Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Michelini, Lucia (2013) Sulfonamide accumulation and effects on herbaceous and woody plants and microorganisms. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (michelini lucia tesi dottorato)
3222Kb

Abstract (inglese)

One of the main routes through which pharmaceuticals may enter the environment consists in the medication of livestock. In fact, in Europe the annual national sales of active substance for veterinary consumption reach hundreds of tons. After medication, up to 90% of the administered medicine dose may be excreted unaltered and, following the use of manure as fertilizer, soils and waters are contaminated. The present work focuses on the effects and eventual accumulation on woody and herbaceous plants of sulfonamides, a group of antimicrobial agents (from now on called antibiotics) frequently detected in agricultural ecosystems, whose persistence poses a serious risk to soil and water living organisms.
The thesis consists of 7 chapters, presenting, in the first one, a general introduction on the antibiotic presence in the environment and its consequences on the growth and development of exposed living organisms.
Subsequently, from chapter 2 to chapter 6, various experimental trials are presented, some of them carried out under laboratory conditions and others in greenhouse. More specifically, chapter 2 reports the first study performed, which deals with Salix fragilis L. plant response and the accumulation of sulfadimethoxine antibiotic, added in the nutrient solution at doses ranging from 155 to 620 mg l-1. Such a study highlights the potential of this woody species to absorb and accumulate the active molecule at the level of root apparatus. Chapter 3 retraces the experimental design of chapter 2, with the difference that Salix fragilis L. plants were exposed to environmental relevant sulfadimethoxine doses, from 0.01 up 10 mg l-1. The trial had demonstrated that no adverse effects on the growth of willow plants appeared up to 1 mg l-1 of antibiotic. Conversely, increasing levels of the antibiotic caused important alterations of the willow root architecture. Chapters 4 and 5 consider, respectively, the effects and accumulation of a different sulfonamide on Salix fragilis L. and Zea mays L. plants, grown in a soil spiked with 10 and 200 mg kg-1 of sulfadiazine. Moreover, its impact on the composition of root associated soil microbial community and on the activities of selected enzymes was analyzed. The last study, presented in chapter 6, focuses on alterations induced by about 10 mg l-1 of sulfadimethoxine and sulfamethazine on Hordeum vulgare L. root structure and function. This chapter highlights the strong effects of the antibiotics, not only on the root apparatus morphology, but also on the membrane integrity of root cells.
To conclude (chapter 7), it is highlighted that Salix fragilis L. seems to better accumulate and withstand the active molecules tested than Zea mays L. and Hordeum vulgare L., while the herbaceous species are more vulnerable to this kind of pollutant exposure and, therefore, not recommended for eventual remediation purposes. Furthermore, chapter 7 notes the adverse consequences on the functional and structural diversity of the soil microbial community.

Abstract (italiano)

Una delle vie principali attraverso cui i farmaci possono entrare nell'ambiente consiste nell’ampio uso che se ne fa in zootecnia. Infatti, in Europa questi principi attivi sono venduti nell’ordine di centinaia di tonnellate annue per singola nazione, per il solo utilizzo in ambito veterinario. In seguito alla somministrazione, fino al 90% della dose utilizzata di farmaco può essere escreta inalterata e, in seguito all'utilizzo del letame come ammendante organico, suolo e acque possono risultare contaminate. Il presente studio si concentra sugli effetti e sull’accumulo in piante legnose ed erbacee di sulfamidici, un gruppo di agenti antimicrobici (d'ora in poi chiamati antibiotici) frequentemente rilevati negli ecosistemi agrari, la cui persistenza rappresenta un serio rischio per gli organismi viventi ad essi connessi.
La tesi è articolata in 7 capitoli. Nella prima parte (capitolo 1) è descritta la situazione generale relativa alla presenza di antibiotici negli ambienti agrari e al loro impatto sulla crescita e lo sviluppo di organismi viventi ad essi esposti.
Successivamente, dal capitolo 2 al capitolo 6, sono presentate varie prove sperimentali, alcune effettuate in laboratorio ed altre in serra. In particolare, il capitolo 2 si occupa della risposta di piante di Salix fragilis L. all’antibiotico sulfadimetossina, aggiunto alla soluzione nutritiva in concentrazioni da 155 a 620 mg l-1, nonché del potenziale accumulo nei tessuti vegetali. Lo studio mostra la tendenza di questa specie legnosa di assorbire e accumulare la molecola attiva a livello di apparato radicale. Il capitolo 3 ripercorre il disegno sperimentale adottato nella prova descritta nel capitolo 2, con la differenza che, in questo caso, le piante di Salix fragilis L. sono state esposte a dosi di sulfadimetossina che approssimano quelle registrate in alcuni ambientali agrari, ovvero da 0.01 a 10 mg l-1. Lo studio ha mostrato che non appaiono effetti negativi sulla crescita delle piante di salice fino alla dose di 1 mg l-1. Tuttavia, aumentando il livello del principio attivo sono state evidenziate delle importanti alterazioni sull’architettura radicale. I capitoli 4 e 5 considerano, rispettivamente, gli effetti e l'accumulo di un altro sulfamidico in piante di Salix fragilis L. e Zea mays L., coltivate in un terreno arricchito con 10 mg e 200 kg-1 di sulfadiazina e il suo impatto sulle comunità microbiche e sulle attività enzimatiche associate al suolo e alla radice delle due specie vegetali. L'ultimo studio, presentato nel capitolo 6, si concentra sugli effetti indotti da circa 10 mg l-1 di sulfadimetossina e sulfametazina sulla struttura e sulla funzionalità di radici di Hordeum vulgare L. I risultati provano che i sulfamidici causano importanti effetti sulla morfologia dell'apparato radicale e sull’integrità delle membrane delle cellule radicali.
Concludendo, si è evidenziato (capitolo 7) che il Salix fragilis L. accumula e tollera meglio di Zea mays L. e Hordeum vulgare L. le molecole attive testate, mentre le specie erbacee sembrano essere più vulnerabili a questi inquinanti, di cui ne viene sconsigliato l’eventuale utilizzo nel campo del fitorimedio. Inoltre, in capitolo 7 rimarca le conseguenze negative sulla diversità funzionale e strutturale delle comunità microbiche del suolo.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Ghisi, Rossella
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > TERRITORIO, AMBIENTE, RISORSE E SALUTE > ECOLOGIA
Data di deposito della tesi:04 Gennaio 2013
Anno di Pubblicazione:04 Gennaio 2013
Parole chiave (italiano / inglese):sulfamidici/sulfonamides, inquinamento da antibiotici/antibiotic pollution, fitorimedio/phytoremediation, microorganismi del suolo/soil microorganisms, fisiologia vegetale/plant physiology
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/13 Chimica agraria
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:5317
Depositato il:15 Ott 2013 15:51
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Accinelli C, Koskinen WC, Becker JM, Sadowsky MJ (2007) Environmental fate of two sulfonamide antimicrobial agents in soil. J Agric Food Chem 55:2677-2682 Cerca con Google

AIFA (2009) Osservatorio nazionale sull’impiego dei medicinali. Rapporto sull’uso dei farmaci antibiotici. AIFA, Roma Cerca con Google

Batchelder AR (1982) Chlortetracycline and oxytetracycline effects on plant growth and development in soil systems. J Environ Qual 11:675-678 Cerca con Google

Bialk HM, Simpson AJ, Pedersen JA (2005) Cross-coupling of sulfonamide antimicrobial agents with model humic constituents. Environ Sci Technol 39:4463-4473 Cerca con Google

Bonomo L (2005) Bonifica di siti contaminati - Caratterizzazione e tecnologie di risanamento. In: McGraw-Hill, Italy (MI) pp. 409-424 Cerca con Google

Boonsaner M and Hawker DW (2010) Accumulation of oxytetracycline and norfloxacin from saline soil by soybeans. Sci Total Environ 408: 1731-1737 Cerca con Google

Boxall ABA (2004) The environmental side effects of medication. How are human and veterinary medicines in soils and water bodies affecting human and environmental health? EMBO reports 5:1110-1116 Cerca con Google

Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS (2006) Uptake of veterinary medicines from soils into plants. J Agr Food Chem 54:2288-2297 Cerca con Google

Boxall ABA, Kolpin DW, Halling-Sørensen B, Tolls J (2003) Are veterinary medicines causing environmental risks? Environ Sci Technol 37:286A-294A Cerca con Google

Boxall ABA, Long C (2005) Veterinary medicines and the environment. Environ Toxicol Chem 24:759-760 Cerca con Google

Brown GM (1962) The biosynthesis of folic acid. J Biol Chem 237:536-540 Cerca con Google

Campbell K (1999) Sulphonamides: updates on use in veterinary medicine. Vet Dermatol 10:205-215 Cerca con Google

Chang Y, Corapcioglu MY (1998) Plant-enhanced subsurface bioremediation of nonvolatile hydrocarbons. J Envir Engrg 124:162-169 Cerca con Google

Christian T, Schneider RJ, Färber HA, Skutlarek D, Meyer MT, Goldbach HE (2003) Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochim Hydrobiol 31:36-44 Cerca con Google

Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907-938 Cerca con Google

Demoling LA, Bååth E, Greve G, Wouterse M, Schmitt H (2009) Effects of sulfamethoxazole on soil microbial communities after adding substrate. Soil Biol Biochem 41:840-848 Cerca con Google

European Centre for Disease Prevention and Control (ECDC); European Food Safety Authority (EFSA), European Medicines Agency (EMEA); European Commission's Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) (2009) Joint Opinion on antimicrobial resistance (AMR) focused on zoonotic infections. EFSA J 7:1372 Cerca con Google

Fatta-Kassinos D, Meric S, Nikolaou A (2011) Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal Bioanal Chem 399:251–275 Cerca con Google

Forni C, Cascone A, Fiori M, Migliore L (2002) Sulphadimethoxine and Azolla filiculoides Lam.: A model for drug remediation. Water Res 36:3398-403 Cerca con Google

Gujarathi NP, Haney BJ, Linden JC (2005) Phytoremediation potential of Myriophyllum aquaticum and Pistia stratiotes to modify antibiotic growth promoters, tetracycline, and oxytetracycline, in aqueous wastewater systems. Int J Phytoremediat 7:99-112 Cerca con Google

Haller MY, Müller SR, McArdell CS, Alder AC, Suter MJ-F (2002) Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography–mass spectrometry. J Chromatogr A 952:111-120 Cerca con Google

Hammesfahr U, Heuer H, Manzke B, Smalla K, Thiele-Bruhn S (2008) Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biol Biochem 40:1583-1591 Cerca con Google

Hammesfahr U, Kotzerke A, Lamshoft M, Wilke BM, Kandeler E, Thiele-Bruhn S (2011) Effects of sulfadiazine-contaminated fresh and stored manure on a soil microbial community. Eur J Soil Biol 47:61-68 Cerca con Google

Heberer T (2002) Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol 266:175-189 Cerca con Google

Henschel KP, Wenzel A, Diedrich M, Fliedner A (1997) Environmental hazard assessment of pharmaceuticals. Regul Toxicol Pharm 25:220-225 Cerca con Google

Herklotz PA, Gurung P, Vanden Heuvel B, Kinney CA (2010) Uptake of human pharmaceuticals by plants grown under hydroponic conditions. Chemosphere 78:1416–1421 Cerca con Google

Heuer H, Solehati Q, Zimmerling U, Kleineidam K, Schloter M, Müller T, Focks A, Thiele-Bruhn S, Smalla K (2011) Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine. Appl Environ Microbiol 77:2527-2530 Cerca con Google

Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109-118 Cerca con Google

Hoang TTT, Tu LTC, Le NP, Dao QP (2012) A preliminary study on the phytoremediation of antibiotic contaminated sediment. Int J Phytoremediat 15:65-76 Cerca con Google

Holm JV, Ruegge K, Bjerg PL, Christensen TH (1995) Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill (Grindsted, Denmark). Environ Sci Technol 29:1415-1420 Cerca con Google

Ingerslev F, Halling-Sørensen B (2000) Biodegradability properties of sulfonamides in activated sludge. Environ Toxicol Chem 19:2467-2473 Cerca con Google

Jjemba PK (2002) The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agric Ecosyst Environ 93:267-278 Cerca con Google

Jorgensen SE, Halling-Sorensen B (2000) Drugs in the environment. Chemosphere 40:691-699 Cerca con Google

Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20:225-30 Cerca con Google

Kay P, Blackwell PA, Boxall ABA (2004) Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environ Toxicol Chem 23:1136-1144 Cerca con Google

Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res 41:1013-1021 Cerca con Google

Kipper K, Herodes K, Lillenberg M, Nei L, Haiba E, Litvin SV (2010) Plant uptake of some pharmaceuticals commonly present in sewage sludge compost. 2nd ICBEE 261-264 Cerca con Google

Kleineidam K, Sharma S, Kotzerke A, Heuer H, Thiele-Bruhn S, Smalla K, Wilke BM, Schloter M (2010) Effect of sulfadiazine on abundance and diversity of denitrifying bacteria by determining nirK and nirS genes in two arable soils. Microb Ecol 60:703-707 Cerca con Google

Kotzerke A, Sharma S, Schauss K, Heuer H, Thiele-Bruhn S, Smalla K, Wilke BM, Schloter M (2008) Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environ Pollut 153:315-322 Cerca con Google

Li Y-W, Wu X-L, Mo C-H, Tai Y-P, Huang X-P, Xiang L (2011) Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, southern China. J Agric Food Chem 59:7268-7276 Cerca con Google

Liu F, Wu J, Ying GG, Luo Z, Feng H (2012) Changes in functional diversity of soil microbial community with addition of antibiotics sulfamethoxazole and chlortetracycline. Appl Microbiol Biotechnol 95:1615–1623 Cerca con Google

Marengo JR, Kok RA, O'Brien K, Velagaleti RR, Stamm JM (1997) Aerobic biodegradation of (14C)-sarafloxacin hydrochloride in soil. Environ Toxicol Chem 16:462-471 Cerca con Google

Migliore L, Brambilla G, Casoria P, Civitareale C, Cozzolino S, Gaudio L (1996) Effect of sulphadimethoxine contamination on barley (Hordeum distichum L., Poaceae, Liliposida). Agric Ecosyst Environ 60:121-128 Cerca con Google

Migliore L, Civitareale C, Brambilla G, Cozzolino S, Casoria P, Gaudio L (1997) Effects of sulphadimethoxine on cosmopolitan weeds (Amaranthus retroflexus L., Plantago major L. and Rumex acetosella L.). Agric Ecosyst Environ 65:163-168 Cerca con Google

Migliore L, Civitareale C, Cozzolino S, Casoria P, Brambilla G, Gaudio L (1998) Laboratory models to evaluate phytotoxicity of sulphadimethoxine on terrestrial plants. Chemosphere 37:2957-2961 Cerca con Google

Morosini C (2009) Microinquinanti organici emergenti nelle acque reflue civili: stato dell'arte. IA 38 Cerca con Google

Paterson S, Mackay D, Tam D, Shiu WY (1990) Uptake of organic chemicals by plants: A review of processes, correlations and models. Chemosphere 21:297-331 Cerca con Google

Pilon-Smits E (2005) Phytoremediation. Ann Rev Plant Biol 56:15-39 Cerca con Google

Richardson ML, Bowron JM (1985) The fate of pharmaceutical chemicals in the aquatic environment. J Pharm Pharmacol 37:1-12 Cerca con Google

Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725-759 Cerca con Google

Schauss K, Focks A, Heuer H, Kotzerke A, Schmitt H, Thiele-Bruhn S, Smalla K, Wilke BM, Matthies M, Amelung W, Klasmeier J, Schloter M (2009) Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems. Trends Anal Chem 28:612-618 Cerca con Google

Schmitt H, van Beelen P, Tolls J, van Leeuwen CL (2004) Pollution-induced community tolerance of soil microbial communities caused by the antibiotic sulfachloropyridazine. Environ Sci Technol 38:1148-1153 Cerca con Google

Shimp JF, Tracy JC, Davis LC, Lee E, Huang W, Erickson LE, Schnoor JL (1993) Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials. Crit Rev Environ Sci Technol 23:41-77 Cerca con Google

Simonich SL, Hites RA (1995) Organic pollutant accumulation in vegetation. Environ Sci Technol 29:2905-2914 Cerca con Google

Singh OV, Jain RK (2003) Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biotechnol 63:128-35 Cerca con Google

Snyder SA, Leising J, Westerhoff P, Yoon Y, Mash H, Vanderford B (2004) Biological and physical attenuation of endocrine disruptors and pharmaceuticals: implications for water reuse. Ground Water Monit R 24:108-118 Cerca con Google

Stokstad ELR, Jukes TH (1987) Sulfonamides and folic acid antagonists: A historical review. J Nutr 117:1335-1341 Cerca con Google

Sukul P, Spiteller M (2006) Sulfonamides in the environment as veterinary drugs. Rev Environ Contam Toxicol 187:67-101 Cerca con Google

Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: An ecological solution to organic chemical contamination. Ecol Eng 18: 647-658 Cerca con Google

Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils? A review. J Plant Nutr Soil Sc 166:145-167 Cerca con Google

Thiele-Bruhn S, Bloem J, de Vries FT, Kalbitz K, Wagg C (2012) Linking soil biodiversity and agricultural soil management. Curr Opin Env Sust 4:1-6 Cerca con Google

Thiele-Bruhn S, Seibicke T, Schulten H, Leinweber P (2004) Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions. J Environ Qual 33:1331-1342 Cerca con Google

Thorn KA, Pennington JC, Hayes CA (2002) 15N NMR Investigation of the reduction and binding of TNT in an aerobic bench scale reactor simulating windrow composting. Environ Sci Technol 36:3797-3805 Cerca con Google

Thorn KA, Pettigrew PJ, Goldenberg WS, Weber EJ (1996) Covalent binding of aniline to humic substances. 2. 15N NMR studies of nucleophilic addition reactions. Environ Sci Technol 30:2764-2775 Cerca con Google

Vila M, Lorber-Pascal S, Laurent F (2008) Phytotoxicity to and uptake of TNT by rice. Environ Geochem Health 30:199-203 Cerca con Google

Watkinson AJ, Murby EJ, Kolpin DW, Costanzo SD (2009) The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Sci Total Environ 407:2711-2723 Cerca con Google

Westergaard K, Müller A, Christensen S, Bloem J, Sørensen S (2001) Effects of tylosin as a disturbance on the soil microbial community. Soil Biol Biochem 33:2061-2071 Cerca con Google

Winckler C, Grafe A (2001) Use of veterinary drugs in intensive animal production. J Soil Sediment 1:66-70 Cerca con Google

Witte W (1998) Medical consequences of antibiotic use in agriculture. Science 279:996-7 Cerca con Google

Zielezny Y, Groeneweg J, Vereecken H, Tappe W (2006) Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Biol Biochem 38:2372-2380 Cerca con Google

Zuccato E, Castiglioni S, Bagnati R, Melis M, Fanelli R (2010) Source, occurrence and fate of antibiotics in the Italian aquatic environment. J Hazard Mater 179:1042-1048 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record