Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Bressan, Riccardo (2012) Studio fluidodinamico del confinamento dell'anidride carbonica nel sottosuolo. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
6Mb

Abstract (inglese)

The storage capacity of the reservoir is the main issue in Carbon Capture and Geologic Storage projects, so people are searching for effective and reliable evaluation methods. The present work estimates the storage capacity of a saline aquifer starting from its hydrologic properties and the pressure and temperature conditions.
After a literature review of the evaluation methods, an analytical model of the underground motion of the CO2 is developed, and a dimensional analysis is done to intepret the system.
On the basis of the analytical model, a calculation code was written to simulate the dynamic behaviour of the CO2 in porous media originally saturated with water. As a result of the critical discussion of the scientific literature, for the estimation of the storage capacity the code considers only the fluid-dynamic trapping mechanisms (static trapping and residual trapping). Acting on the short period, these mechanisms are the most interesting from an industrial point of view.
The code is used on some significative case studies, in order to evaluate the storage capacity of the sites. The case studies derive in a statistically robust way from a database of more than 1200 known reservoirs, considering parameters such as temperature, depth, permeability, porosity, salinity.
The simulation results are interpreted on the basis of the dimensional analysis, gathering general hints on the storage process. Storage volumetric efficiencies between 1.4 and 5.8% are obtained.

Abstract (italiano)

La capacità di stoccaggio della riserva è il primo parametro di interesse nei progetti di Carbon Capture and Geologic Storage, per cui si ricercano metodi di valutazione efficaci e affidabili. Il presente lavoro si propone di stimare la capacità di stoccaggio di un acquifero salino a partire dalle sue caratteristiche idrologiche e dalle condizioni di temperatura e pressione.
Dopo una rassegna bibliografica dei metodi di stima proposti in letteratura, si sviluppa un modello analitico per il moto della CO2nel sottosuolo, e si esegue un’analisi dimensionale che permette di interpretare tale moto.
Sulla base del modello analitico è stato scritto un codice di calcolo per la simulazione del comportamento fluidodinamico della CO2 in mezzi porosi inizialmente saturi d’acqua. Ai fini della stima della capacità di stoccaggio, il codice considera i soli meccanismi fluidodinamici di intrappolamento (intrappolamento stratigrafico e intrappolamento capillare). Si tratta dei meccanismi più interessanti dal punto di vista industriale, perché agiscono sul breve periodo.
Il codice viene applicato ad alcuni casi di studio significativi per valutare in prima approssimazione la quantità di gas immagazzinabile in un sito. I casi di studio sono derivati in modo statisticamente robusto da un database di oltre 1200 riserve geologiche note, tenendo conto di parametri come la temperatura, la profondità, la permeabilità, la porosità, la salinità.
I risultati delle simulazioni sono interpretati alla luce dell’analisi dimensionale sviluppata in precedenza, cercando di trarre indicazioni generali sul processo di confinamento. Si ottengono efficienze volumetriche di stoccaggio fra l’1.4 e il 5.8%.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Mirandola, Alberto
Dottorato (corsi e scuole):Ciclo 24 > Scuole 24 > INGEGNERIA INDUSTRIALE > ENERGETICA
Data di deposito della tesi:12 Gennaio 2013
Anno di Pubblicazione:31 Dicembre 2012
Parole chiave (italiano / inglese):anidride carbonica co2 confinamento sequestro ccs fluidodinamica sottosuolo acquifero acquiferi salino salini carbon dioxide capture storage underground fluid dynamics aquifers saline
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/09 Sistemi per l'energia e l'ambiente
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:5333
Depositato il:22 Ott 2013 09:31
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

CSLF (2005). A taskforce for review and development of standards with regards to storage capacity measurements. CSLF. Cerca con Google

IEA (2008). CO2 Capture and Storage: a key carbon abatement option. A cura di N. Hirst et al. OECD/IEA. Cerca con Google

IPCC (2006). Carbon Dioxide Capture and Storage. A cura di B. Metz et al. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge (UK) e New York (NY, USA): Cambridge University Press. Cerca con Google

— (2007a). Climate Change 2007 - Synthesis report. A cura di R. Pachauri e A. Reisinger. Contribution of Working Group I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva (CH): IPCC. Cerca con Google

— (2007b). Climate Change 2007 - The Physical Science Basis. A cura di S. Solomon et al. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK) e New York (NY, USA): Cambridge University Press. Cerca con Google

NETL (2007). Carbon Sequestration Atlas of the United States and Canada. US Department of Energy. Cerca con Google

— (2010). Carbon Sequestration Atlas of the United States and Canada. US Department of Energy. Cerca con Google

NPC (1984). US National Petroleum Council Public Database. Cerca con Google

Allen, D.E. et al. (2005). “Modeling carbon dioxide sequestration in saline aquifers: significance of elevated pressures and salinities”. In: Fuel Processing Technology 86.14-15, pp. 1569–1580. Cerca con Google

Assouline, S. e D.M. Tartakovsky (2001). “Unsaturated hydraulic conductivity function based on a soil fragmentation process”. In: Water Resources Research 37.5, pp. 1309–1312. doi: 10.1029/2000WR900332. Cerca con Google

Assouline, S., D. Tessier e A. Bruand (1998). “A conceptual model of the soil water retention curve”. In: Water Resources Research 34, pp. 223–231. Cerca con Google

Aziz, K. e A. Settari (1979). Petroleum Reservoir Simulation. New York: Elsevier. Cerca con Google

Bachu, S. (2003). “Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change”. In: Environmental Geology 44.3, pp. 277–289. Cerca con Google

Bachu, S. e J.J. Adams (2003). “Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution”. In: Energy Conversion and Management 44.20, pp. 3151–3175. doi: 10.1016/S0196- 8904(03)00101- 8. Cerca con Google

Bachu, S., W.D. Gunter e E.H. Perkins (1994). “Aquifer disposal of CO2 : Hydrodynamic and mineral trapping”. In: Energy Conversion and Management 35.4, pp. 269–279. Cerca con Google

Bachu, S. e J.C. Shaw (2003). “Evaluation of the CO2 sequestration capacity in Alberta’s oil and gas reservoirs at depletion and the effect of underlying aquifers”. In: Journal of Canadian Petroleum Technology 42.9, pp. 51–61. doi: 10.1016/S1750-5836(07)00086-2. Cerca con Google

Bachu, S. et al. (2007). “CO2 storage capacity estimation: Methodology and gaps”. In: International Journal of Greenhouse Gas Control 1.4, pp. 430–443. doi: 10.1016/S1750-5836(07)00086-2. Cerca con Google

Batzle, M. e Z. Wang (1992). “Seismic properties of pore fluids”. In: Geophysics 57.11, pp. 1396–1408. doi: 10.1190/1.1443207. Cerca con Google

Bear, J. (1972). Dynamics of fluids in porous media. American Elsevier Publishing Company. Cerca con Google

Belli, C. e P. Chizzolini (2008). Conversione dell’energia. Università degli Studi di Pavia - Dispense del corso di Conversione dell’Energia. Cerca con Google

Bennion, B. e S. Bachu (2006). The impact of interfacial tension and pore size distribution/capillary pressure character on CO2 relative permeability at reservoir conditions in CO2 -brine systems. Rapp. tecn. Society of Petroleum Engineers SPE 99325. Cerca con Google

Bergen, F. van et al. (2001). “CO2 -sequestration in the Netherlands: inventory of the potential for the combination of subsurface carbon dioxide disposal with enhanced coalbed methane production”. In: Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies. A cura di D.J. Williams et al. Cerca con Google

Biagi, S., C. Geloni e G. Gianelli (2007). “Greenhouse and acid gases sequestration: geochemical modelling and related problems”. In: Geologia tecnica & ambientale XV.1-2, pp. 29–37. Cerca con Google

Bissell, R.C. et al. (2011). “A full field simulation of the in Salah gas production and CO2 storage project using a coupled geo-mechanical and thermal fluid flow simulator”. In: Energy Procedia 4.0, pp. 3290–3297. doi: 10.1016/j.egypro.2011.02.249. Cerca con Google

Bonacina, G., A. Cavallini e L. Mattarolo (1992). Trasmissione del calore. Padova: CLEUP. Cerca con Google

Bradshaw, J. et al. (2007). “CO2 storage capacity estimation: Issues and development of standards”. In: International Journal of Greenhouse Gas Control 1.1, pp. 62–68. doi: 10.1016/S1750-5836(07)00027-8. Cerca con Google

Brennan, S.T. e R.C. Burruss (2003). Specific Sequestration Volumes: a useful tool for CO2 storage capacity assessment. Rapp. tecn. USGS Open-File Report 03-452. Cerca con Google

Bressan, R. (2011a). Bilancio di massa. Rapp. tecn. Università degli Studi di Padova - Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate. Cerca con Google

— (2011b). Esercizi del corso di Impianti Energetici. Università degli Studi di Padova - Dispense del corso di Impianti Energetici. Cerca con Google

Brooks, R.H. e A.T. Corey (1964). Hydraulic properties of porous media. Rapp. tecn. Colorado State University hydrology paper no. 3. (Cit. alle pp. 48, 98–100, 136). Cerca con Google

Buckley, S.E. e M.C. Leverett (1942). “Mechanism of fluid displacement in sands”. In: Transactions of the AIME 146, pp. 107–116. Cerca con Google

Burdine, N.T. (1953). “Relative permeability calculation from pore size distribution data”. In: Transactions of the American Institute of Mining and Metallurgical Engineers 198, pp. 71–78. Cerca con Google

Cappa, F. e J Rutqvist (2011). “Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2 ”. In: International Journal of Greenhouse Gas Control 5.2, pp. 336–346. doi: 10.1016/j.ijggc.2010.08.005. Cerca con Google

Castelletto, N. (2010). “Thermoporoelastic modelling of deep aquifer injection and pumping by mixed finite elements and finite volumes”. Tesi di dott. Università degli Studi di Padova - Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate. Cerca con Google

Cavallini, A. e L. Mattarolo (1992). Termodinamica applicata. Padova: CLEUP. Cerca con Google

Cavanagh, A. e P. Ringrose (2011). “Simulation of CO2 distribution at the In Salah storage site using high-resolution field-scale models”. In: Energy Procedia 4.0, pp. 3730–3737. doi: 10.1016/j.egypro.2011.02.306. Cerca con Google

Chen, Z. e R.E. Ewing (1997). “Comparison of various formulations of three-phase flow in porous media”. In: Journal of Computational Physics 132, pp. 362–373. Cerca con Google

Chen, Z., G. Huan e Y. Ma (2006). Computational methods for multiphase flows in porous media. SIAM. Cerca con Google

Chierici, G.L. (1996). Principi di Ingegneria dei Giacimenti Petroliferi. Milano: AGIP. Cerca con Google

Chiodini, G. et al. (2001). “CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy”. In: Journal of Geophysical Research 106.B8, pp. 16213–16221. Cerca con Google

Clifford, K.H. e S.W. Webb, cur. (2006). Gas Transport in Porous Media. Springer. Cerca con Google

Comerlati, A. (2001). “Studio preliminare del processo di confinamento della CO2 in acquiferi profondi di un bacino sedimentario”. Tesi di laurea mag. Università degli Studi di Padova - Facoltà di Ingegneria. Cerca con Google

— (2006). “Layering effect on vertical gravity segregation of CO2 and simulation of migration to the ground surface”. Tesi di dott. Università degli Studi di Padova - Scuola di dottorato in Scienze dell’Ingegneria Civile e Ambientale. Cerca con Google

Coussy, O. (2004). Poromechanics. John Wiley & Sons. Cerca con Google

Cui, X., R.M. Bustin e L. Chikatamarla (2007). “Adsorption-induced coal swelling and stress: Implications for methane production and acid gas sequestration into coal seams”. In: Journal of Geophysical research 112, B10202. doi: 10.1029/2004JB003482. Cerca con Google

De Gennes, P.G., F. Brochard-Wyart e D. Quere (2004). Capillarity and wetting phenomena: drops, bubbles, pearls, waves. New York (NY, USA): Springer. Cerca con Google

De Marsily, G. (1986). Quantitative hydrogeology. San Diego (CA): Academic Press. Cerca con Google

De Silva, P.N.K. e P.G. Ranjith (2012). “A study of methodologies for CO2 storage capacity estimation of saline aquifers”. In: Fuel 93.0, pp. 13–27. doi: 10.1016/j.fuel.2011.07.004. Cerca con Google

Deflandre, J.P. et al. (2011). “In Salah CO2 injection modeling: a preliminary approach to predict short term reservoir behavior”. In: Energy Procedia 4.0, pp. 3574–3581. doi: 10 . 1016 / j . egypro . 2011 . 02 . 286. Cerca con Google

Dodds, K., M. Waston e I. Wright (2011). “Evaluation of risk assessment methodologies using the In Salah CO2 storage project as a case history”. In: Energy Procedia 4.0, pp. 4162–4169. doi: 10.1016/j.egypro.2011.02.361. Cerca con Google

Dodds, W.S., L.F. Sturzman e B.J. Sollami (1956). “Carbon dioxide solubility in water”. In: Journal of Chemical and Engineering Data 1, pp. 92–95. Cerca con Google

Doughty, C. e K. Pruess (2005). “Modeling supercritical carbon dioxide injection in heterogeneous porous media”. In: Vadose Zone Journal 3.3, pp. 837–847. Cerca con Google

Doughty, C. et al. (2001). “Capacity investigation of brine-bearing sands of the Frio-Formation for geological sequestration of CO2 ”. In: Proceedings of First National Conference on Carbon Sequestration. U.S. Department of Energy. Cerca con Google

Durucan, S. et al. (2011). “In Salah CO2 storage JIP: Carbon dioxide plume extension around KB-502 well - New insights into reservoir behaviour at the In Salah storage site”. In: Energy Procedia 4.0, pp. 3379–3385. doi: 10.1016/j.egypro.2011.02.260. Cerca con Google

Dusseault, M.B., S. Bachu e L. Rothenburg (2004). “Sequestration of CO2 in salt caverns”. In: Journal of Canadian Petroleum Technology 43.11, pp. 49–55. Cerca con Google

Eccles, J.K. et al. (2009). “Physical and economic potential of geological CO2 storage in saline aquifers”. In: Environmental Science and Technology 43.6, pp. 1962–1969. Cerca con Google

Ehlig-Economides, C. e M.J. Economides (2010). “Sequestering carbon dioxide in a closed underground volume”. In: Journal of Petroleum Science and Engineering 70.1-2, pp. 123–130. doi: 10.1016/j.petrol.2009.11.002. Cerca con Google

Enick, R.M. e S.M. Klara (1990). “CO2 solubility in water and brine under reservoir conditions”. In: Chemical Engineering Communications 90, pp. 23–33. Cerca con Google

Fatt, I. e H. Dykstra (1951). “Relative permeability studies”. In: Transactions of the American Institute of Mining and Metallurgical Engineers 192, pp. 249–255. Cerca con Google

Finkenrath, M. (2011). Cost and Performance of Carbon Dioxide Capture from Power Generation. OECD/IEA. Cerca con Google

Frailey, S.M. (2009). “Methods for estimating CO2 storage in saline reservoirs”. In: Energy Procedia 1.1, pp. 2769–2776. Cerca con Google

Frailey, S.M. et al. (2006). “Reservoir simulation and GIS modeling as tools for defining geological sequestration capacity: an optimal approach toward more specific assessments, Illinois basin, USA”. In: Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies. A cura di J. Gale et al. Cerca con Google

Gambolati, G. (2002). Lezioni di metodi numerici per ingegneria e scienze applicate. Cortina. Cerca con Google

Garcia, J. e K. Pruess (2001). Density of aqueous solutions of CO2 . Rapp. tecn. Lawrence Berkeley National Laboratory LBNL-49023. Cerca con Google

Garrett, J. e B. Beck, cur. (2011). Carbon Capture and Storage: Legal and regulatory review. OECD/IEA. Cerca con Google

Gasda, S.E., S. Bachu e M.A. Celia (2004). “The potential for CO2 leakage from storage sites in geological media: analysis of well distribution in mature sedimentary basins”. In: Environmental Geology 46.6-7, pp. 707–720. Cerca con Google

Gasem, K.A.M., R.L. Robinson e S.R. Reeves (2002). Adsorption of pure methane, nitrogen and carbon dioxide and their mixtures on San Juan Basin coal. Rapp. tecn. U.S. Department of Energy (contract no: DE-FC26-OONT40924). Cerca con Google

Genuchten, M.T. van (1980). “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”. In: Soil Science Society of America Journal 44, pp. 892–898. Cerca con Google

Ghetti, A. (1995). Idraulica. Padova: Libreria Cortina. Cerca con Google

Granieri, D. et al. (2003). “Continuous monitoring of CO2 soil diffuse degassing at Phlegraean Fields (Italy): Influence of environmental and volcanic parameters”. In: Earth and Planetary Science Letters 212.1-2, pp. 167–179. Cerca con Google

Gunter, W.D., S. Bachu e S. Benson (2004). “The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide”. In: Special Publications of the Geological Society of London 233.1, pp. 129–145. Cerca con Google

Gunter, W.D., E.H. Perkins e I. Hutcheon (2000). “Aquifer disposal of acid gases: modelling of water-rock reactions for trapping of acid wastes”. In: Applied Geochemistry 15.8, pp. 1085–1095. doi: 10.1016/S0883-2927(99)00111-0. Cerca con Google

Gunter, W.D., E.H. Perkins e T.J. McCann (1993). “Aquifer disposal of CO2 -rich gases: reaction design for added capacity”. In: Energy Conversion and Management 34, pp. 941–948. Cerca con Google

Gunter, W.D., B. Wiwchar e E.H. Perkins (1997). “Aquifer disposal of CO2-rich greenhouse gases: Extension of the time scale of experiment for CO2-sequestering reactions by geochemical modelling”. In: Mineralogy and Petrology 59, pp. 121–140. Cerca con Google

Gunter, W.D. et al. (1996). “Technical and economic feasibility of CO2 disposal in aquifers within the Alberta Sedimentary Basin, Canada.” In: Energy Conversion and Management 37, pp. 1135–1142. Cerca con Google

Helmig, R. (1997). Multiphase Flow and Transport Processes in the Subsurface. Springer. Cerca con Google

Hilfer, R. e P.E. Øren (1996). “Dimensional analysis of pore scale and field scale immiscible displacement”. In: Transport in Porous Media 22, pp. 53–72. Cerca con Google

Iding, M. e P. Ringrose (2010). “Evaluating the impact of fractures on the performance of the In Salah CO2 storage site”. In: International Journal of Greenhouse Gas Control 4.2, pp. 242–248. doi: 10.1016/j.ijggc.2009.10.016. Cerca con Google

Idso, C. e F. Singer (2009). Climate Change Reconsidered. A cura di J. Bast e D. Bast. Report of the Nongovernmental International Panel on Climate Change (NIPCC). The Heartland Institute. Cerca con Google

Janna, C. (2008). “Modellazione numerica del comportamento meccanico delle faglie regionali per il confinamento geologico della CO2 antropica”. Tesi di dott. Università degli Studi di Padova - Scuola di dottorato in Scienze dell’Ingegneria Civile e Ambientale. Cerca con Google

Jones, D.G. et al. (2011). “In Salah gas CO2 storage JIP: Surface gas and biological monitoring”. In: Energy Procedia 4.0, pp. 3566–3573. doi: 10.1016/j.egypro.2011.02.285. Cerca con Google

Juanes, R. et al. (2006). “Impact of relative permeability hysteresis on geological CO2 storage”. In: Water Resources Research 42.12, W12418. doi: 10.1029/2005WR004806. Cerca con Google

Katzung, G., P. Krull e F. Kuhn (1996). “Die Havarie der UGS-Sonde Lauchstadt 5 im Jahre 1988 - Auswirkungen und geologische Bedingungen”. In: Zeitschrift fur Angewandte Geologie 42, pp. 19–26. Cerca con Google

Kerr, T. et al., cur. (2007). Legal aspects of storing CO2 . OECD/IEA. Cerca con Google

Kestin, J., H.E. Khalifa e R.J. Correia (1981). “Tables of the Dynamic and Kinematic Viscosity of Aqueous NaCl Solutions in the temperature range 20-150 °C and the pressure range 0.1-35 MPa”. In: Journal of Physical and Chemical Reference Data 10.1, pp. 71–87. Cerca con Google

Kestin, J., M. Sokolov e W.A. Wakeham (1978). “Viscosity of Liquid Water in the range −8 °C to 150 °C”. In: Journal of Physical and Chemical Reference Data 7.3, pp. 941–948. Cerca con Google

Kleppe, J. (2011). Buckley-Leverett analysis. Rapp. tecn. Norwegian University of Science e Technology TPG4150. Cerca con Google

Koide, H. et al. (1997). “Hydrate formation in sediments in the sub-seabed disposal of CO2 ”. In: Energy 22.2/3, pp. 279–283. Cerca con Google

Kongsjorden, H., O. K ̊ arstad e t.A. Torp (1998). “Saline aquifer storage of carbon dioxide in the Sleipner project”. In: Waste Management 17.5-6, pp. 303–308. doi: 10.1016/S0956-053X(97)10037-X. Cerca con Google

Kopp, A., H. Class e R. Helmig (2009a). “Investigations on CO2 storage capacity in saline aquifers - Part 1: Dimensional analysis of flow processes and reservoir characteristics”. In: International Journal of Greenhouse Gas Control 3.3, pp. 263–276. doi: 10.1016/j.ijggc.2008.10.002. Cerca con Google

— (2009b). “Investigations on CO2 storage capacity in saline aquifers - Part 2: Estimation of storage capacity coefficients”. In: International Journal of Greenhouse Gas Control 3.3, pp. 277–287. doi: 10.1016/j.ijggc.2008.10.001. Cerca con Google

Korbøl, R. e A. Kaddour (1995). “Sleipner vest CO2 disposal - Injection of removed CO2 into the Utsira formation”. In: Energy Conversion and Management 36.6-9, pp. 509–512. doi: 10.1016/0196-8904(95)00055-I. Cerca con Google

Kumar, A. et al. (2005). “Reservoir simulation of CO2 storage in deep saline aquifers”. In: Society of Petroleum Engineers Journal 10.3, pp. 336–348. Cerca con Google

Larsen, J.W. (2003). “The effects of dissolved CO2 on coal structure and properties”. In: International Journal of Coal Geology 57, pp. 63–70. Cerca con Google

Lasaga, A.C. (1984). “Chemical kinetics of water-rock interactions”. In: Journal of Geophysical Research 89, pp. 4009–4025. Cerca con Google

Lasaga, A.C. et al. (1994). “Chemical weathering rate laws and global geochemical cycles”. In: Geochimica et Cosmochimica Acta 58, pp. 2361–2386. Cerca con Google

Lee, A.L., M.H. Gonzalez e B.E. Eakin (1966). “The Viscosity of Natural Gases”. In: Journal of Petroleum Technology 18.8, pp. 997–1000. doi: 10.2118/1340-PA. Cerca con Google

Lenormand, R., C. Zarcone e A. Sarr (1983). “Mechanisms of the displacement of one fluid by another in a network of capillary ducts”. In: Journal of Fluid Mechanics 135, pp. 123–132. Cerca con Google

Luckner, L., M.T. van Genuchten e D.R. Nielsen (1989). “A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface”. In: Water Resources Research 25.10, pp. 2187–2193. Cerca con Google

Manthey, S. et al. (2008). “Dimensional analysis of two-phase flow including a rate-dependent capillary pressure-saturation relationship”. In: Advances in Water Resources 31.9, pp. 1137–1150. doi: 10.1016/j.advwatres.2008.01.021. Cerca con Google

Marshall, J. (2001). Inviscid incompressible flow. New York (NY): John Wiley & Sons. Cerca con Google

Mathieson, A. et al. (2010). “CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria”. In: The Leading Edge 29.2, pp. 216–222. doi: 10.1190/1.3304827. Cerca con Google

Maugeri, L. (2008). Con tutta l’energia possibile. Sperling & Kupfer. Cerca con Google

McGrail, B.P., S.P. Reidel e H.T. Schaef (2003). “Use and features of basalt formations for geologic sequestration”. In: Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies. A cura di J. Gale e Y. Kaya. Cerca con Google

McNab, W.W. e S.A. Carroll (2011). “Wellbore integrity at the Krechba Carbon Storage Site, In Salah, Algeria: 2. Reactive transport modeling of geochemical interactions near the Cement-Formation interface”. In: Energy Procedia 4.0, pp. 5195–5202. doi: 10.1016/j.egypro.2011.02.497. Cerca con Google

Morel-Seytoux, H.J. et al. (1996). “Parameter Equivalence for the Brooks-Corey and Van Genuchten Soil Characteristics: Preserving the Effective Capillary Drive”. In: Water Resources Research 32, pp. 1251–1258. doi: 10.1029/96WR00069. Cerca con Google

Morris, J.P. et al. (2011). “In salah CO2 storage JIP: hydromechanical simulations of surface uplift due to CO2 injection at In Salah”. In: Energy Procedia 4.0, pp. 3269–3275. doi: 10.1016/j.egypro.2011.02.246. Cerca con Google

Mualem, Y. (1976). “A new model of predicting the hydraulic conductivity of unsaturated porous media”. In: Water Resources Research 12, pp. 513–522. Cerca con Google

— (1986). “Hydraulic conductivity of unsaturated soils, predictions and formulas”. In: Methods of soil analysis. Vol. 9. Agronomy Monographs. American Society of Agronomy. Cap. 31, pp. 799–823. Cerca con Google

Oldenburg, C.M. e A.J.A. Unger (2004). “Coupled subsurface-surface layer gas transport for geologic carbon sequestration seepage simulation”. In: Vadose Zone Journal 3, pp. 848–857. Cerca con Google

Oldenburg, C.M. et al. (2011). “Leakage risk assessment of the In Salah CO2 storage project: applying the certification framework in a dynamic context”. In: Energy Procedia 4.0, pp. 4154–4161. doi: 10 . 1016 / j .egypro.2011.02.360. Cerca con Google

Paniconi, C. e M. Putti (1994). “A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems”. In: Water Resources Research 30.12, pp. 3357–3374. Cerca con Google

Parker, J.C. e R.J. Lenhard (1987a). “A model for hysteretic constitutive relations governing multiphase flow. 1. Saturation-pressure relations”. In: Water Resources Research 23.12, pp. 2187–2196. Cerca con Google

— (1987b). “A model for hysteretic constitutive relations governing multiphase flow. 2. Permeability-saturation relations”. In: Water Resources Research 23.12, pp. 2197–2205. Cerca con Google

Pearce, J.M. et al. (1996). “Natural occurrences as analogues for the geological disposal of carbon dioxide”. In: Energy Conversion and Management 37, pp. 1123–1128. Cerca con Google

Perkins, E. et al. (2004). “Long term predictions of CO2 storage by mineral and solubility trapping in the Weyburn Midale Reservoir”. In: Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies. A cura di M. Wilson et al. Cerca con Google

Piessens, K. e M. Dusar (2004). “Feasibility of CO2 sequestration in abandoned coal mines in Belgium”. In: Geologica Belgica 7.3-4, pp. 165–180. Cerca con Google

Pingping, S., L. Xinwei e L. Qiujie (2009). “Methodology for estimation of CO2 storage capacity in reservoirs”. In: Petroleum Exploration and Development 36.2, pp. 216–220. Cerca con Google

Plug, W.J. e J. Bruining (2007). “Capillary pressure for the sand-CO2-water system under various pressure conditions. Application to CO2 sequestration”. In: Advances in Water Resources 30.11, pp. 2339–2353. Cerca con Google

Preston, C. et al. (2005). “IEA GHG Weyburn CO2 monitoring and storage project”. In: Fuel Processing Technology 86.14-15, pp. 1547–1568. doi: 10.1016/j.fuproc.2005.01.019. Cerca con Google

Prutton, C.F. e R.L. Savage (1945). “The solubility of carbon dioxide in calcium chloride-water solutions at 75, 100, and 120 °Cand high pressure”. In: Journal of the American Chemical Society 67, pp. 1550–1557. Cerca con Google

Putti, M. (2010). Implementazione del metodo del Gradiente Coniugato Modificato (GCM) per la soluzione di sistemi lineari sparsi, simmetrici e definiti positivi. Rapp. tecn. Università degli Studi di Padova - Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate. Cerca con Google

Reeves, S.R. e L. Schoeling (2001). “Geological sequestration of CO2 in coal seams: reservoir mechanisms, field performance, and economics”. In: Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies. A cura di D.J. Williams et al. Cerca con Google

Rutqvist, J., J.T. Birkholzer e C.F. Tsang (2008). “Coupled reservoir-geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir-caprock systems”. In: International Journal of Rock Mechanics and Mining Sciences 45.2, pp. 132–143. doi: 10.1016/j.ijrmms.2007.04.006. Cerca con Google

Rutqvist, J. e C.F. Tsang (2002). “A study of caprock hydromechanical changes associated with CO2 -injection into a brine formation”. In: Environmental Geology 42.2, pp. 296–305. doi: 10.1007/s00254-001-0499-2. Cerca con Google

Rutqvist, J., D.W. Vasco e L. Myer (2010). “Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria”. In: International Journal of Greenhouse Gas Control 4.2, pp. 225–230. doi: 10.1016/j.ijggc.2009.10.017. Cerca con Google

Rutqvist, J. et al. (2006). Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Rapp. tecn. LBNL paper 61786. Cerca con Google

— (2007). “Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis”. In: Energy Conversion and Management 48.6, pp. 1798–1807. doi: 10.1016/j.enconman.2007.01.021. Cerca con Google

Saad, Y. (2003). Iterative methods for sparse linear systems. SIAM. Cerca con Google

Saad, Y. e M. Schultz (1986). “GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems”. In: SIAM Journal on Scientific and Statistical Computing 7.3, pp. 856–869. doi: 10.1137/0907058. Cerca con Google

Scafetta, N. (2010a). Climate change and its causes: a discussion about some key issues. Science & Public Policy Institute (SPPI). Cerca con Google

— (2010b). “I cambi climatici e le loro cause: una discussione su alcuni punti chiave”. In: La chimica e l’industria 1, pp. 70–75. Cerca con Google

Shewchuk, J.R. (1996). “Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator”. In: Applied Computational Geometry: Towards Geometric Engineering. A cura di C.L. Ming e D. Manocha. Springer-Verlag, pp. 203–222. Cerca con Google

— (2002). “Delaunay Refinement Algorithms for Triangular Mesh Generation”. In: Computational Geometry: Theory and Applications 22.1-3, pp. 21–74. Cerca con Google

Shi, J.Q. e S. Durucan (2005). “A numerical simulation study of the Allison Unit CO2 -ECBM pilot: the effect of matrix shrinkage and swelling on ECBM production and CO2 injectivity”. In: Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies. A cura di E.S. Rubin, D.W. Keith e C.F. Gilboy. Cerca con Google

Smith, J. et al. (2011). “Assessment of fracture connectivity and potential for CO2 migration through the reservoir and lower caprock at the In Salah storage site”. In: Energy Procedia 4.0, pp. 5299–5305. doi: 10.1016/j.egypro.2011.02.510. Cerca con Google

Srivastava, R.D. et al. (2009). Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations. NETL. Cerca con Google

Stevens, S.H. et al. (2003). “Production operations at natural CO2 fields: Technologies for geologic sequestration”. In: Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies (GHGT-6). Cerca con Google

Stewart, P.B. e P. Munjal (1970). “Solubility of carbon dioxide in pure water, synthetic sea water, and synthetic sea water concentrates at -5 to 25 °C and 10 to 45 atmospheric pressure”. In: Journal of Chemical and Engineering Data 15, pp. 67–71. Cerca con Google

Streit, J.E. e R.R. Hillis (2004). “Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock”. In: Energy 29.9-10, pp. 1445–1456. doi: 10.1016/j.energy.2004.03.078. Cerca con Google

Suekane, T. et al. (2008). “Geological storage of carbon dioxide by residual gas and solubility trapping”. In: International Journal of Greenhouse Gas Control 2.1, pp. 58–64. Cerca con Google

TORIS Data Preparation Guidelines (1995). US Department of Energy. Cerca con Google

Vorst, H. van der (1992). “Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems”. In: SIAM Journal on Scientific and Statistical Computing 13.2, pp. 631–644. doi: 10.1137/0913035. Cerca con Google

Watson, M.N., C.J. Boreham e P.R. Tingate (2004). “Carbon dioxide and carbonate elements in the Otway Basin: Implications for geological storage of carbon dioxide”. In: The APPEA Journal 44.1, pp. 703–720. Cerca con Google

White, C.M. et al. (2005). “Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery – a review”. In: Energy Fuels 19.3, pp. 659–724. Cerca con Google

Wright, I.W. et al. (2010). “In Salah CO2 Storage JIP: Site Selection, Management, Field Development Plan and Monitoring Overview”. 10th International Conference on Greenhouse Gas Control Technologies. Cerca con Google

Xu, T., J.A. Apps e K. Pruess (2003). “Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep arenaceous formations”. In: Journal of Geophysical Research 108.B2, pp. 2071–2083. doi: 10.1029/2002JB001979. Cerca con Google

— (2004). “Numerical simulation of CO2 disposal by mineral trapping in deep aquifers”. In: Applied Geochemistry 19.6, pp. 917–936. issn: 0883-2927. doi: 10.1016/j.apgeochem.2003.11.003. Cerca con Google

Xu, T. et al. (2007). “Numerical modeling of injection and mineral trapping of CO2 with H2 S and SO2 in a sandstone formation”. In: Chemical Geology 242.3-4, pp. 319–346. issn: 0009-2541. doi: 10.1016/j.chemgeo.2007.03.022. Cerca con Google

Yang, F. et al. (2010). “Characteristics of CO2 sequestration in saline aquifers”. In: Petroleum Science 7.1, pp. 83–92. Cerca con Google

Zanello, F. (2011). “Contributions to modeling of Venice coastal peatlands and wetlands”. Tesi di dott. Università degli Studi di Padova - Scuola di dottorato in Scienze dell’Ingegneria Civile e Ambientale. Cerca con Google

Zawisza, A. e B. Malesinki (1981). “Solubility of carbon dioxide in liquid water and of water in gaseous carbon dioxide in the range 2–5 MPa and at temperature up to 473 K”. In: Journal of Chemical and Engineering Data 26, pp. 388–391. Cerca con Google

Zhang, C.J., M. Smith e B.J. McCoy (1993). “Kinetics of Supercritical Fluid Extraction of Coal: Physical and Chemical Processes”. In: Supercritical Fluid Engineering Science: Fundamentals and Applications. A cura di E. Kiran e J.F. Brennecke. Washington (DC, USA): American Chemical Society. Cerca con Google

Zhang, W. et al. (2009). “Long-term variations of CO2 trapped in different mechanisms in deep saline formations: a case study of the Songliao Basin, China.” In: International Journal of Greenhouse Gas Control 3.2, pp. 161–180. Cerca con Google

Zhou, Q. et al. (2008). “A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations”. In: International Journal of Greenhouse Gas Control 2.4, pp. 626–639. Cerca con Google

Zuber, D.M., J.L. Saulsberry e D.P Sparks (1993). “Developing and managing the reservoir”. In: A Guide to Coalbed Methane Reservoir Engineering. A cura di J.L. Saulsberry, P.S. Shafer e R.A. Schraufnagel. Chicago (IL,USA): Gas Research Institute. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record