Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Passarotto, Mareva (2012) Development of a model for the thermo-hydro-mechanical analysis of multiphase porous media in dynamics. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi di dottorato) - Versione pubblicata
7Mb

Abstract (inglese)

Nowadays an increasing interest on thermo-hydro-mechanical analysis of multiphase porous media is observed because of a wide spectrum of application in civil and environmental engineering. The onset of landslides caused by rainfall or earthquake, the onset of catastrophic landslides, the seismic behaviour of deep radioactive waste disposal and concrete or earth dams are just few and challenging examples.
As novel aspect, this work presents the development of a mathematical and numerical model for the analysis of the thermo-hydro-mechanical behaviour of multiphase porous materials in dynamics.
The fully coupled multiphase model for non isothermal deformable porous media is developed within the hybrid mixture theory.
In order to analyse the thermo-hydro-mechanical behaviour of a soil structure in the low frequency domain, e.g. under earthquake excitation, the u-p(-T) formulation is advocated for the finite element discretization, neglecting the relative fluids acceleration and their convective terms. As a consequence, the number of the independent variables is reduced to four: gas pressure, capillary pressure, temperature and solid skeleton displacements. Moreover, the dynamic seepage forcing terms in the mass and enthalpy balance equations and the compressibility of the solid grain at the microscopic level are neglected.
The standard Bubnov-Galerkin method is applied to the governing equations for the spatial discretization, whereas the generalized Newmark scheme is used for the time domain discretization. The final algebraic, non linear and coupled system of equations is solved by the Newton method with a monolithic approach.
The formulation and the implemented solution procedure are validated through the comparison with literature benchmarks, finite element solutions or analytical solutions when available.

Abstract (italiano)

Al giorno d’oggi è evidente un crescente interesse nell’analisi termo-idro-meccanica dei mezzi porosi multifase e ciò è dovuto all’ampio spettro di applicazioni in ingegneria civile ed ambientale. L'innesco di frane dovuto a eventi sismici o forti eventi piovosi, l'innesco di frane catastrofiche, il comportamento sismico di depositi profondi di scorie radioattive o di dighe in terra o calcestruzzo sono solo alcuni esempi.
Come aspetto innovativo, questo lavoro presenta lo sviluppo di un modello matematico e numerico per l'analisi del comportamento termo-idro-meccanico di materiali porosi multifase in dinamica.
Il modello multifase per mezzi porosi deformabili in condizioni non isoterme, completamente accoppiato, è stato sviluppato nell’ambito della teoria ibrida delle miscele.
Per analizzare il comportamento termo-idro-meccanico di una struttura in materiale granulare nel dominio delle basse frequenze, ad esempio in caso di sollecitazione sismica, viene ricavata la formulazione u-p(-T), trascurando le accelerazioni relative dei fluidi e i loro termini convettivi. Come conseguenza, il numero delle variabili indipendenti è ridotto a quattro: la pressione del gas, la pressione capillare, la temperatura e le componenti di spostamento dello scheletro solido. Inoltre si trascurano le forze di filtrazione dinamica nelle equazioni di bilancio massa e dell’entalpia e la comprimibilità del grano solido a livello microscopico.
Per la discretizzazione nel dominio dello spazio viene utilizzato il metodo di Bubnov-Galerkin, mentre per la discretizzazione nel dominio del tempo viene utilizzato lo schema generalizzato di Newmark. Il sistema finale di equazioni algebriche, non lineari ed accoppiate, viene risolto con il metodo di Newton, con un approccio monolitico.
Il modello implementato è stato validato mediante il confronto con casi di riferimento presenti in letteratura, con soluzioni agli elementi finiti e con soluzioni analitiche quando disponibili.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Schrefler, Bernhard A. - Sanavia, Lorenzo
Correlatore:Mira, Pablo
Dottorato (corsi e scuole):Ciclo 24 > Scuole 24 > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE
Data di deposito della tesi:31 Luglio 2012
Anno di Pubblicazione:31 Luglio 2012
Parole chiave (italiano / inglese):dynamics of porous media, non-isothermal problem, multiphase porous media, unsaturated porous media
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/08 Scienza delle costruzioni
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Civile, Edile e Ambientale
Codice ID:5193
Depositato il:22 Ott 2013 10:02
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[Ab85] B. L. Aboustit, S. H. Advani, and J. K. Lee (1985). Variational principles and finite element simulations for thermo-elastic consolidation, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 9, Issue 1, pages 49-69. Cerca con Google

[AD56] G. D. Aitchison and I. B. Donald (1956). Effective stress in unsaturated soils, Proceedings of the 2nd Australia-New Zealand Conference on Soil Mechanics, pages 192-199. Cerca con Google

[As10] I. Ashayeri, M. Kamalian, M. K. Jafari and B. Gatmiri (2010). Analytical 3D transient elastodynamic fundamental solution of unsaturated soils Iman, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 35, Issue 17, pages 1801-1829. Cerca con Google

[AS93] Organisation (1993) ASHRAE Handbook: Fundamentals Volume, ASHRAE, Atalanta. Cerca con Google

[Au91] J.L. Aurialt (1991). Dynamic behaviour of porous media, Transport Processes in Porous Media, J. Bear and M.Y. Corapcioglu (eds.), Kluwer Academic Publishers, pages 471-519. Cerca con Google

[B41-1] M. A. Biot (1941). General theory of three-dimensional consolidation, Journal of Applied Physics, Volume 12, pages 155-164. Cerca con Google

[B41-2] M. A. Biot (1941). Consolidation settlement under a rectangular load, Journal of Applied Physics, Volume 12, Issue 5, pages 426-430. Cerca con Google

[B55] M. A. Biot (1955). Theory of elasticity and consolidation for a porous anisotropo solid, Journal of Applied Physics, Volume 26, Issue 2, pages 182-185. Cerca con Google

[B56-1] M. A. Biot (1956). General solution of the equation of elasticity and consolidation for a porous material, Journal of Applied Mechanics, Volume 23, pages 91-96. Cerca con Google

[B56-2] M. A. Biot (1956). Theory of deformation of a porous viscoelastic anisotropic soil, , Journal of Applied Physics, Volume 27, pages 459-467. Cerca con Google

[B59] A. V. Bishop (1959). The principle of effective stress. Teknisk Ukeblad, 39 (1959), 859-863. Cerca con Google

[B63] M. A. Biot (1963). Theory of stability and consolidation of a porous medium under initial stress, Journal of Applied Mechanics, Volume 12, pages 521-541. Cerca con Google

[Bag93] P. Baggio, C. Bonacina, M. Strada (1993). Trasporto di calore e di massa nel calcestruzzo cellulare, La Termotecnica, Volume 45, pagine 53-60. Cerca con Google

[BB63] A. W. Bishop and G. E. Blight (1963). Some aspects of effective stress in saturated and partly saturated soils, Géotechnique, Volume 13, Issue 3, pages 177-197. Cerca con Google

[BB84] J. Bear and Y. Bachmat (1984). Transport phenomena in porous media - Basic equations, Fundamentals of Transport Phenomena in Porous Media (J. Bear and M. Y. Corapcioglu eds.), Nato ASI Series, Nijhoff, Dordrecht, pages 5-61. Cerca con Google

[BC66] R. N. Brooks and A. T. Corey (1966). Properties of porous media affecting fluid flow, Journal of the Irrigation and Drainage Division, Vol. 92, No. 2, pages 61-90. Cerca con Google

[BC81] J. Bear and Y. Corapcioglu (1981). Mathematical model for regional land subsidence due to pumping. 2. Integrated aquifer subsidence equation for vertical and horizontal displacements, Water resources research, Volume 17, No. 4, pages 947-958. Cerca con Google

[BC92] R. N. Brooks and A. T. Corey (1992). Properties of porous media affecting fluid flow, Journal of the Irrigation and Drainage Division, Volume 92, No. 2, pages 61-90. Cerca con Google

[Bir60] R. B. Bird, E. W. Stewart, E. N. Lightfoot (1960). Transport Phenomena, Wiley. Cerca con Google

[BS78] M. Bomberg and C. J. Shirtliffe (1978). Influence of moisture gradients on heat transfer through porous building materials. Thermal transmission measurements of insulation (ASTM STP 660), R.P. Tye (ed.), ASTM, pages 211-233. Cerca con Google

[BW57] M. A. Biot and P. G. Willis (1957). The elastic coefficients of the theory of consolidation, Journal of Applied Physics, Volume 26, Issue 2, pages 182-185. Cerca con Google

[Ch88] A. H. C. Chan (1988). A unified finite element solution to static and dynamic in geomechanics, Ph.D. Thesis, C/Ph/106/88, University College of Swansea. Cerca con Google

[CN63] B. D. Coleman and W. Noll (1963). The thermodynamics of elastic materials with heat conduction and viscosity, Archive for Rational Mechanics and Analysis, Volume 13, pages 167-178. Cerca con Google

[Cor57] A. T. Corey (1957). Measurement of water and air permeability in unsaturated soil, Soil Science Society of America Journal, Volume 21, No. 1, pages 7-10. Cerca con Google

[CT92] W. F. Cheng and Y. Tsui (1992). Limitations to the large strain theory, International Journal for Numerical Methods in Engineering, Volume 33, Issue 1, pages 101–114. Cerca con Google

[deB91] R. de Boer, W. Ehlers, S. Kowalski and J. Plischka (1991). Porous media, a survey of different approaches, Forschungsbericht aus dem Fachbereich Bauwesen, 54, Universität-Gesamthochschule Essen. Cerca con Google

[deB93] R. de Boer, W. Ehlers and Z. Liu (1993). One-dimensional wave propagation in fluid saturated incompressible porous media, Archive of Applied Mechanics, Volume 63, No. 1, pages 59-72. Cerca con Google

[Die96] S. Diebels and W. Ehlers (1996). Dynamic analysis of a fully saturated porous medium accounting for geometrical and material non linearities. International Journal for Numerical Methods in Engineering, Volume 39, Issue 1, pages 81-97. Cerca con Google

[Ehl89] W. Ehlers (1989). Poröse Medien, ein kontinuumsmechanisches Modell auf der Basis der Mischungstheory, Forschungsbericht aus dem Fachbereich Bauwesen, 47, Universität Gesamthochschule Essen. Cerca con Google

[ES64] A. C. Eringen and E. S. Suhubi (1964). Nonlinear Theory of simple micro-elastic solids. Int. J. Engng. Sci. Volume 2, pages189-203. Cerca con Google

[Fer72] R. T. Fernandez (1972). Natural convection from cylinders buried in porous media, PhD thesis, University of California. Cerca con Google

[G10-1] Gawin D., L. Sanavia (2010). Simulation of cavitation in water saturated porous media considering effects of dissolved air. Transport in porous media, Volume 81, pages 141-160. Cerca con Google

[G10-2] D. Gawin and L. Sanavia L.(2009). A unified approach to numerical modelling of fully and partially saturated porous materials by considering air dissolved in water. Computer Modeling in Engineering Sciences, Volume 53(3), pages 255-302. Cerca con Google

[G91-1] W. G. Gray and S. M. Hassanizadeh (1991). Unsaturated flow theory including interfacial phenomena, Water Resources Research, Volume 27, No. 8, pages 1855-1863. Cerca con Google

[G91-2] W. G. Gray and S. M. Hassanizadeh (1991). Paradoxes and realities in unsaturated flow theory, Water Resources Research, Volume 27, No. 8, pages 1847-1854. Cerca con Google

[Ga11] A. Gajo and R. Denzer (2011). Finite element modelling of saturated porous media at finite strains under dynamic conditions with compressible constituents. International Journal for Numerical Methods in Engineering, Volume 85, Issue 13, pages 1705-1736. Cerca con Google

[Gaw95] D. Gawin, P. Baggio, B. A. Schrefler (1995). Coupled heat, water and gas flow in deformable porous media, International Journal for Numerical Methods in Fluids, Volume 20, Issue 8-9, pages 969-987. Cerca con Google

[GS96] D. Gawin and B. A. Schrefler (1996).Thermo-hydro-mechanical analysis of partially saturated porous materials, Engineering Computations, Volume 13, No.7 , pages 113-143. Cerca con Google

[GS97] D. Gawin, L. Simoni, B. A. Schrefler (1997). Numerical model for hydro-mechanical behaviour in deformable porous media: a benchmark problem. Computer methods and advances in Geomechanics, Volume 2, pages 1143-1148. Cerca con Google

[GS98] D. Gawin, L. Sanavia, B. A. Schrefler (1998). Cavitation modelling in saturated geomaterials with application to dynamic strain localisation, International J. for Numerical Methods in Fluids, Volume 27, pages 109-125. Cerca con Google

[Gud95] G. Gudehus (1995). A comprehensive concept for non-saturated granular bodies, Proc. 1st Int. Conf.on Unsaturated Soils, pages 725-37. Cerca con Google

[H79-1] M. Hassanizadeh and W. G. Gray (1979). General conservation equations for multiphase systems: 1 Averaging procedure, Advances in Water Resources, Volume 2, pages 131-144. Cerca con Google

[H79-2] M. Hassanizadeh and W. G. Gray W (1979). General conservation equations for multiphase systems: 2. Mass, momenta, energy and entropy equations, Advances in Water Resources, Volume 2, pages 131-144. Cerca con Google

[H80-3] M. Hassanizadeh and W. G. Gray W (1980). General conservation equations for multiphase systems: 3. Constitutive theory for porous media flow, Advances in Water Resources,Volume 3, Issue 1, pages 25-40. Cerca con Google

[H86-1] S. M. Hassanizadeh (1986). Derivation of basic equations of mass transport in porous media, Part. 1 Macroscopic balance laws, Advances in Water Resources, Volume 9, Issue 4, pages 196-206. Cerca con Google

[H86-2] S. M. Hassanizadeh (1986). Derivation of basic equations of mass transport in porous media, Part. 2 Generalized Darcy's law and Fick's law, Advances in Water Resources, Volume 9, Issue 4, pages 207-222. Cerca con Google

[He11] Y. Heider, B. Markert and W. Ehlers (2011). Dynamic Wave Propagation in Infinite Saturated Porous Media Half Spaces. Computational Mechanics, Volume 49, No. 3, pages 319-336. Cerca con Google

[Je08] B. Jeremic, Z. Cheng, M. Taiebat and Y. Dafalias (2008). Numerical simulation of fully saturated porous materials, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 32, Issue 13, pages 1635-1660. Cerca con Google

[LB96] P. V. Lade and R. de Boer (1996). The concept of effective stress for soil, concrete and rock, Géotechnique, Volume 47, Issue 1, pages 61-78. Cerca con Google

[LC88] J. Lemaitre and J. L. Chaboche (1988). Mécanique des matériaux solides, Dunod, Paris. Cerca con Google

[Lia65] A.C. Liakopoulos, 1965, Transient flow through unsaturated porous media, PhD thesis, University of California, Berkeley (CA), USA. Cerca con Google

[LQ07] S. Lòpez-Querol, J. A. Fernàndez-Merodo, P. Mira and M. Pastor (2007). Numerical modelling of dynamic consolidation on granular soils, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 32, Issue 12, pages 1431–1457. Cerca con Google

[LS98] R. W. Lewis and B. A. Schrefler (1998). The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. J. Wiley, Chichester. Cerca con Google

[LZ92] X. Li and O. C. Zienkiewicz (1992). Multiphase flow in deforming porous media and finite element solutions, Computers and Structures, Volume 45, Issue 2, pages 211-227. Cerca con Google

[Ma10] B. Markert (2010). Weak or Strong On Coupled Problems in Continuum Mechanics, Habilitation thesis, Universität Stuttgart, Germany. Cerca con Google

[Mo86] F. Molenkamp (1986). Limits to the Jaumann stress rate, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 10, Issue 2, pages 151-176. Cerca con Google

[Mor72] L. W. Morland (1972). A simple constitutive theory for a fluid saturated porous solid, Journal of Geophysical Research, Volume 77, No. 5, pages 890-900. Cerca con Google

[MS93] M. J. Moran and H. N. Shapiro (1993). Fundamentals of Engineering Thermodynamics, 2nd ed, Wiley. Cerca con Google

[No93] W. Noll (1993). Theory of interpenetrating continuous bodies, Proc. Euromech Colloqium n° 290 on Mechanics of Swelling, Rhodes, Greece, August 1993. Cerca con Google

[NS11] M. Nenning and M. Schanz (2010). Infinite elements in a poroelastodynamic FEM. International Journal for Numerical and Analytical Methods in Geomechanics, Volume 35, Issue 16, pages 1774-1800. Cerca con Google

[RM09] N. Ravichandran and K. K. Muraleetharan (2009). Dynamics of unsaturated soils using various finite element formulations, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 33, Issue 5, pages 611-631. Cerca con Google

[Sl92] L. J. Sluys (1992). Wave propagation, localisation and dispersion in softening solids, Ph.D. Thesis Technische Univ., Delft (Netherlands). Dept. of Civil Engineering. Cerca con Google

[SC09] M. Schanz (2009). Poroelastodynamics: linear models, analytical solutions, and numerical methods. Applied Mechanics Reviews, Volume 62, Issue 3, pages 1-15. Cerca con Google

[Sch95] B. A. Schrefler, X. Zhan, L. Simoni (1995). A coupled model for water flow, airflow and heat flow in deformable porous media, International Journal of Numerical Methods for Heat & Fluid Flow, Volume 5, pages 531-547. Cerca con Google

[SF08] L. Sanavia, B. François, R. Bortolotto, L. Luison and L. Laloui (2008). Finite element modelling of thermo-elasto-plastic water saturated porous materials, Journal of Theoretical and Applied Mechanics, Volume 38(1-2), pages 7-24. Cerca con Google

[Ske61] A. W. Skempton (1961). Effective stress in soil, concrete and rocks, Pore Pressure and Suction in Soils, pages 4-16. Cerca con Google

[SM95] B. A. Schrefler, C. E. Majorana and L. Sanavia (1995) Shear band localization in saturated porous media, Archives of Mechanics, Volume 47, pages 577-599. Cerca con Google

[SP05] Sanavia L., F. Pesavento, B.A. Schrefler (2005) Finite element analysis of strain localization in multiphase materials, Revue européenne de genie civil, Volume 9, (5-6), pages 767-778. Cerca con Google

[SPS6] L. Sanavia, F. Pesavento and B.A. Schrefler (2006). Finite element analysis of non-isothermal multiphase geomaterials with application to strain localization simulation, Computational Mechanics, , Volume 37, No. 4, pages 331-348. Cerca con Google

[SS89] L. Simoni and B. A. and Schrefler (1989). F.E. solution of a vertically averaged model for regional land subsidence, International Journal for Numerical Methods in Engineering, Volume 27, Issue 1, pages 215-230. Cerca con Google

[SS96] B. A. Schrefler , L. Sanavia and C. E. Majorana (1996). A multiphase medium model for localization and post localization simulation in geomaterials, Mechanics of Cohesive-Frictional Materials, Volume 1, pages 95-114. Cerca con Google

[SS98] B. A. Schrefler and R. Scotta (1998). A fully coupled dynamic model for two-phase fluid flow in deformable porous media, Computer Methods in Applied Mechanics and Engineering, Volume 190, Issues 24–25, pages 3223-3246. Cerca con Google

[Str7] Straus 7 software, G+ D Computing Pty Limited, Suite 1 Level 7, 541 Kent street, Sydney NSW 2000, Australia. Cerca con Google

[SW79] R. Sampaio and W. O. Williams (1979). Thermodynamics of diffusing mixtures, Journal de Méchanique, Volume 18, pages 19-45. Cerca con Google

[SZ93] B. A. Schrefler, X.Y. Zhan (1993). A fully coupled model for water flow and airflow In deformable porous media, Water resources research, Volume 29, No. 1, pages 155-167. Cerca con Google

[SZ99] B. A. Schrefler, H. W. Zhang and L. Sanavia (1999). Fluid-structure interaction in the localisation of Saturated porous media, ZAMM Zeitschrift für Angewandte Mathematik und Mechanik (Journal of Applied Mathematics and Mechanics, Z. Angew. Math. Mech.), Volume 79(7), pages 481-484. Cerca con Google

[UB11] R. Uzuoka and R. I. Borja (2011). Dynamics of unsaturated poroelastic solids at finite strain, International Journal for Numerical and Analytical Methods in Geomechanics, Online ISSN: 1096-9853. Cerca con Google

[UR08] M. B. C. Ulker and M. S. Rahman (2008). Response of saturated and nearly saturated porous media: Different formulations and their applicability”, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 33, Issue 5, pages 633-664. Cerca con Google

[Va02] I. Vardoulakis (2002). Dynamic thermo-poro-mechanical analysis of catastrophic landslides. Géotechnique, Volume 52, Issue 3, pages 157-171. Cerca con Google

[Wi78] W. O. Williams (1978). Constitutive equations for flow of an incompressible viscous fluid through a porous medium, Quarterly of Applied Mathematics, pages 255-267. Cerca con Google

[Z99] O.C. Zienkiewicz, A.H. Chan, M. Pastor, B.A. Schrefler, T. Shiomi (1999). Computational Geomechanics with special reference to earthquake engineering, 1999, Wiley. Cerca con Google

[Zie90] O. C. Zienkiewicz, Y. M. Xie, B. A. Schrefler, A. Ledesma, N. Bicanic (1990). Static and dynamic behavior of soils: a rational approach for quantitative solutions. II Semi-saturated problems, Mathematical and Physical Sciences, Volume 429, No. 1877, pages 311-321. Cerca con Google

[ZL03] F.Z. Zerfa and B. Loret (2003). Coupled dynamic elastic-plastic analysis of earth structures. Soil Dynamics and Earthquake Engineering, Volume 23, Issue 6, pages 435-454. Cerca con Google

[ZQ86] O. C. Zienkiewicz1, S. Qu2, R. L. Taylor3, S. Nakazawa (1986). The patch test for mixed formulations, International Journal for Numerical Methods in Engineering, Volume 23, Issue 10, pages 1873-1883. Cerca con Google

[ZS01] H. W. Zhang, L. Sanavia and B. A. Schrefler (2001). Numerical analysis of dynamic strain localisation in initially water saturated dense sand with a modified generalised plasticity model, Computers and Structures, Volume 79, pages 441-459. Cerca con Google

[ZS85] O. C. Zienkiewicz and T. Shiomi (1985). Dynamic behavior of saturated porous media: the general Biot's formulation and its numerical solution, Int. J. Num. Anal. Meth. Geom., Volume 8, pages 71-96. Cerca con Google

[ZS99] H. W. Zhang, L. Sanavia and B. A. Schrefler (1999). An internal length scale in dynamic strain localisation of multiphase porous media, International J. Mechanics of Cohesive-Frictional Materials, Volume 4, pages 443-460. Cerca con Google

[ZT00] O. C. Zienkiewicz and R. L. Taylor (2000). Finite Element Method (5th Edition) Volume 1 - The Basis, Elsevier. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record