Laminar flow forced convection in ducts, Academic Press, New York, 1978. Cerca con Google

[37] R. Schwiedernoch, S. Tischer, C. Correa, O. Deutschmann, Experimental and numerical study on the transient behavior of partial oxidation of methane in a catalytic monolith, Chem. Eng. Sci., 58 (2003) 633-642. Cerca con Google

[38] E.E. Svensson, personal communication. Cerca con Google

[39] N.V. Vernikovskaya, L.N. Bobrova, L.G. Pinaeva, V.A. Sadykov, I.A. Zolotarskii, V.A. Sobyanin, I. Buyakou, V. Kalinin, S. Zhdanok, Transient behavior of the methane partial oxidation in a short contact time reactor: modeling on the base of catalyst detailed chemistry, Chem. Eng. J., 134 (2007) 180-189. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record