Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Maso, Marco (2013) Flexible Cognitive Small-cells for Next Generation Two-tiered Networks. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
Available under License Creative Commons Attribution Non-commercial.

2462Kb

Abstract (inglese)

In the last decade, cellular networks have been characterized by an ever-growing user data demand that pushed for more and more network capacity to be satisfied. This caused increasing capacity shortfall and coverage issues, aggravated by inefficient fixed spectrum management policies and obsolete network structures. The development of new technologies and spectrum management policies is seen as a necessary step to take, in order to cope with these issues. Concerning the latter aspect, a significant research effort has been made since the beginning of the century, to investigate the advantages brought by flexible management paradigms, such as new dynamic spectrum access (DSA) schemes based on cognitive radio (CR). On the other hand, technological advancements have been proposed by new standards for mobile communications as well, to guarantee capacity enhancements over current networks.

From a practical point of view, new approaches to network planning have been proposed together with purely technical solutions, to frame next generation cellular networks capable of meeting the identified target performance to satisfy the user data demands. Accordingly, new hierarchical approaches to network planning, where a tier of macro-cell base stations (MBSs) is underlaid with a tier of massively deployed low-power small-cell base stations (SBSs), are seen as promising candidates to achieve this scope. The resulting two-tiered network layout may improve the capacity of current networks in several ways, thanks to a better average link quality between the devices, a more efficient usage of spectrum resources and a potentially higher spatial reuse.

In this thesis, we focus on the challenging problem arising when the two tiers share the transmit band, to capitalize on the available spectrum and avoiding possible inefficiencies. In this case, the coexistence of the two tiers is not feasible, if suitable interference management techniques are not designed to mitigate/cancel the mutual interference generated by the active transmitters in the network. This thesis is divided in three main parts, and proposes a rather exhaustive approach to the development of a new DSA technique, to go from the theoretical basis up to a proof-of-concept development.

We first analyze a simplified two-tiered network obtained when deploying an SBS within the coverage area of a pre-existing MBS. We impose that the physical layer strategy adopted in the first tier, i.e., orthogonal frequency division multiplexing (OFDM), must be left untouched. The rationale for this is that we aim the guaranteeing a higher compliance of any proposed solution with the legacy single-tier network structure. Accordingly, we propose a novel technology called cognitive interference alignment (CIA), to be adopted uniquely in the second tier, to allow the two tiers to operate side-by-side in a CR setting.

Afterwards, we consider a multi-user extension of the two-tiered network, considering the presence of several SBSs in the second tier. We show how the feasibility of the proposed approach can be extended to such scenarios, designing both a centralized and a distributed approach to manage the multi-user interference in the second tier. The performance of both solutions is evaluated for perfect and imperfect channel state information at the transmitter (CSIT) assumptions, and comparisons with state-of-the-art approaches are provided. Practical implementations issues of both solutions are identified, enlightening main features and drawbacks, and discussing possible solutions.

In the last part of the thesis, we gradually take a step forward from the theoretical basis provided in the first two parts, up to a proof-of-concept development of a hybrid transceiver based on the proposed solution. Specifically, we show how the applicability of CIA is not limited to CR settings, and propose an application of this technique to enhance the energy efficiency of a standalone OFDM femto-cell base station (FBS), typical example of new generation low-power device adopted in heterogeneous network deployments. We investigate the enhancements that can be achieved for different channel conditions and statistics and discuss the impact of the power allocation strategy adopted by the FBS on these results. We finally design a working reconfigurable transceiver based on a software defined radio (SDR) approach, to implement devices capable of transmitting/receiving OFDM/CIA signals, or a flexible combination of both. We conclude the thesis by adopting this new tool to validate the theoretical results of the energy efficiency enhancement solution, showing the effectiveness and merit of both CIA and the designed reconfigurable transceiver.

Abstract (italiano)

Nell'ultimo decennio, le reti cellulari sono state caratterizzate da una crescita costante della richiesta di dati da parte degli utenti. Unito all'inefficienza delle politiche di gestione dello spettro adottate e all'obsolescenza delle infrastrutture di rete, questo ha generato una crescente necessità di maggiore capacità e copertura di rete. Lo sviluppo di più efficienti politiche di gestione dello spettro radio e di nuove tecnologie è un passo necessario per far fronte a queste problematiche. In questo senso, i vantaggi apportati da nuovi e flessibili schemi di gestione dello spettro, come il cosiddetto dynamic spectrum access (DSA) e gli approcci di tipo cognitive radio (CR), sono stati largamente studiati sin dagli inizi del secolo. Nuove basi per le reti cellulari di prossima generazione sono state poste anche dai più recenti standard, le cui innovazioni tecnologiche promettono un sostanziale aumento di capacità rispetto alle reti esistenti.

Oltre alle innovazioni puramente tecniche, le soluzioni proposte per strutturare reti cellulari evolute, in grado di fornire elevate performance e soddisfare le richieste degli utenti, prevedono nuovi paradigmi che ne guidino la progettazione. In questo senso, approcci gerarchici al network planning, risultanti in reti a due livelli, in cui un livello di stazioni di base di tipo macro (MBS) viene affiancato da un livello di stazioni di base di tipo small (SBS), sono considerati estremamente promettenti. Queste nuove reti a due livelli potranno aumentare la capacità delle reti attuali in molti modi, grazie a minori attenuazioni medie nei canali tra i dispositivi, un uso più efficiente della risorsa spettrale e una miglior copertura di rete.

Il lavoro presentato in questa tesi è concentrato sulla coesistenza tra i due livelli di rete, quando questi adottano la stessa banda in trasmissione per raggiungere un uso più efficiente della risorsa spettrale. In questo caso, se l'interferenza mutualmente generata dai trasmettitori attivi nei due livelli di rete non viene attenuata o eliminata da adeguati meccanismi per la gestione dell'interferenza, la coesistenza può risultare problematica, quando non impossibile. Questa tesi è suddivisa in tre parti e propone un ampia analisi che porta allo sviluppo di una nuova tecnica di tipo DSA, partendo dalle basi teoriche e arrivando allo sviluppo di un proof-of-concept.

Il primo caso studiato è dato da una rete a due livelli semplificata, ottenuta considerando la presenza di una sola SBS all'interno del raggio di copertura di una MBS preesistente. Per garantire la compatibilità delle soluzioni proposte con le operazioni di una classica rete a singolo livello, si impone che la tecnologia di strato fisico adottata dalla MBS, i.e., orthogonal frequency division multiplexing (OFDM), non debba prevedere alcuna modifica. Di conseguenza, le relazioni tra i due livelli di rete vengono strutturate secondo il modello CR, e viene proposta una nuova tecnica per realizzare la coesistenza dei due livelli chiamata cognitive interference alignment (CIA), adottata unicamente dalla SBS.

In seguito, l'analisi viene estesa ad una rete multi-utente, considerando la presenza di più di una SBS all'interno del raggio di copertura della MBS preesistente. La fattibilità e l'efficacia di CIA viene analizzata in questo contesto. Di conseguenza, vengono proposte strategie centralizzate e distribuite per la gestione dell'interferenza multi-utente, causata dalla presenza di più SBS all'interno del secondo livello di rete. L'analisi delle prestazioni della rete a due livelli viene effettuata per entrambi gli approcci, in caso di disponibilità di stime di canale al trasmettitore sia perfette sia imperfette (perfect e imperfect CSIT). Questa parte si conclude identificando le problematiche e i meriti principali legati all'implementazione pratica degli approcci proposti, sia centralizzati che distribuiti, e discutendone possibili soluzioni.

Nell'ultima parte della tesi, l'analisi si sposta gradualmente da un approccio di tipo teorico ad uno di tipo pratico, portando allo sviluppo di un transceiver ibrido basato sulla tecnica proposta in precedenza, come proof-of-concept. Particolare attenzione viene dedicata nel mostrare come CIA sia applicabile non solo in caso di scenari di tipo CR, ma possa anche essere utilizzata in modo flessibile per incrementare le prestazioni di una generica stazione di base di tipo femto (FBS) utilizzante OFDM, tipico esempio di dispositivo a bassa potenza adottato nelle attuali reti a più livelli. Viene mostrato come un aumento dell'efficienza energetica del dispositivo sia possibile, grazie all'utilizzo di CIA. Inoltre, viene studiato l'impatto dell'allocazione di potenza effettuata dalla FBS su questo risultato viene studiato, considerando la presenza di canali caratterizzati da varie descrizioni statistiche. La tesi si conclude con la progettazione di un transceiver riconfigurabile, realizzato utilizzando un approccio di tipo software defined radio (SDR), al fine di ottenere uno strumento flessibile per realizzare esperimenti pratici che possano convalidare i precedenti risultati teorici. L'architettura proposta, in grado di trasmettere/ricevere segnali di tipo OFDM/CIA (o combinazioni di entrambi), viene infine utilizzata per testare l'efficacia di CIA nell'aumentare l'efficienza energetica di una classica trasmissione OFDM, con risultati positivi.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Vangelista, Lorenzo - Debbah, Mérouane
Dottorato (corsi e scuole):Ciclo 24 > Scuole 24 > INGEGNERIA DELL'INFORMAZIONE > SCIENZA E TECNOLOGIA DELL'INFORMAZIONE
Data di deposito della tesi:14 Gennaio 2013
Anno di Pubblicazione:14 Gennaio 2013
Parole chiave (italiano / inglese):two-tiered network, interference management, cognitive radio, spectrum sharing, small-cells, software defined radio, flexible radio
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/03 Telecomunicazioni
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:5340
Depositato il:15 Ott 2013 14:20
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Cisco, “Visual networking index: Global mobile data traffic forecast update, 2010–2015,” White Paper, URL: http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf, 2011, Accessed: 31/12/2012. Vai! Cerca con Google

[2] G. Staple and K. Werbach, “The end of spectrum scarcity [spectrum allocation and utilization],” IEEE Spectrum, vol. 41, no. 3, pp. 48–52, March 2004. Cerca con Google

[3] J. Hoydis, M. Kobayashi, and M. Debbah, “Green Small-Cell Networks,” IEEE Vehicular Technology Magazine, vol. 6, no. 1, pp. 37–43, March 2011. Cerca con Google

[4] V. Chandrasekhar, J. Andrews, and A. Gatherer, “Femtocell networks: a survey,” IEEE Communications Magazine, vol. 46, no. 9, pp. 59–67, September 2008. Cerca con Google

[5] V. Chandrasekhar, J. G. Andrews, T. Muharemovic, S. Zukang, and A. Gatherer, “Power control in two-tier femtocell networks,” IEEE Transactions on Wireless Communications, vol. 8, no. 8, pp. 4316–4328, August 2009. Cerca con Google

[6] D. Srinivasan, J. Dey, S. Kumar M, and R. N. Mukherjee, URL: http://www.wipro.com/Documents/resource-center/Data Offload Approaches for Mobile Operators.pdf, Wipro, 2012, Accessed: 31/12/2012. Vai! Cerca con Google

[7] NGMN, “NGMN recommendation on SON and O&M requirements,” URL: http://www.ngmn.org/uploads/media/NGMN_Recommendation_on_SON_and_O_M_Requirements.pdf, 2008, Accessed: 31/12/2012. Vai! Cerca con Google

[8] D. Lopez-Perez, A. Valcarce, G. de la Roche, and J. Zhang, “Ofdma femtocells: A roadmap on interference avoidance,” IEEE Communications Magazine, vol. 47(9), no. 9, pp. 41–48, September 2009. Cerca con Google

[9] 3GPP, “TR 36.300, Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN), Overall description, Stage 2, v.10.8.0,” 3GPP, Tech. Rep., July 2012. Cerca con Google

[10] M. Andrews, V. Capdevielle, A. Feki, and P. Gupta, “Autonomous Spectrum Sharing for Mixed LTE Femto and Macro Cells Deployments,” in IEEE Conference on Computer Communications (INFOCOM) Workshops, March 2010, pp. 1–5. Cerca con Google

[11] J. D. Hobby and H. Claussen, “Deployment options for femtocells and their impact on existing macrocellular networks,” Bell Labs Technical Journal, vol. 13, no. 4, pp. 145–160, 2009. Cerca con Google

[12] M. Bernaschi, F. Cacace, and G. Iannello, “Vertical handoff performance in heterogeneous networks,” in Proceedings of 2004 International Conference on Parallel Processing (ICCP) Workshops, August 2004, pp. 100–107. Cerca con Google

[13] D. Gesbert, S. Hanly, H. Huang, S. Shamai Shitz, O. Simeone, and W. Yu, “Multi-Cell MIMO Cooperative Networks: A New Look at Interference,” IEEE Journal on Selected Areas in Communications, vol. 28, no. 9, pp. 1380–1408, December 2010. Cerca con Google

[14] 3GPP, “TR 36.902, Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Self-configuring and self-optimizing network (SON) use cases and solutions, v.9.3.1,” 3GPP, Tech. Rep., May 2011. Cerca con Google

[15] ARTIST4G, “Innovative advanced signal processing algorithms for interference avoidance,” URL: https://ict-artist4g.eu/projet/work-packages/wp1/documents/d1.2/d1.2.pdf/at_download/file, Accessed: 28/11/2012. Vai! Cerca con Google

[16] C. H. M. de Lima, M. Bennis, and M. Latva-aho, “Coordination Mechanisms for Self-Organizing Femtocells in Two-Tier Coexistence Scenarios,” IEEE Transactions on Wireless Communications, vol. 11, no. 6, pp. 2212–2223, June 2012. Cerca con Google

[17] M. Costa, “Writing on dirty paper,” IEEE Transactions on Information Theory, vol. 29, no. 3, pp. 439– 441, May 1983. Cerca con Google

[18] V. R. Cadambe and S. A. Jafar, “Interference Alignment and Degrees of Freedom of the K-User Interference Channel,” IEEE Transactions onInformation Theory, vol. 54, no. 8, pp. 3425–3441, August 2008. Cerca con Google

[19] A. Ghasemi, A. Motahari, and A. Khandani, “Interference alignment for the K user MIMO interference channel,” in IEEE International Symposium on Information Theory Proceedings (ISIT), June 2010, pp. 360–364. Cerca con Google

[20] B. Da and R. Zhang, “Exploiting Interference Alignment in Multi-Cell Cooperative OFDMA Resource Allocation,” in IEEE Global Telecommunications Conference (GLOBECOM), December 2011, pp. 1–5. Cerca con Google

[21] H. Zhou and T. Ratnarajah, “A Novel Interference Draining Scheme for Cognitive Radio Based on Interference Alignment,” in IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), April 2010, pp. 1–6. Cerca con Google

[22] H. Dahrouj and W. Yu, “Coordinated beamforming for the multicell multi-antenna wireless system,” IEEE Transactions on Wireless Communications, vol. 9, no. 5, pp. 1748–1759, May 2010. Cerca con Google

[23] I. Mitola, J. and J. Maguire, G. Q., “Cognitive radio: making software radios more personal,” IEEE Personal Communications, vol. 6, no. 4, pp. 13–18, August 1999. Cerca con Google

[24] S. E. W. Group, “Report of the Spectrum Efficiency Working Group,” FCC, Tech. Rep., November 2002. Cerca con Google

[25] FCC, “Fcc et docket no. 03-108: Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies,” FCC, Tech. Rep., 2003. Cerca con Google

[26] ——, “In the matter of unlicensed operation in the tv broadcast bands docket 04-186 incremental reform towards a boradcast underlay, and the radio traffic signal,” FCC, Tech. Rep., 2008. Cerca con Google

[27] S. Haykin, “Cognitive radio: brain-empowered wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 2, pp. 201–220, February 2005. Cerca con Google

[28] Q. Zhao and B. Sadler, “A Survey of Dynamic Spectrum Access,” IEEE Signal Processing Magazine, vol. 24, no. 3, pp. 79–89, May 2007. Cerca con Google

[29] A. Goldsmith, S. Jafar, I. Maric, and S. Srinivasa, “Breaking Spectrum Gridlock With Cognitive Radios: An Information Theoretic Perspective,” Proceedings of the IEEE, vol. 97, no. 5, pp. 894–914, May 2009. Cerca con Google

[30] I. Akyildiz, W.-Y. Lee, M. Vuran, and S. Mohanty, “A survey on spectrum management in cognitive radio networks,” IEEE Communications Magazine, vol. 46, no. 4, pp. 40–48, April 2008. Cerca con Google

[31] S. Srinivasa and S. A. Jafar, “Cognitive radios for dynamic spectrum access - the throughput potential of cognitive radio: A theoretical perspective,” IEEE Communications Magazine, vol. 45, no. 5, pp. 73–79, May 2007. Cerca con Google

[32] I. Akyildiz, W. Lee, M. Vuran, and S. Mohanty, “NeXt generation/dynamic spectrum access/cognitive radio wireless networks: a survey,” Computer Networks, vol. 50, no. 13, pp. 2127–2159, 2006. Cerca con Google

[33] A. Ghasemi and E. Sousa, “Fundamental limits of spectrum-sharing in fading environments,” IEEE Transactions on Wireless Communications, vol. 6, no. 2, pp. 649–658, 2007. Cerca con Google

[34] S. Akoum, M. Zwingelstein-Colin, R. W. Heath Jr., and M. Debbah, “Cognitive cooperation for the downlink of frequency reuse small cells,” EURASIP Journal on Advances in Signal Processing, URL: http://asp.eurasipjournals.com/content/2011/1/525271, vol. 2011, no. 1, p. 525271, 2011. Vai! Cerca con Google

[35] W. Zhang and U. Mitra, “Spectrum shaping: a new perspective on cognitive radio-part I: coexistence with coded legacy transmission,” IEEE Transactions on Communications, vol. 58, no. 6, pp. 1857–1867, June 2010. Cerca con Google

[36] S. Perlaza, N. Fawaz, S. Lasaulce, and M. Debbah, “From Spectrum Pooling to Space Pooling: Opportunistic Interference Alignment in MIMO Cognitive Networks,” IEEE Transactions on Signal Processing, vol. 58, no. 7, pp. 3728–3741, July 2010. Cerca con Google

[37] M. Gastpar, “On Capacity Under Receive and Spatial Spectrum-Sharing Constraints,” IEEE Transactions on Information Theory, vol. 53, no. 2, pp. 471–487, February 2007. Cerca con Google

[38] C. Shen and M. P. Fitz, “Opportunistic Spatial Orthogonalization and Its Application in Fading Cognitive Radio Networks,” IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 1, pp. 182–189, February 2011. Cerca con Google

[39] M. Amir, A. El-Keyi, and M. Nafie, “Constrained Interference Alignment and the Spatial Degrees of Freedom of MIMO Cognitive Networks,” IEEE Transactions on Information Theory, vol. 57, no. 5, pp. 2994–3004, May 2011. Cerca con Google

[40] S. Ganesan, M. Sellathurai, and T. Ratnarajah, “Opportunistic interference alignment in cognitive MIMO with finite rate feedback,” in First UK-India International Workshop on Cognitive Wireless Systems (UKIWCWS), December 2009, pp. 1–5. Cerca con Google

[41] R. Zhang and Y.-C. Liang, “Exploiting Multi-Antennas for Opportunistic Spectrum Sharing in Cognitive Radio Networks,” IEEE Journal of Selected Topics in Signal Processing, vol. 2, no. 1, pp. 88–102, February 2008. Cerca con Google

[42] K. Cumanan, L. Musavian, S. Lambotharan, and A. Gershman, “SINR Balancing Technique for Downlink Beamforming in Cognitive Radio Networks,” IEEE Signal Processing Letters, vol. 17, no. 2, pp. 133–136, February 2010. Cerca con Google

[43] J. Hoydis, M. Kobayashi, and M. Debbah, “Optimal Channel Training in Uplink Network MIMO Systems,” IEEE Transactions on Signal Processing, vol. 59, no. 6, pp. 2824–2833, June 2011. Cerca con Google

[44] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Transactions on Wireless Communications, vol. 9, no. 11, pp. 3590–3600, November 2010. Cerca con Google

[45] H. Huh, G. Caire, H. Papadopoulos, and S. Ramprashad, “Achieving ”Massive MIMO” Spectral Efficiency with a Not-so-Large Number of Antennas,” IEEE Transactions on Wireless Communications, vol. 11, no. 9, pp. 3226–3239, September 2012. Cerca con Google

[46] R. Esmailzadeh, M. Nakagawa, and A. Jones, “TDD-CDMA for the 4th generation of wireless communications,” IEEE Wireless Communications, vol. 10, no. 4, pp. 8–15, August 2003. Cerca con Google

[47] G. Povey and M. Nakagawa, “A review of time division duplex-CDMA techniques,” in IEEE 5th International Symposium on Spread Spectrum Techniques and Applications, vol. 2, September 1998, pp. 630–633. Cerca con Google

[48] P. W. C. Chan, E. S. Lo, R. R. Wang, E. K. S. Au, V. K. N. Lau, R. S. Cheng, W. H. Mow, R. D. Murch, and K. B. Letaief, “The evolution path of 4G networks: FDD or TDD?” IEEE Communications Magazine, vol. 44, no. 12, pp. 42–50, December 2006. Cerca con Google

[49] E. Ayanoglu, M. Burgess, M. Pollack, and A. Zamanian, “Frequency division duplexing and time division duplexing for broadband wireless applications, broadband wireless internet forum white paper, v1.2, february 2011,” URL: http://www.inforede.net/Technical/Layer 1/Wireless LAN/FDD vs TDD.pdf, Accessed: 31/12/2012. Vai! Cerca con Google

[50] 3GPP, “TR 25.814, physical layer aspects for Evolved UTRA, v.2.0.0,” 3GPP, Tech. Rep., October 2006. Cerca con Google

[51] S. Shen and K. Takada, “China’s ZTE to launch TD-LTE phone this year,” URL: http://www.reuters.com/article/2012/06/20/net-us-zte-smartphone-idUSBRE85J0KN20120620, Reuters, Accessed: 31/12/2012. Vai! Cerca con Google

[52] S. Chen, Y. Wang, W. Ma, and J. Chen, “Technical innovations promoting standard evolution: from TD-SCDMA to TD-LTE and beyond,” IEEE Wireless Communications, vol. 19, no. 1, pp. 60–66, February 2012. Cerca con Google

[53] X. Hou, Z. Zhang, and H. Kayama, “QRD-based MU-MIMO transmission scheme towards evolved LTE TDD system,” in IEEE GLOBECOM Workshops (GC Wkshps), December 2010, pp. 866–870. Cerca con Google

[54] F. Sun, L. Lu, and T. B. Sø andrensen, “Designs of precoding for LTE TDD using cell specific reference signals,” in IEEE GLOBECOM Workshops (GC Wkshps), December 2010, pp. 871–875. Cerca con Google

[55] L. S. Cardoso, M. Kobayashi, O. Ryan, and M. Debbah, “Vandermonde frequency division multiplexing for cognitive radio,” in IEEE 9th Workshop on Signal Processing Advances in Wireless Communications (SPAWC), July 2008, pp. 421–425. Cerca con Google

[56] L. S. Cardoso, F. R. P. Cavalcanti, M. Kobayashi, and M. Debbah, “Vandermonde-subspace frequency division multiplexing receiver analysis,” in 2010 IEEE 21st International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), September 2010, pp. 293–298. Cerca con Google

[57] SDR4All, URL: http://www.flexible-radio.com/sdr4all, Accessed: 31/12/2012. Vai! Cerca con Google

[58] 3GPP, “TR 36.814, Further advancements for E-UTRA physical layer aspects, v.9.0.0,” 3GPP, Tech. Rep., March 2010. Cerca con Google

[59] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge University Press, June 2005. Cerca con Google

[60] S. Srinivasa and S. A. Jafar, “The throughput potential of Cognitive Radio: A theoretical perspective,” in Fortieth Asilomar Conference on Signals, Systems and Computers (ACSSC), November 2006, pp. 221–225. Cerca con Google

[61] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University Press, October 1996. Cerca con Google

[62] N. Benvenuto and G. Cherubini, Algorithms for Communications Systems and their Applications. John Wiley & Sons, 2002. Cerca con Google

[63] M. Kobayashi, M. Debbah, and S. Shamai, “Secured Communication over Frequency-Selective Fading Channels: a practical Vandermonde precoding,” CoRR, vol. abs/0906.3192, 2009. Cerca con Google

[64] ETTUS Research LLC, URL: http://www.ettus.com/, Accessed: 12/11/2012. Vai! Cerca con Google

[65] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” URL: http://standards.ieee.org/getieee802/download/802.11-2012.pdf, Accessed: 31/12/2012. Vai! Cerca con Google

[66] Bluetooth SIG, “Bluetooth Core Version 4.0”, URL: https://www.bluetooth.org/Technical/Specifications/adopted.htm, Accessed: 31/12/2012. Vai! Cerca con Google

[67] K. Etemad and M. Lai, WiMAX Technology and Network Evolution, ser. The ComSoc Guides to Communications Technologies. Wiley, 2011. Cerca con Google

[68] SDR4All toolbox (Tools4SDR), URL: http://www.flexible-radio.com/tools4sdr, Accessed: 31/12/2012. Vai! Cerca con Google

[69] F. A. Hamza, “The USRP under 1.5 x magnifying lens!” URL: https://microembedded.googlecode.com/files/USRP_Documentation.pdf, Accessed: 31/12/2012. Vai! Cerca con Google

[70] M. Golay, “Complementary series,” IRE Transactions on Information Theory, vol. IT-7, pp. 82–87, 1961. Cerca con Google

[71] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications – High speed physical layer in 5GHz band,” URL: http://standards.ieee.org/getieee802/download/802.11a-1999.pdf, Accessed: 31/12/2012. Vai! Cerca con Google

[72] ETSI, “Ts 101475 v1.2.2, broadband radio access networks (BRAN); HIPERLAN type 2; physical (PHY) layer,” ETSI, Tech. Rep., 2002. Cerca con Google

[73] C. Meyer, Matrix Analysis and Applied Linear Algebra Book and Solutions Manual, ser. Miscellaneous Titles in Applied Mathematics Series. Society for Industrial and Applied Mathematics, 2000. Cerca con Google

[74] M. Debbah, “Short introduction to OFDM,” URL: flexible-radio.org/sites/default/files/media/1/tutorial ofdmtutorial.pdf, Accessed: 31/12/2012. Cerca con Google

[75] S. Jing, D. Tse, J. Soriaga, J. Hou, J. Smee, and R. Padovani, “Multicell Downlink Capacity with Coordinated Processing,” EURASIP Journal on Wireless Communications and Networking, URL: http:// jwcn.eurasipjournals.com/content/2008/1/586878, vol. 2008, no. 1, p. 586878, 2008. Cerca con Google

[76] O. Simeone, O. Somekh, G. Kramer, H. V. Poor, and S. Shamai, “Throughput of cellular systems with conferencing mobiles and cooperative base stations,” EURASIP Journal on Wireless Communications and Networking, URL: http://jwcn.eurasipjournals.com/content/2008/1/652325, vol. 2008, no. 1, p. 652325, 2008. Vai! Cerca con Google

[77] O. Somekh, O. Simeone, Y. Bar-Ness, A. Haimovich, U. Spagnolini, and S. Shamai, An information theoretic view of distributed antenna processing in cellular systems. Auerbach Publications, CRC Press, New York, NY, USA, 2007. Cerca con Google

[78] M. K. Karakayali, G. J. Foschini, and R. A. Valenzuela, “Network coordination for spectrally efficient communications in cellular systems,” IEEE Wireless Communications, vol. 13, no. 4, pp. 56–61, August 2006. Cerca con Google

[79] H. Zhang, H. Dai, and Q. Zhou, “Base station cooperation for multiuser MIMO: Joint transmission and BS selection,” in Proceedings of the 2004 Conference on Information Sciences and Systems (CISS), Princeton, NJ, March, 2004. Cerca con Google

[80] S. Shamai, O. Somekh, and B. M. Zaidel, “Multi-cell communications: an information theoretic perspective,” in Proceedings of the 3rd Joint Workshop on Communications and Coding (JWCC), Donnini, Italy, October 2004. Cerca con Google

[81] H. Zhou, T. Ratnarajah, and Y.-C. Liang, “On secondary network interference alignment in cognitive radio,” in IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), May 2011, pp. 637–641. Cerca con Google

[82] H. Du and T. Ratnarajah, “Robust joint signal and interference alignment for MIMO cognitive radio network,” in IEEE Wireless Communications and Networking Conference (WCNC), April 2012, pp. 448–452. Cerca con Google

[83] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting, and R. Vijayakumar, “Providing quality of service over a shared wireless link,” IEEE Communications Magazine, vol. 39, no. 2, pp. 150–154, February 2001. Cerca con Google

[84] H. Holma and A. Toskala, LTE for UMTS - OFDMA and SC-FDMA Based Radio Access. Wiley, 2009. Cerca con Google

[85] J. Ayres, Theory and Problems of Matrices: Including 340 Solved Problems Completely Solved in Detail, ser. Schaum’s Outline Series. McGraw-Hill Books Company, 1962. Cerca con Google

[86] A. Goldsmith, Wireless Communications. Cambridge University Press, August 2005. Cerca con Google

[87] G. Caire and S. Shamai, “On the achievable throughput of a multiantenna Gaussian broadcast channel,” IEEE Transactions on Information Theory, vol. 49, no. 7, pp. 1691–1706, July 2003. Cerca con Google

[88] J. Lee and N. Jindal, “Dirty Paper Coding vs. Linear Precoding for MIMO Broadcast Channels,” in Fortieth Asilomar Conference on Signals, Systems and Computers (ACSSC), November 2006, pp. 779 –783. Cerca con Google

[89] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Transactions on Signal Processing, vol. 52, no. 2, pp. 461–471, February 2004. Cerca con Google

[90] C. Peel, B. Hochwald, and A. Swindlehurst, “A vector-perturbation technique for near-capacity multiantenna multiuser communication (part I): channel inversion and regularization,” IEEE Transactions on Communications, vol. 53, no. 1, pp. 195–202, January 2005. Cerca con Google

[91] R. de Miguel and R. R. Muller, “Vector precoding for a single-user MIMO channel: Matched filter vs. distributed antenna detection,” in First International Symposium on Applied Sciences on Biomedical and Communication Technologies (ISABEL), October 2008, pp. 1–4. Cerca con Google

[92] P. Viswanath, D. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Transactions on Information Theory, vol. 48, no. 6, pp. 1277–1294, June 2002. Cerca con Google

[93] M. Sharif and B. Hassibi, “On the capacity of MIMO broadcast channels with partial side information,” IEEE Transactions on Information Theory, vol. 51, no. 2, pp. 506–522, February 2005. Cerca con Google

[94] V. Stankovic and M. Haardt, “Multi-user MIMO downlink precoding for users with multiple antennas,” in Proc. 12-th Meeting of the Wireless World Research Forum, 2004. Cerca con Google

[95] ——, “Generalized Design of Multi-User MIMO Precoding Matrices,” IEEE Transactions on Wireless Communications, vol. 7, no. 3, pp. 953–961, March 2008. Cerca con Google

[96] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 3, pp. 528–541, March 2006. Cerca con Google

[97] G. Dimic and N. Sidiropoulos, “On downlink beamforming with greedy user selection: performance analysis and a simple new algorithm,” IEEE Transactions on Signal Processing, vol. 53, no. 10, pp. 3857–3868, October 2005. Cerca con Google

[98] ETSI, “EN 302 755 V1.3.1, Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2),” ETSI, Tech. Rep., April 2012. Cerca con Google

[99] IEEE, “IEEE 802.16: Broadband Metropolitan Area Networks (MANs),” IEEE, 2009. Cerca con Google

[100] M. Guillaud, D. Slock, and R. Knopp, “A practical method for wireless channel reciprocity exploitation through relative calibration,” in Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, vol. 1, August 2005, pp. 403–406. Cerca con Google

[101] S. Sesia, I. Toufik, and M. Baker, LTE, The UMTS Long Term Evolution: From Theory to Practice. John Wiley & Sons, 2009. Cerca con Google

[102] D. Grieco, J.-L. Pan, R. Olesen, and N. Shah, “Uplink Single-User MIMO for 3GPP LTE,” in IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), September 2007, pp. 1–5. Cerca con Google

[103] B. Hassibi and B. Hochwald, “How much training is needed in multiple-antenna wireless links?” IEEE Transactions on Information Theory, vol. 49, no. 4, pp. 951–963, April 2003. Cerca con Google

[104] 3GPP, “TR 36.211, Evolved UTRA; physical channels and modulation, v.10.5.0,” 3GPP, Tech. Rep., 2012. Cerca con Google

[105] E. Alsusa and C. Masouros, “Adaptive code allocation for interference management on the downlink of DS-CDMA systems,” IEEE Transactions on Wireless Communications, vol. 7, no. 7, pp. 2420–2424, July 2008. Cerca con Google

[106] Y. Zhou, J. Wang, and T.-S. Ng, “Downlink Transmission of Broadband OFCDM Systems-Part V: Code Assignment,” IEEE Transactions on Wireless Communications, vol. 7, no. 11, pp. 454 –4557, November 2008. Cerca con Google

[107] M. Kobayashi and X. Mestre, “Impact of CSI on distributed space-time coding in wireless relay networks,” IEEE Transactions on Wireless Communications, vol. 8, no. 5, pp. 2580–2591, May 2009. Cerca con Google

[108] F. Gao, R. Zhang, and Y.-C. Liang, “Channel Estimation for OFDM Modulated Two-Way Relay Networks,” IEEE Transactions on Signal Processing, vol. 57, no. 11, pp. 4443–4455, November 2009. Cerca con Google

[109] H. Gacanin, T. Sjodin, and F. Adachi, “On Channel Estimation for Analog Network Coding in a Frequency-Selective Fading Channel,” EURASIP Journal on Wireless Communications and Networking, URL: http://jwcn.eurasipjournals.com/content/2011/1/980430, vol. 2011, no. 1, p. 980430, 2011. Vai! Cerca con Google

[110] Y. Wang, S. Frattasi, T. Sorensen, and P. Mogensen, “Network Time-Synchronization in TDD Based LTE-Advanced Systems,” in IEEE 69th Vehicular Technology Conference, VTC Spring, April 2009, pp. 1–5. Cerca con Google

[111] K. Tan, J. Fang, Y. Zhang, S. Chen, L. Shi, J. Zhang, and Y. Zhang, “Fine-grained channel access in wireless LAN,” in Proceedings of the ACM SIGCOMM 2010 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. ACM, 2010, pp. 147–158. Cerca con Google

[112] H. S. Rahul, H. Hassanieh, and D. Katabi, “SourceSync: a distributed wireless architecture for exploiting sender diversity,” in Proceedings of the ACM SIGCOMM 2010 Conference on Applications, Technologies, Architectures, and Protocols for Cerca con Google

Computer Communications. ACM, 2010, pp. 171–182. Cerca con Google

[113] D. C. Jenn, J. H. Ryu, T. Yen-Chang, and R. Broadston, “Adaptive phase synchronization in distributed digital arrays,” in NASA/ESA Conference on Adaptive Hardware and Systems (AHS), June 2010, pp. 199–204. Cerca con Google

[114] S. H. Lim, Y.-H. Kim, A. El Gamal, and S.-Y. Chung, “Noisy Network Coding,” IEEE Transactions on Information Theory, vol. 57, no. 5, pp. 3132–3152, May 2011. Cerca con Google

[115] H. S. Rahul, S. Kumar, and D. Katabi, “JMB: scaling wireless capacity with user demands,” in Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. ACM, 2012, pp. 235–246. Cerca con Google

[116] L. S. Cardoso, “Orthogonal precoder for dynamic spectrum access in wireless networks,” Ph.D. dissertation, Supélec, November 2011. Cerca con Google

[117] ARTIST4G, “Feedback from RAN constraints,” URL: https://ict-artist4g.eu/projet/work-packages/wp4/offiial-deliverables/d4.2_v1.0-feedback-from-ran-constraints.pdf, Accessed: 28/11/2012. Vai! Cerca con Google

[118] Alcatel Lucent, “lightRadio: Evolve your wireless broadband network”, URL: http: //www.alcatel-lucent.com/lightradio/, Accessed: 12/11/2012. Vai! Cerca con Google

[119] G. Li and H. Liu, “Downlink Radio Resource Allocation for Multi-Cell OFDMA System,” IEEE Transactions on Wireless Communications, vol. 5, no. 12, pp. 3451–3459, December 2006. Cerca con Google

[120] I. Koutsopoulos and L. Tassiulas, “Cross-Layer Adaptive Techniques for Throughput Enhancement in Wireless OFDM-Based Networks,” IEEE/ACM Transactions on Networking, vol. 14, no. 5, pp. 1056–1066, October 2006. Cerca con Google

[121] A. Abrardo, A. Alessio, P. Detti, and M. Moretti, “Centralized Radio Resource Allocation for OFDMA Cellular Systems,” in IEEE International Conference on Communications (ICC), June 2007, pp. 5738–5743. Cerca con Google

[122] M. Pischella and J.-C. Belfiore, “Distributed resource allocation for rate-constrained users in multi-cell OFDMA networks,” IEEE Communications Letters, vol. 12, no. 4, pp. 250–252, April 2008. Cerca con Google

[123] B. D. Van Veen and K. M. Buckley, “Beamforming: a versatile approach to spatial filtering,” IEEE ASSP Magazine, vol. 5, no. 2, pp. 4–24, April 1988. Cerca con Google

[124] B. Sklar, “Rayleigh fading channels in mobile digital communication systems .I. Characterization,” IEEE Communications Magazine, vol. 35, no. 7, pp. 90 –100, July 1997. Cerca con Google

[125] M. Grossglauser and D. Tse, “Mobility increases the capacity of ad-hoc wireless networks,” in Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), vol. 3, 2001, pp. 1360–1369. Cerca con Google

[126] S. Borst, A. Proutiere, and N. Hegde, “Capacity of wireless data networks with intra- and inter-cell mobility,” in Proceedings of 25th IEEE International Conference on Computer Communications (INFOCOM), April 2006, pp. 1–12. Cerca con Google

[127] S. A. Jafar, “Too much mobility limits the capacity of wireless ad hoc networks,” IEEE Transactions on Information Theory, vol. 51, no. 11, pp. 3954–3965, November 2005. Cerca con Google

[128] H. W. Je, H. Lee, K. Kwak, S. Choi, Y.-J. Hong, and B. Clerckx, “Long-Term Channel Information-Based CoMP Beamforming in LTE-Advanced Systems,” in IEEE Global Telecommunications Conference (GLOBECOM), December 2011, pp. 1–6. Cerca con Google

[129] A. Adhikary, H. Papadopoulos, S. Ramprashad, and G. Caire, “Multi-user MIMO with outdated CSI: Training, feedback and scheduling,” in 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), September 2011, pp. 886–893. Cerca con Google

[130] E. Aryafar, M. Khojastepour, K. Sundaresan, S. Rangarajan, and E. Knightly, “ADAM: An adaptive beamforming system for multicasting in wireless LANs,” in Proceedings of the 31st IEEE International Conference on Computer Communications (INFOCOM), March 2012, pp. 1467–1475. Cerca con Google

[131] I. Wajid, M. Pesavento, Y. Eldar, and A. Gershman, “Robust downlink beamforming for cognitive radio networks,” in IEEE Global Telecommunications Conference (GLOBECOM), December 2010, pp. 1–5. Cerca con Google

[132] H. Kim, H. Wang, S. Lim, and D. Hong, “On the impact of outdated channel information on the capacity of secondary user in spectrum sharing environments,” IEEE Transactions on Wireless Communications, vol. 11, no. 1, pp. 284–295, January 2012. Cerca con Google

[133] N. Devroye, P. Mitran, and V. Tarokh, “Achievable rates in cognitive radio channels,” IEEE Transactions on Information Theory, vol. 52, no. 5, pp. 1813–1827, May 2006. Cerca con Google

[134] Y. Ma, D. I. Kim, and Z. Wu, “Optimization of OFDMA-based cellular cognitive radio networks,” IEEE Transactions on Communications, vol. 58, no. 8, pp. 2265–2276, August 2010. Cerca con Google

[135] P. Bertrand, “Channel Gain Estimation from Sounding Reference Signal in LTE,” in IEEE 73rd Vehicular Technology Conference (VTC Spring), May 2011, pp. 1–5. Cerca con Google

[136] W. Ho, T. Quek, S. Sun, and R. Heath, “Decentralized Precoding for Multicell MIMO Downlink,” IEEE Transactions on Wireless Communications, vol. 10, no. 6, pp. 1798–1809, June 2011. Cerca con Google

[137] I. Rhee, A. Warrier, J. Min, and L. Xu, “DRAND: Distributed Randomized TDMA Scheduling for Wireless Ad Hoc Networks,” IEEE Transactions on Mobile Computing, vol. 8, no. 10, pp. 1384–1396, October 2009. Cerca con Google

[138] 3GPP, “TR 36.913, Requirements for further advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced), v.10.0.0,” 3GPP, Tech. Rep., April 2011. Cerca con Google

[139] ——, “TR 36.942, Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) system scenarios, v.8.2.0,” 3GPP, Tech. Rep., July 2009. Cerca con Google

[140] The Climate Group and Global e-Sustainability Initiative (GeSI), “SMART 2020: Enabling the low carbon economy in the information age”, URL: http://www.smart2020.org, 2008, Accessed: 31/12/2012. Vai! Cerca con Google

[141] T. Chen, Y. Yang, H. Zhang, H. Kim, and K. Horneman, “Network energy saving technologies for green wireless access networks,” IEEE Wireless Communications, vol. 18, no. 5, pp. 30–38, October 2011. Cerca con Google

[142] G. Miao, N. Himayat, and G. Y. Li, “Energy-efficient link adaptation in frequency-selective channels,” IEEE Transactions on Communications, vol. 58, no. 2, pp. 545–554, February 2010. Cerca con Google

[143] J. Mitola, “The software radio architecture,” IEEE Communications Magazine, vol. 33, no. 5, pp. 26–38, May 1995. Cerca con Google

[144] R. Lackey and D. Upmal, “Speakeasy: the military software radio,” IEEE Communications Magazine, vol. 33, no. 5, pp. 56–61, May 1995. Cerca con Google

[145] G. Hillerstr ̈om and A. Olofsson, “SDR and Cognitive Radio on Parallella,” URL: http://www.adapteva.com/white-papers/sdr-and-cognitive-radio-on-parallella/, Accessed: 12/11/2012. Vai! Cerca con Google

[146] GNURadio, URL: http://www.gnuradio.org, Accessed: 12/11/2012. Vai! Cerca con Google

[147] T. Schmidl and D. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Transactions on Communications, vol. 45, no. 12, pp. 1613–1621, December 1997. Cerca con Google

[148] G. Cariolaro, Unified Signal Theory, ser. SpringerLink : Bücher. Springer, 2011. Cerca con Google

[149] M. Frigo and S. Johnson, “The design and implementation of FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, February 2005. Cerca con Google

[150] LAPACK, URL: http://www.netlib.org, Accessed: 12/11/2012. Vai! Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record