Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Spolaor, Fabiola (2013) Application of surface EMG in diabetic disease. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
1847Kb

Abstract (inglese)

Summary: English

The World Health Organization warns that, in 2000, as many as 33 million Europeans suffered from diabetes, approximately 15% will likely develop foot ulcers, and approximately 15% to 20% of these patients will face lower-extremity amputation. In 2004, an estimated 3.4 million people died from consequences of high blood sugar. Diabetic neuropathy is the most common chronic complication associated with diabetes mellitus, affecting 20–50% of diabetic patients 10 years after their diagnosis. Peripheral neuropathy and peripheral arterial disease are the most common and invalidating diabetes’s complications, involved in the pathogenesis of diabetic foot. They account for the leading cause of non-traumatic lower limb amputations. It results from two factors. The first one is a reduced blow of blood in the inferior limbs, caused from the presence of obliterating peripheral arteriopathy disease. The second is the progressive laceration of nervous fibers (neuropathy) that cause a reduction of the sensitivity (also to the pain) and of the ability of movement, and that helps the appearance of lesions. Together with diabetes falls in older adults are a big public health concern and have provided much of the motivation for research into age-related changes in human gait. Tripping during walking is the predominant cause of falls not only in the elderly but also in the neuropathic subjects. Trips can occur during walking on a level ground, but also during crossing visible obstacle, stair ascending and descending. The social and economic weight of the diabetic foot and the tragic consequences that brings with it can be reduced through a prompt diagnosis and treatment from the very beginning. The aim of this thesis, was to evaluate differences in gait parameters, in performing stair ascending and descending task and evaluation of muscle fatigue during treadmill protocol in diabetes subjects with and without complications, in order to provide a further tool for early diagnosis which allows clinicians to change, if is necessary, or only to control, as soon as possible, the follow-up of patients according to their specific characteristics.

Abstract (italiano)

Summary: Italian

L'Organizzazione Mondiale della Sanità avverte che, nel 2000, ben 33 milioni di europei hanno sofferto di diabete, circa il 15% probabilmente svilupperà ulcere del piede, e circa il 15-20% di questi pazienti si troveranno ad affrontare l'amputazione degli arti inferiori. Nel 2004 5.2 milioni di persone sono morte a causa degli elevati livelli di zucchero nel sangue. La neuropatia periferica è la complicanza diabetica cronica più frequente e colpisce dal 20 al 50% dei pazienti diabetici a distanza di 10 anni dalla diagnosi. Neuropatia e vasculopatia periferica sono le complicanze del diabete più comuni e invalidanti, e le maggiori responsabili della patogenesi del piede diabetico. Insieme rappresentano la principale causa di amputazioni non traumatiche degli arti inferiori. La vasculopatia periferica causa un ridotto apporto di sangue agli arti inferiori, mentre la neuropatia periferica si manifesta attraverso la lacerazione progressiva delle fibre nervose che causa una riduzione della sensibilità (anche al dolore) e della capacità di movimento, che provoca di conseguenza la comparsa di lesioni. Insieme al diabete, le cadute nella popolazione anziana sono una grande preoccupazione per la sanità pubblica e sono state la spinta motivazionale per la maggior parte delle ricerche svolte nell’ambito delle alterazioni del cammino nell’uomo. Inciampare durante il cammino è la causa predominante delle cadute, non solo negli anziani, ma anche nei soggetti neuropatici e può accadere non solo durante il cammino su un terreno pianeggiante, ma anche su terreni sconnessi o durante la salita e la discesa di una scala. Il peso sociale ed economico del piede diabetico, assieme alla drammatiche conseguenze che porta con sè possono essere ridotti attraverso una diagnosi tempestiva e un trattamento immediato preferibilmente antecedente alla diagnosi clinica. L'obiettivo primario di questa tesi, è stato quello di valutare la presenza di alterazioni nelle attivazioni muscolari in soggetti diabetici con e senza complicanze durante l’esecuzione di diversi task motori con il fine ultimo di valutare se questo tipo di acquisizioni fossero in grado di fornire ai clinici un ulteriore strumento per la diagnosi precoce che consenta loro di modificare, se necessario, o semplicemente di valutare l’efficacia del follow-up dei pazienti in base alle loro caratteristiche specifiche.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Reggiani, Carlo
Correlatore:Sawacha , Zimi
Dottorato (corsi e scuole):Ciclo 24 > Scuole 24 > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI > NEUROSCIENZE
Data di deposito della tesi:02 Gennaio 2013
Anno di Pubblicazione:02 Gennaio 2013
Parole chiave (italiano / inglese):diabetes complication, gait analysis, surface emg
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/06 Bioingegneria elettronica e informatica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Cardiologiche, Toraciche e Vascolari
Codice ID:5306
Depositato il:11 Ott 2013 15:25
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Bibliography Cerca con Google

1. Sacco ICN, Amadio AC. Influence of the diabetic neuropathy on the behavior of electromyographic and sensorial responses in treadmill gait. Clinical Biomechanics 2003;18 426–434. Cerca con Google

2. Van Schie, CH, Rawat F, Boulton, AJ. Reduction of plantar pressure using a prototype pressure-relieving dressing. Diabetes Care. 2005; 28(9):2236-7. Cerca con Google

3. Lawall H, Diehm C. Diabetic foot syndrome from the perspective of angiology and diabetology 2009; 38(12):1149-59. Cerca con Google

4. Greene DA, Sima AA, Stevens MJ, Feldman EL, Lattimer SA. Complications: neuropathy, pathogenetic considerations. Diabetes Care. 1992;15(12):1902-25. Cerca con Google

5. Boucher P, Teasdale N, Courtemanche R, Bard C., Fleury M. Postural stability in diabetic polyneuropathy. Diabetes Care. 1995;18(5):638-45. Cerca con Google

6. Geurts AC, Mulder TW, Nienhuis B, Mars P, Rijken RA. Postural organization in patients with hereditary motor and sensory neuropathy. Arch Phys Med Rehabil. 1992; 73(6):569-72. Cerca con Google

7. Simoneau GG, Ulbrecht JS, Derr JA, Becker MB, Cavanagh PR. Postural instability in patients with diabetic sensory neuropathy Diabetes Care. 1994;17(12):1411-2112. Cerca con Google

8. Bloem BR, Allum JH, Carpenter MG, Honegger F. Is lower leg proprioception essential for triggering human automatic postural responses? Exp Brain Res. 2000; 130(3):375-91. Cerca con Google

9. Katoulis EC, Ebdon-Parry M, Lanshammar H, Vileikyte L, Kulkarni J, Boulton AJ. Gait abnormalities in diabetic neuropathy. 1997; ;20(12):1904-7. Cerca con Google

10. Sawacha Z, Gabriella G, Cristoferi G, Guiotto A, Avogaro A, Cobelli C. Diabetic gait and posture abnormalities: a biomechanical investigation through three dimensional gait analysis. Clin Biomech 2009;24(9):722-8. Cerca con Google

11. Kwon OY, Minor SD, Maluf KS, Mueller MJ. Comparison of muscle activity during walking in subjects with and without diabetic neuropath. Gait and Posture 2003.105 -/113. Cerca con Google

12. Akashi PM, Sacco IC, Watari R, Hennig E. The effect of diabetic neuropathy and previous foot ulceration in EMG and ground reaction forces during gait. Clinical Biomechanics 2008; 23 584–592. Cerca con Google

13. Sawacha Z, Spolaor F, Guarneri G, et al. Abnormal muscle activation during gait in diabetes patients with and without neuropathy. Gait Posture. 2012;35(1):101–105. Cerca con Google

14. Ahmed AM. History of diabetes mellitus. Saudi Med J. 2002 Apr;23(4):373-8. Cerca con Google

15. WHO 2011 Cerca con Google

16. Singh N, Armstrong DG, Lipsky BA:Preventing foot ulcers in patients with diabetes. JAMA 293:217–228, 2005 Cerca con Google

17. Reiber GE, Vileikyte L, Boyko EJ, del Aguila M, Smith DG, Lavery LA, Boulton AJ: Causal pathways for incident lower extremity ulcers in patients with diabetes from two settings. Diabetes Care 22:157–162, 1999 Cerca con Google

18. Lavery LA, Armstrong DG, Vela SA, Quebedeaux TL, Fleischli JG: Practical criteria for screening patients at high risk for diabetic foot ulceration. Arch Intern Med 158:157–162, 1998 Cerca con Google

19. Armstrong DG, Lavery LA: Diabetic foot ulcers: prevention, diagnosis and classification. Am Fam Phys 57:6:1325–1332, 1337–1338, 1998 Cerca con Google

20. Kelkar P: Diabetic neuropathy. Sem Neurol 25:168–173, 2006 Cerca con Google

21. Bowering CK: Diabetic foot ulcers: pathophysiology, assessment, and therapy. Can Fam Phys 47:1007–1016, 2001 Cerca con Google

22. Dyck PJ, Davies JL, Wilson DM, Service FJ, Melton LJ III, Obrien PC: Risk factors for severity of diabetic polyneuropathy. Diabetes Care 22:1479–1486, 1999 Cerca con Google

23. Zochodone DW: Diabetic polyneuropathy: an update. Curr Opin Neurol 21:527–533, 2008 Cerca con Google

24. Feldman EL, Russell JW, Sullivan KA, Golovoy D: New insights into the pathogenesis of diabetic neuropathy. Curr Opin Neurol 5:553–563, 1999 Cerca con Google

25. Simmons Z, Feldman E: Update on diabetic neuropathy. Curr Opin Neurol 15:595–603, 2002 Cerca con Google

26. Huijberts MS, Schaper NC, Schalkwijk CG: Advanced glycation end products and diabetic foot disease. Diabetes Metab Res Rev 24 (Suppl. 1):S19–S24, 2008 Cerca con Google

27. Boulton AJ, Armstrong DG, Albert SF, Frykberg RG, Hellman R, Kirkman MS, Lavery LA, LeMaster JW, Mills JL Sr, Mueller MJ, Sheehan P, Wukich DK: Comprehensive foot examination and risk assessment. Diabetes Care 31:1679–1685, 2008 Cerca con Google

28. Paraskevas KI, Baker DM, Pompella A, Mikhailidis DP: Does diabetes mellitus play a role in restenosis and patency rates following lower extremity peripheral arterial revascularization? A critical overview. Ann Vasc Surg 22:481–491, 2008 Cerca con Google

29. Cavanagh PR, Simoneau GG, Ulbrecht JS. Ulceration, unsteadiness, and uncertainty, the biomechanical consequences of diabetes mellitus. J Biomech 1993;26(1):23–40. Cerca con Google

30. Sawacha Z, Cristoferi G, Guarneri G, et al. Characterizing multisegment foot kinematics during gait in diabetic foot patients. J Neuroeng Rehabil. 2009;6:37. Cerca con Google

31. Sawacha Z, Guarneri G, Avogaro A, Cobelli C. A new classification of diabetic gait pattern based on cluster analysis of biomechanical data. J Diabetes Sci Technol. 2010;4(5):1127–1138. Cerca con Google

32. S. Rao, C.L. Saltzman, H.J. Yack. Relationships between segmental foot mobility and plantar loading in individuals with and without diabetes and neuropathy. Gait Posture, 31 (2) (2009), pp. 251–255 Cerca con Google

33. S. Rao, C. Saltzman, H.J. Yac. Segmental foot mobility in individuals with and without diabetes and neuropathy. Clin Biomech, 22 (4) (2007), pp. 464–471 Cerca con Google

34. Perry J. Gait Analysis, Normal and Pathological Function. ed. McGraw-Hill, New York, pp. 435–436. 1992. Cerca con Google

35. Richard Baker The history of gait analysis before the advent of modern computers Gait & Posture Volume 26, Issue 3, September 2007, Pages 331-342 Cerca con Google

36. Borelli GA. De Motu Animalium. Lugduni Batavorum. 1679. Cerca con Google

37. Galvani L. Deviribus Electricalis. Cambridge, 1953. Cerca con Google

38. Newton SI. Philosophia Materialis Principia Mathematica. In: Danbury: Encyclopedia Americana. Grolier Incorporated, 1988:288–92. Cerca con Google

39. Descartes R. In: Adam C, Tannery P, editors. Oeuvres de Descartes, French and European Publication; 1596. Cerca con Google

40. Marey EJ. La machine animale. Locomotion terrestre (bipedes).Paris: Balliere, 1873. Cerca con Google

41. Marey EJ. Development de la methode graphique par l’emploi de la Photographie, 1885. Cerca con Google

42. Marey EJ. Le Mouvement, 1894. Cerca con Google

43. Carlet M. Sur la locomotion humaine. Etude de la marche. Ann Sci Nat 1872;5(Serie Zool 16):1. Cerca con Google

44. Weber W, Weber E. Mechanik der Menschlichen Gehwerkzeuge. Gottingen: Fisher-Verlag, 1836. Cerca con Google

45. Weber EF. Ueber die Langeverhaltnisse der Muskeln im Allgemeinen. Verh. Kgl. Sachs. Ges. d. Wiss. Leipzig 1851. Cerca con Google

46. Scherb R. Zeitschrift fur orthopaedische chirurgie, 1927:48. Cerca con Google

47. Scherb R, Arienti A. Ist die Myokinesigraphie als Untersuchungmethodeobjective zuverlassig? Schweizerische Medizinische Wochenschrift. J Suisse Med 1945;75:1077–9. Cerca con Google

48. Scherb R. Kinetisch-diagnostische analyse von Gehstorungen.Technik und Resultate der Myokinesiographie. Zeitschrift Fur Orthopadie Und Ihre Grenzgebiete 1952;82 (Suppl.). Cerca con Google

49. Duchenne GB. Physiologie des Mouvements. Philadelphia: Lippincott, 1949. Cerca con Google

50. Muybridge E. Complete Human and Animal Locomotion. Dover Publishers, 1887. Cerca con Google

51. Braune W, Fisher O. Ueber den schwerpunkt des menschlichen korpers, mit rucksicht auf die ausrustung des deutschen infanteristen. ABH Math Phy Cl K Sachs Ges Wissensch 1889;15:559. Cerca con Google

52. Braune W, Fischer O. Die rotationsmomente der Beugemuskeln am Ellbogengelenk des Menschen, vol. 15. Abh. d. Konigl. Sachs. Ges. d. Wissensch. Math. Phys. Klasse, 1890. Cerca con Google

53. Braune W, Fischer O. Untersuchungen uber die elenke des menschlichen Armes. In: Abh.Sachs. Akad. Wiss., editor. Praktische Anatomie Bd. I, Teil III. Berlin: Springer, 1935. p. 94. Cerca con Google

54. Fischer O, Der Gang des menschen Abh. Kgl. Sachs. Ges. d. Wiss., 1904. Cerca con Google

55. Fischer O. Kinematik organischer Gelenke. Braunsweig: Vierweg, 1907. Cerca con Google

56. Inman V, Ralston HJ, deSaunder JB, Feinstein B, Wright EW. Relation of human electromyogram to muscle tension. EEG Clin Neurol 1952;4:187–94 Cerca con Google

57. Inman VT, Ralston HJ, Todd F. Human Walking. Baltimore: Williams & Wilkins, 1981. Cerca con Google

58. Eberhart HDA. Fundamental Studies of Human Locomotion and Other Information Relating to Design of Artificial Limbs. Berkeley: University of California, Berkeley, 1947. 70 D.H. Sutherland / Gait and Posture 14 (2001) 61–70 Cerca con Google

59. Ralston HJ, Todd FN, Inman VT. Comparison of electrical activity and duration of tension in the human rectus femoris muscle. Electromyogr Clin Neurophysiol 1976;16:277–86. Cerca con Google

60. Rose J, Gamble JG, editors. Human Walking, 2nd ed. Baltimore: Williams & Wilkins, 1994:263. Cerca con Google

61. Johanson ME. Gait laboratory: structure and data gathering. In: Rose J, Gamble J, editors. Human Walking, 2nd ed. Baltimore: Williams & Wilkins, 1993:201–24. Cerca con Google

62. D'Ambrogi E, Giurato L, D’Agostino MA, Giacomozzi C, Macellari V, Caselli A, Uccioli L. Contribution of plantar fascia to the increased forefoot pressures in diabetic patients, Diabetes Care 2003; 26, 1525. Cerca con Google

63. Giacomozzi C, Caselli A, Macellari V, Giurato L, Lardieri L, Uccioli L. Walking strategy in diabetic patients with peripheral neuropathy. Diabetes Care 2002; 25, 1451. Cerca con Google

64. Mueller MJ, Sinacore DR, Hoogstrate S, Daly L. Hip and Ankle walking Strategies, Effect on Peack Plantar Pressures and Implications for Neuropathic Ulceration. Arch Phys Med Rehabil 1994; 75(11), 1196-200. Cerca con Google

65. Sinacore DR, Bohnert KL, Hastings MK, Johnson JE. Mid foot kinetics characterize structural polymorphism in diabetic foot disease. Clin Biomech 2008; 23(5):653-661. Cerca con Google

66. Andersen H, Gadeberg PC, Brock B, Jakobsen J. Muscolar atrophy in diabetic neuropathy sterelogical magnetic resonance imaging study. Diabetologia 1997; 40,1062. Cerca con Google

67. Courtemanche R, Teasdale N, Boucher P, Fleury M, Lajoie Y, Bard, C. Gait problems in diabetic neuropathic patients. Arch Phys Med Rehabil. 1996; 77:849-55. Cerca con Google

68. Greenman RL, Khaodhiar L, Lima C, Dinh T, Giurini JM, Veves A. Foot small muscle atrophy is present before the detection of clinical neuropathy. Diabetes Care 2005;28(6):1425-30. Cerca con Google

69. Kapandji IA, Kandel MJ. Lower Limb. In the Physiology of the Joints Volume 2. Edited by: Churchill Livingstone. Edinburgh & London: E. & S. Livingstone; 1988 Cerca con Google

70. Nene A, Mayagoitia R, Veltink P. Assessment of rectus femoris function during initial swing phase. Gait Posture. 1999; 9(1):1-9 Cerca con Google

71. Kyrolainen H, Komi PV, Belli A. Changes in muscle activity patterns and kinetics with increasing running speed. Journal of Strength and Conditioning Research 1999; 13, 400–406. Cerca con Google

72. Feldman EL, Stevens M J, Thomas PK, Browne MB, Canal N, Greene DA. A practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy. Diabetes Care 1994; 17 (11), 1281-1289. Cerca con Google

73. American Diabetes Association Consensus statement. Diabetic neuropathy. Diabetes Care 1995; 18: 53±58. Cerca con Google

74. Grunert BK et al. Reliability of sensory threshold measurement using a digital vibrogram. J Occup Med 1990; 32: 100±102. Cerca con Google

75. Rumwell C., McPharlin M.: Vascular Technology; an Illustrated Review. Davies Publishing, Inc., Pasadena, CA, 1996. Cerca con Google

76. Carter S.A.: Role of Pressure Measurements. Bernstein E. F., editor: Vascular Diagnosis, Fourth Edition, Chapter 55. Mosby-Year Book, Inc., St. Louis, MO, 1993. Cerca con Google

77. Blumenstein R, Basmajian J. Electrode placement in EMG biofeedback. Williams & Wilkins 1980. Cerca con Google

78. Sutherland DH. The evolution of clinical gait analysis: Part II Kinematics Gait Posture 2002; 16:159-179. Cerca con Google

79. Gage JR. Gait analysis. An essential tool in the treatment of cerebral palsy. Clinical Orthopedics 1993; 288:126-134. Cerca con Google

80. Andriacchi TP, Alexander EJ. Studies of human locomotion: past, present and future. J Biomech 2000; 33(10):1217-1223 Cerca con Google

81. Gage JR, DeLuca PA, Renshaw TS. Gait analysis: principles and applications. J Bone Joint Surg 1995; 77-A(10):1607-1623. Cerca con Google

82. Gage JR, Novacheck TF. An update on the treatment of gait problems in cerebral Palsy. J Pediatr Orthop 2001; 10(Part B):265-274. Cerca con Google

83. Brand RA: Can Biomechanics contribute to clinical orthopaedic assessments. Iowa Orthopaedic Journal 1987, 9:61-64. Cerca con Google

84. Brand RA, Crowninshield RD: Comment on criteria for patient evaluation tools. Journal of Biomechanics 1981, 14:655. Cerca con Google

85. Cappozzo A, Della Croce U, Leardini A, Chiari L: Human movement analysis using stereophotogrammetry. Part 1: theoretical background. Gait and Posture 2005, 21:186-196. Cerca con Google

86. Chiari L, Della Croce U, Leardini A, Cappozzo A: Human movement analysis using stereophotogrammetry. Part 2: instrumental errors. Gait and Posture 2005, 21:197-211 Cerca con Google

87. Baker R, Rodda J: All you ever wanted to know about the conventional gait model but were afraid to ask. Melbourne, Women and Children's Health; 2003. Cerca con Google

88. Davis RB, Ounpuu S, Tyburski D, Gage JR: A gait analysis data collection and reduction technique. Human Movement Science 1991, 10:575- Cerca con Google

89. Cappozzo A., Catani F., Della Croce U., Leardini A. (1995). Position and orientation in space of bones during movement: anatomical frame definition and determination. Clinical Biomechanics , 10(4), 171-178. Cerca con Google

90. Benedetti M. G., Catani F., Leardini A., Pignotti E., Giannini S. (1998). Data management in gait analysis for clinical applications. Clinical biomechanics, 13(3), 204-215 Cerca con Google

91. Kadaba MP, Ramakrishnan HK, Wootten ME: Measurement of lower extremity kinematics during level walking. Journal of Orthopaedic Research 1990, 8:383-391. Cerca con Google

92. Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G,Cochran GVB: Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. Journal of Orthopaedic Research 1989, 7:849-860 Cerca con Google

93. Giacomozzi C. Caselli A., Macellari V., Giurato L.,Lardieri L.,Uccioli L. (2002).Walking strategy in diabetic patients with peripheral neuropathy. Diabetes care 25,1451. Cerca con Google

94. N. Yamada. Chaotic swaying of the upright posture. Human Movement Science 14 (1995), p:711-726. Cerca con Google

95. Cappozzo A., Catani F., Della Croce U., Leardini A. (1995). Position and orientation in space of bones during movement: anatomical frame definition and determination. Clinical Biomechanics , 10(4), 171-178. Cerca con Google

Bibliography Cerca con Google

1. Andriacchi, T.P., Andersson, G.B.J., Fermier, R.W., Stern, D., Galante, J.O., 1980. A study of lower-limb mechanics during stair-climbing. J. Bone Joint Surg. Am. 62 (5), 749–757. Cerca con Google

2. Jevsevar, D.S., Riley, P.O., Hodge, W.A., Krebs, D.E., 1993. Knee kinematics and kinetics during locomotor activities of daily living in subjects with knee arthroplasty and in healthy control subjects. Phys. Ther. 73 (4), 229–238.). Cerca con Google

3. Costigan, P.A., Deluzio, K.J., Wyss, U.P., 2002. Knee and hip kinetics during normal stair climbing. Gait Posture 16, 31–37 2002; Cerca con Google

4. Kowalk, D.L., Duncan, J.A., Vaughan, C.L., 1996. Abduction–adduction moments at the knee during stair ascent and descent. J. Biomech. 29, 383–388 Cerca con Google

5. Livingston, L.A., Stevenson, J.M., Olney, S.J., 1991. Stair climbing kinematics on stairs of differing dimensions. Arch. Phys. Med. Rehabil. 72, 398–402.; Cerca con Google

6. McFadyen, B.J., Winter, D.A., 1988. An integrated biomechanical analysis of normal stair ascent and descent. J. Biomech. 21 (9), 733–744. Cerca con Google

7. Riener, R., Rabuffetti, M., Frigo, C., 2002. Stair ascent and descent at different inclinations. Gait Posture 15, 32–44. Cerca con Google

8. Berchuck, M., Andriacchi, T.P., Bach, B.R., Reider, B., 1990. Gait adaptations by patients who have a deficient anterior cruciate ligament. J. Bone Joint Surg. Am. 72 (6), 871–877.; Cerca con Google

9. Powers, C.M., Boyd, L.A., Torburn, L., Perry, J., 1997. Stair ambulation in persons with transtibial amputation: an analysis of the Seattle LightFootTM. J. Rehabil. Res. Dev. 34 (1), 9–18. Cerca con Google

10. Salsich, G.B., Brechter, J.H., Powers, C.M., 2001. Lower extremity kinetics during stair ambulation in patients with and without patellofemoral pain. Clin. Biomech. 16, 906–912. Cerca con Google

11. Brechter, J.H., Powers, C.M., 2002. Patellofemoral joint stress during stair ascent and descent in persons with and without patellofemoral pain Gait Posture 16, 31–37. Cerca con Google

12. Winter, D.A., The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, second ed. Waterloo Biomechanics, Canada..1991 Cerca con Google

13. Wells, R.P., 1981. The projection of the ground reaction force as apredictor of internal joint moments. Bull. Prosthet. Res. 18 (1), 15–19. Cerca con Google

14. McFadyen, B.J., Winter, D.A., 1988. An integrated biomechanical analysis of normal stair ascent and descent. J. Biomech. 21 (9), 733–744 Cerca con Google

15. Kowalk et al. (1996) Kowalk, D.L., Duncan, J.A., Vaughan, C.L., 1996. Abduction–adduction moments at the knee during stair ascent and descent. J. Biomech. 29,383–388 Cerca con Google

16. Shiavi R.. Electromyographic patterns in adult locomotion: a comprehensive review. J Rehabil Res Dev. 1985 Jul;22(3):85-98 Cerca con Google

17. De Luca, C.J. (1997). The use of Surface Electromyography in Biomechanics. J Appl Biomech,Vol.13, pp. 135-163 Cerca con Google

18. Benedetti MG, Bonato P, Catani F, D'Alessio T, Knaflitz M, Marcacci M, Simoncini L. Myoelectric activation pattern during gait in total knee replacement: relationship with kinematics, kinetics, and clinical outcome.IEEE Trans Rehabil Eng. 1999 Jun;7(2):14 Cerca con Google

19. Davis, R.B. (1997). Reflections on Clinical Gait Analysis. J Electromyogr Kinesiol, Vol.7, pp. 251-257 Cerca con Google

20. Gage, J.R. (1992). Clinical use of kinetics for gait pathology in cerebral palsy. Gait & Posture, Vol.2, pp. 36-37 Cerca con Google

21. Joseph, J., And Watson, Richard: Telemetering Electromyography Of Muscles Used In Walking Up And Down Stairs. J. Bone And Joint Surg.. 49-B: 774-780, Nov. 1967. Cerca con Google

22. Townsend, M. A.; Lainhart, S. P.; Shiavi, R.; And Caylor, J.: Variability And Biomechanics Of Synergistic Patterns Of Some Lower Limb Cerca con Google

23. Morrison, J. B.: Function of the Knee Joint in Various Activities. Biomed. Eng. , 4: 573-580, 1969. Cerca con Google

24. Paul, J. J.: Force Actions Transmitted in the Knee of Normal Subjects and by Prosthetic Joint Replacements. Inst. Mech. Eng., pp. 126-131, 1974 Cerca con Google

25. Maria Grazia Benedetti, Valentina Agostini, Marco Knaflitz and Paolo Bonato (2012). Muscle Activation Patterns During Level Walking and Stair Ambulation, Applications of EMG in Clinical and Sports Medicine, Catriona Steele (Ed.), InTech, Cerca con Google

26. Blumenstein R, Basmajian J. Electrode placement in EMG biofeedback. Williams & Wilkins 1980. Cerca con Google

27. Sawacha Z, Spolaor F, Guarneri G, et al. Abnormal muscle activation during gait in diabetes patients with and without neuropathy. Gait Posture. 2012;35(1):101–105. Cerca con Google

28. U. Oppenheim, R. Kohen-Raz, D. Alex, A. Kohen-Raz, M. Azarya Postural Characteristics of Diabetic Neuropathy, Diabetes Care, Vol. 22, n_ 2, Febbraio 1999. Cerca con Google

29. A. Cappello: Ciclo di lezioni sull'analisi posturale- Parte III: Dalla misura all'informazione nell'analisi posturale, 2001-2002, p: 1-16. Cerca con Google

30. T.E. Prieto, J. B. Myklebust, B. M. Myklebust, R. G. Ho_man, E. G. Lovrett: Measures of postural steadiness: di_erences between healthy young and elderly adults, IEEE Trans. BME 43: 956-966,1996. Cerca con Google

31. Sawacha Z, Cristoferi G, Guarneri G, et al. Characterizing multisegment foot kinematics during gait in diabetic foot patients. J Neuroeng Rehabil. 2009;6:37. Cerca con Google

Bibliography Cerca con Google

1. Muscio, B., Is a fatigue test possible?, Br. J. Psychol., 12,31, \921. Cerca con Google

2. Bills, A. G., The Psychology of Efficiency, Harper. New York. 1943. Cerca con Google

3. Simonson, E. and Weiser, P. c., Eds., Psychological aspects and physiological correlates of work and fatigue, Charles C Thomas, Springfield, Ill., 1976 Cerca con Google

4. Chaffin, D. B., Localized muscle fatigue -definition and measurement, J. Occup, Med.. 15,346. 1973. Cerca con Google

5. Merton, P. A., Voluntary strength and fatigue, J. Physiol.. 123,553, 1954. Cerca con Google

6. Piper, H., Electrophysiologie Muschliche Muskeln, Verlag von Julius Springer, Basel, 126, 1912. Cerca con Google

7. Cobb, S. and Forbes, A., Electromyographic studies of muscle fatigue in man, Am. J. Physiol.. 65, 234. 1923. Cerca con Google

8. DeVries, H. A., Efficiency of electrical activity as a physiological measure of the functional state of muscle tissue. Am. J. Phvs. Med.. 47. 10. 1968. Cerca con Google

9. Kadefors, R., Kaiser, E., and Petersen, I., Dynamic spectrum analysis of myo-potentials with special reference to muscle fatigue. Electromyograptiv, 8, 39. 1'.168. Cerca con Google

10. Knowlton, G. C., Bennett, R. L., and McClure, R., Electromyography of fatigue. Arch. Phys. Med.. 32. 648. 195I. Cerca con Google

11. Scherrer, J. and Bourguignon, A., Changes in the electromyogram produced by fatigue in man, Am. l. Phys. Med., 38, 148, 1959 Cerca con Google

12. Maton, B., Human motor unit activity during the onset of muscle fatigue in submaximal isometric isotonic contractions, Eur. J. Appl. Physiol., 46, 271, 1981. Cerca con Google

13. De Luca, C. J., LeFever, R. S., McCue, M. P., and Xenakis, A. P., Behaviour of human motor units in different muscles during linearly-varying contractions. J. Physiol.. 329. 113, 1982 Cerca con Google

14. Clamann, H. P. and Broecker, M. S., Relation between force and fatigability of red and pale skeletal muscles in man, Am. J. Phys. Therapy, 58, 70, 19 Cerca con Google

15. Kogi, K. and Hakamada, T., Frequency analysis of the surface electromyogram in muscle fatigue. 1. Sci. Labour (Tokyo J. 38. 5 19. 1962 Cerca con Google

16. Kwatney, E., Thomas, D. H., and Kwatny, H. G., An application of signal processing techniques to the study of myoelectric signals, IEEE Trans. Biomed. Eng.. 17. 303. 1970. Cerca con Google

17. Lindstrom, L., Magnusson, R" and Petersen, I., Muscular fatigue and action potential conduction velocity changes studied with frequency analysis of EMG signals, Electromyography. 10,341, 1970. Cerca con Google

18. Komi, P. V. and Tesch, P., EMG frequency spectrum. muscle structure and fatigue during dynamic contractions in man, Eur. J. Appl. Physiol.• 42,41. 1979. Cerca con Google

19. Palla, S. and Ash, M. M., Effects of bite force on the power spectrum of the surface electromyogram of human jaw muscles, Arch. Oral Biol., 26, 287, \981. Cerca con Google

20. Petrofsky, S. J. and Lind, A. R., The influence of temperature on the amplitude and frequency components of the BMG during brief and sustained isometric contractions, Eur. J. Appl. Physiol., 44, \89, 1980a. Cerca con Google

21. Lindstrom, L., On the Frequency Spectrum of EMG Signals, Ph.D. thesis. Res. Lab. Med. Electronics. Chalmers Institute of Technology, Gothenburg. Sweden, 1970. Cerca con Google

22. De Luca, C. J., Physiology and mathematics of myoelectric signals, IEEE Trans. Biomed. Eng .. 26. 313, 1979. Cerca con Google

23. Basmajian JV, De Luca CJ. Muscles alive, 5th edn. Baltimore, MD: Williams and Wilkins, 1985. Cerca con Google

24. Karlsson S, Yu J, Akay M. Time–frequency analysis of myoelectric signals during dynamic contractions: a comparative study. IEEE Trans Biomed Eng 2000: 47: 228–238 Cerca con Google

25. Balestra G, Knaflitz M, Merletti R. Stationarity of voluntary and electrically elicited surface myoelectric signals. In: Wallinga W, Boom HBK, De Vries J, editors. Electrophysiological Kinesiology. Amsterdam: Elsevier Science Publishers, 1988:275–8. Cerca con Google

26. Knaflitz M, Merletti R, De Luca CJ. Inference of motor unit recruitment order in voluntary and electrically elicited contractions. J Appl Physiol 1990;68:1657–67. Cerca con Google

27. Linssen W, Stegeman D, Joosten E, Binkhorst R, Merks M, Laak H, Notermans S. Fatigue in type I fiber predominance: a muscle force and surface EMG study on the relative role of type I and type II muscle fibers. Muscle and Nerve 1991;14:829–37. Cerca con Google

28. Knaflitz M, Balestra G, Angelini C, Cadaldini M. Muscle fatigue evaluation in the follow-up of children affected by Duchenne muscular dystrophy. Basic and Applied Myology 1996;6:115–23. Cerca con Google

29. Priez A, Duchene J, Goubel F. Duchene muscular dystrophy quantification: a multivariate analysis of surface EMG. Med and Biol Eng and Comput 1992;30:283–91. Cerca con Google

30. Biedermann HJ, Shanks GL, Forrest W, Inglis J. Power spectrum analysis of electromyographic activity: discriminators in the differential assessment of patients with chronic low back pain. Spine 1991;16:1179–84. Cerca con Google

31. Mannion AF, Dolan P. Electromyographic median frequency changes during isometric contraction of the back extensors to fatigue. Spine 1994;19:1223–9. Cerca con Google

32. Roy SH, De Luca CJ, Emley M, Buijs R. Spectral EMG assessment of back muscles in patients with LBP undergoing rehabilitation. Spine 1995;20:38–48. Cerca con Google

33. L. Brody. M. Pollock. S. Roy, C. De Luca. and B. Celli. “pH induced effects on median frequency and conduction velocity of the myoelectric signal,” J. Applied Physiol., vol. 71, pp. 1878-1885. 1991. Cerca con Google

34. CRC Crit. Rev Electrically evoked myoelectric signals,’’. Biomed. Eng., vol. 19, pp. 293-340. 1992. Cerca con Google

35. R. Merletti, M. Knaflitz, and C. J. De Luca, “Myoelectric manifestations of fatigue in voluntary and electrically elicited contractions,” J. Applied Physiol., vol. 69, pp. 1810-1819, 1990. Cerca con Google

36. K. Merletti, L. R. Lo Conte, C. Cisari, and M. V. Actis, “Age related changes in surface myoelectric signals,” Scand. J. Rehab. Med., vol. 25, pp. 25-36, 1992. Cerca con Google

37. H. Broman, G. Bilotto, and C. De Luca, “Myoelectric signal conduction velocity and spectral parameters: Influence of force and time,” J. Applied Physiol., vol. 8, pp. 1428-1435. 1985 Cerca con Google

38. Rolando Celis et al. Peripheral arterial disease affects kinematics during walking Journal of Vascular Surgery Volume 49, Issue 1 , Pages 127-132, January 2009 Cerca con Google

39. McDermott M. M.. et al., JAMA, 2009, 301(2): 165-174. Cerca con Google

40. M Cifrek et al., Clinical Biomechanics 24 (2009), pp. 327-340. Cerca con Google

41. V. Agostini, F. Spolaor, Z. Sawacha, G. Guarneri, S. de Kreutzenberg, A. Avogaro, C. Cobelli, M. Knaflitz SEMG evaluation during treadmill walking: Methodological issues in searching signs of muscle fatigue Journal: Gait & Posture - GAIT POSTURE , vol. 33, pp. S45-S46, 2011 Cerca con Google

42. Hair JF et al., Multivariate Data analysis. Prentice Hall Upper Saddle River NJ 497 1998 Cerca con Google

43. Kaufman L. and Rousseeuw P. (1990), Finding Groups in data: An Introduction to Cluster Analysis, New York: J. Wiley & Son. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record