Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Dal Mutto, Carlo (2013) Acquisition and Processing of ToF and Stereo data. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
23Mb

Abstract (inglese)

Providing a computer the capability to estimate the three-dimensional geometry of a scene is a fundamental problem in computer vision. A classical systems that has been adopted for solving this problem is the so-called stereo vision system (stereo system). Such a system is constituted by a couple of cameras and it exploits the principle of triangulation in order to provide an estimate of the framed scene. In the last ten years, new devices based on the time-of-flight principle have been proposed in order to solve the same problem, i.e., matricial Time-of-Flight range cameras (ToF cameras).
This thesis focuses on the analysis of the two systems (ToF and stereo cam- eras) from a theoretical and an experimental point of view. ToF cameras are introduced in Chapter 2 and stereo systems in Chapter 3. In particular, for the case of the ToF cameras, a new formal model that describes the acquisition process is derived and presented. In order to understand strengths and weaknesses of such different systems, a comparison methodology is introduced and explained in Chapter 4. From the analysis of ToF cameras and stereo systems it is possible to understand the complementarity of the two systems and it is intuitive to figure that a synergic fusion of their data might provide an improvement in the quality of the measurements preformed by the two devices. In Chapter 5 a method for fusing ToF and stereo data based on a probability approach is presented. In Chapter 6 a method that exploits color and three-dimensional geometry information for solving the classical problem of scene segmentation is explained

Abstract (italiano)

Fornire ai calcolatori la capacità di stimare la geometria tridimensionale di una scena è una delle sfide fondamentali nell’ambito della visione artificiale. Il classico approccio utilizzato per la risoluzione di tale problema prevede l’utilizzo di sistemi di visione stereoscopica. Tali sistemi sono costituiti da due telecamere. Il loro funzionamento si basa sul principio di triangolazione per stimare la configurazione geometrica di una scena. Nell’ultimo decennio, nuovi dispositivi basati sul principio del tempo di volo sono stati proposti allo scopo di risolvere il medesimo problema. Tali dispositivi sono chiamati sensori di profondità matriciali a tempo di volo.
Questa tesi si sviluppa attorno all’analisi dei suddetti sistemi da un punto di vista teorico e sperimentale. I sensori a tempo di volo vengono descritti nel Capitolo 2, mentre i sistemi stereo nel Capitolo 3. In particolare viene introdotto un nuovo modello che descrive formalmente il processo di acquisizione dei sensori a tempo di volo. Nel Capitolo 4 viene descritta una metodologia per confrontare i due diversi sistemi. Da questa analisi emerge chiaramente la complementarità dei due sistemi. Questo permette di intuire come una fusione dei loro dati renda possibile un miglioramento della stima geometrica. Nel Capitolo 5 viene descritto un metodo che consente di fondere i dati del sistema stereo e del sensore a tempo di volo. Nel Capitolo 6 viene sviluppato un metodo per sfruttare l’informazione sul colore e sulla geometria di una scena per risolvere il classico problema di segmentazione della scena

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Cortelazzo, Guido Maria
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > INGEGNERIA DELL'INFORMAZIONE > SCIENZA E TECNOLOGIA DELL'INFORMAZIONE
Data di deposito della tesi:15 Gennaio 2013
Anno di Pubblicazione:15 Gennaio 2013
Parole chiave (italiano / inglese):3D geometry estimation, Time-of-Flght cameras, Stereo vision systems, scene segmentation
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/03 Telecomunicazioni
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:5353
Depositato il:08 Ott 2013 16:13
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

. [1]  CSEM. http://www.csem.ch. 5 Vai! Cerca con Google

. [2]  Delcom. www.delcomproducts.com. 64 Vai! Cerca con Google

. [3]  EDISON. coewww.rutgers.edu/riul/research/code/EDISON. 57, 97, 98, 99, 100, 101, 103, 104 Vai! Cerca con Google

. [4]  FBK. http://www.fbk.eu. 5 Vai! Cerca con Google

. [5]  Guide to the Expression of Uncertainty in Measurement. 31 Cerca con Google

. [6]  IEE. http://www.iee.lu. 5 Vai! Cerca con Google

. [7]  Intel Inc. www.intel.com. 23 Vai! Cerca con Google

. [8]  Mesa Imaging. http://www.mesa-imaging.ch. 5, 33, 34, 59 Vai! Cerca con Google

. [9]  Microsoft Kinect. http://www.xbox.com/en-US/kinect. 3, 79, 95, 103 Vai! Cerca con Google

. [10]  Microsoft Photosynth. http://photosynth.net/. 79, 83, 95, 108, 109 Vai! Cerca con Google

. [11]  Microsoft . http://www.microsoft.com. 5 Vai! Cerca con Google

. [12]  Middlebury Stereo Vision Dataset. http://vision.middlebury.edu/stereo/. 93, 102 Vai! Cerca con Google

. [13]  OpenCV. http://opencv.willowgarage.com/wiki/. 38, 106 Vai! Cerca con Google

. [14]  OpenNI. http://www.openni.org/. 106 Vai! Cerca con Google

. [15]  Panasonic D-Imager. http://www.panasonic-electric-works.com. 5 Vai! Cerca con Google

. [16]  PMD Technologies. http://www.pmdtec.com/. 5 Vai! Cerca con Google

. [17]  Point Grey Research, Inc., http://www.ptgrey.com/products/stereo.asp. 23 Vai! Cerca con Google

. [18]  Softkinetic. http://www.softkinetic.com/. 5 Vai! Cerca con Google

. [19]  STMicroelectronics. http://www.cswww.st.com. 3 Vai! Cerca con Google

. [20]  TYZX, Inc. , http://www.tyzx.com. 23 Vai! Cerca con Google

. [21]  J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, B-48:259–302, 1986. 45, 63 Cerca con Google

. [22]  L. Bezze, C. Dal Mutto, P. Zanuttigh, F. Dominio, and Guido Maria Cortelazzo. ToF Cameras and Microsoft Kinect Depth Sensor for Natural Gesture Interfaces. In ACM CHItaly, 2011. 3 Cerca con Google

. [23]  S. Birchfield and C. Tomasi. Depth Discontinuities by Pixel-to-Pixel Stereo. International Journal of Computer Vision, 35(3):269–293, December 1999. 57 Cerca con Google

. [24]  C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, 2007. 29, 64 Cerca con Google

. [25]  M. J. Black and A. Rangarajan. On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. International Journal of Computer Vision, 19:57–91, 1996. 61 Cerca con Google

. [26]  A. Bleiweiss and M. Werman. Fusing time-of-flight depth and color for real-time segmentation and tracking. In Proceedings of DAGM 2009 Workshop on Dynamic 3D Imaging, pages 58–69, 2009. 80, 83, 102, 103, 104, 105 Cerca con Google

. [27]  M. Bleyer, C. Rother, P. Kohli, D. Scharstein, and S. Sinha. Object Stereo- Joint Stereo Matching and Object Segmentation. In Conference on Computer Vision and Pattern Recognition, June 2011. 80 Cerca con Google

. [28]  Y. Boykov and V. Kolmogorov. An Experimental Comparison of Min- Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26:359–374, 2001. 56, 58, 59 Cerca con Google

. [29]  Y. Boykov, O. Veksler, and R. Zabih. Fast Approximate Energy Minimization via Graph Cuts. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 23:1222–1239, 2001. 45, 63 Cerca con Google

. [30]  G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly, 2008. 24, 25 Cerca con Google

. [31]  M. Burns and G.W. Roberts. Mixed-Signal IC Test and Measurement. The Oxford Series in Electrical and Computer Engineering. Oxford University Press, 2001. 31 Cerca con Google

. [32]  B. Buttgen, T. Oggier, M. Lehmann, R. Kaufmann, and F. Lustenberger. CCD/CMOS lock-in pixel for range imaging: Challenges, limitations and state-of-the-art. In 1st range imaging research day, 2005. 7, 9, 10, 11, 12, 13 Cerca con Google

. [33]  B. Buttgen and P. Seitz. Robust Optical Time-of-Flight Range Imaging Based on Smart Pixel Structures. IEEE Transactions on Circuits and Systems I, 55(6):1512 –1525, july 2008. 8, 11, 12 Cerca con Google

. [34]  F. Calderero and F. Marques. Hierarchical fusion of color and depth information at partition level by cooperative region merging. In Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing ICASSP 2009, pages 973–976, 2009. 80, 102, 103, 105 Cerca con Google

. [35]  D. Claus and A. W. Fitzgibbon. A Rational Function Lens Distortion Model for General Cameras. In IEEE Conference on Computer Vision and Pattern Recognition, 2005. 16 Cerca con Google

. [36]  D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002. 79 Cerca con Google

. [37]  I. J. Cox, S. L. Hingorani, S. B. Rao, and B. M. Maggs. A maximum likelihood stereo algorithm. In Computer Vision and Image Understanding, 63, pages 542–567, 1996. 30 Cerca con Google

. [38]  F.C. Crow. Summed-area tables for texture mapping. In Proceedings of the 11th annual conference on Computer graphics and interactive techniques, SIGGRAPH, 1984. 28 Cerca con Google

. [39]  C. Dal Mutto, F. Dominio, P. Zanuttigh, and Guido M. Cortelazzo. Hand Gesture Recognition for 3D Interfaces. In STreaming Day, 2011. 3 Cerca con Google

. [40]  C. Dal Mutto, F. Dominio, P. Zanuttigh, and S. Mattoccia. Current Advancements in Stereo Vision, chapter Stereo Vision and Scene Segmentation. Intech, 2012. 3 Cerca con Google

. [41]  C. Dal Mutto, P. Zanuttigh, and G. M. Cortelazzo. Accurate 3D Reconstruction by Stereo and ToF Data Fusion. In Proceedings of GTTI meeting, Brescia, Italy, June 2010. 2, 3 Cerca con Google

. [42]  C. Dal Mutto, P. Zanuttigh, and G. M. Cortelazzo. A Probabilistic Approach to ToF and Stereo Data Fusion. In Proceedings of 3DPVT, Paris, France, May 2010. 2, 3, 44, 45, 47, 51, 58, 75, 77 Cerca con Google

. [43]  C. Dal Mutto, P. Zanuttigh, and G. M. Cortelazzo. Scene Segmentation by Color and Depth Information and its Application. In STreaming Day, Udine, Italy, September 2010. 3 Cerca con Google

. [44]  C. Dal Mutto, P. Zanuttigh, and G. M. Cortelazzo. Fusion of Geometry and Color Information for Scene Segmentation. IEEE Journal of Selected Topics in Signal Processing, September 2012. 3, 4, 87, 102, 103, 104 Cerca con Google

. [45]  C. Dal Mutto, P. Zanuttigh, and G. M. Cortelazzo. Time-of-Flight Cameras and Microsoft Kinect. Springer Briefs, 2012. 1, 2, 3, 4, 9, 44, 48 Cerca con Google

. [46]  C. Dal Mutto, P. Zanuttigh, and G. M. Cortelazzo. ToF Range-Imaging Cameras, chapter ToF Cameras and Stereo Systems: Comparisons and Data Fusion. Springer, 2013. 3, 4 Cerca con Google

. [47]  C. Dal Mutto, P. Zanuttigh, and G.M. Cortelazzo. Scene segmentation assisted by stereo vision. In Proceedings of 3DIMPVT 2011, Hangzhou, China, May 2011. 3 Cerca con Google

. [48]  C. Dal Mutto, P. Zanuttigh, S. Mattoccia, and G. M. Cortelazzo. Locally Consistent ToF and Stereo Data Fusion. In Springer, editor, Proceedings of 2nd Workshop on Consumer Depth Cameras for Computer Vision, Florence, Italy, 2012. 3, 44, 45 Cerca con Google

. [49]  J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz. Spacetime stereo: A unifying framework for depth from triangulation. In IEEE Conference on Computer Vision and Pattern Recognition, 2003. 38, 65 Cerca con Google

. [50]  J. Diebel and S. Thrun. An Application of Markov Random Fields to Range Sensing. In Proceedings of Conference on Neural Information Processing Systems (NIPS), Cambridge, MA, 2005. MIT Press. 44 Cerca con Google

. [51]  J. Dolson, J. Baek, C. Plagemann, and S. Thrun. Upsampling range data in dynamic environments. In IEEE Conference on Computer Vision and Pattern Recognition, 0, pages 1141–1148. IEEE Computer Society, 2010. 44 Cerca con Google

. [52]  P.F. Felzenszwalb and D.P. Huttenlocher. Efficient Graph-Based Im- age Segmentation. International Journal of Computer Vision, 2004. 79, 97, 98, 99, 100, 101, 103, 104 Cerca con Google

. [53]  C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the Nystrom method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004. 86 Cerca con Google

. [54]  A. Frick, F. Kellner, B. Bartczak, and R. Koch. Generation of 3D- TV LDV-content with Time-Of-Flight Camera. In Proc. of 3DTV Conf., 2009. 44 Cerca con Google

. [55]  A. Fusiello, E. Trucco, and A. Verri. A compact algorithm for rectification of stereo pairs. Machine Vision and Applications, 12:16–22, 2000. 25 Cerca con Google

. [56]  V. Fusiello, A. Roberto and E. Trucco. Symmetric Stereo with Multiple Windowing. International Journal of Pattern Recognition and Artificial Intelligence, 14:1053–1066, 2000. 28 Cerca con Google

. [57]  V. Garro, C. Dal Mutto, P. Zanuttigh, and G. M. Cortelazzo. A Novel Interpolation Scheme for Range Data with Side Information. In CVMP, pages 52 –60, nov. 2009. 44 Cerca con Google

. [58]  S. A. Gudmundsson, H. Aanaes, and R. Larsen. Fusion of stereo vision and Time of Flight imaging for improved 3D estimation. Int. J. Intell. Syst. Technol. Appl., 5:425–433, 2008. 44, 58 Cerca con Google

. [59]  R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2004. Cerca con Google

. [60]  M. Harville, G. Gordon, and J. Woodfill. Foreground segmentation using adaptive mixture models in color and depth. In IEEE Workshop on Detection and Recognition of Events in Video, 2001. Proceedings., 2001. 80 Cerca con Google

. [61]  J. Heikkila and O. Silven. A Four-step Camera Calibration Procedure with Implicit Image Correction. In IEEE Conference on Computer Vision and Pattern Recognition, 1997. 16 Cerca con Google

. [62]  C. E. Hernandez, G. Vogiatzis, and R. Cipolla. Probabilistic visibility for multi-view stereo. In IEEE Conference on Computer Vision and Pattern Recognition, 2007. 47 Cerca con Google

. [63]  H. Hirschmuller. Stereo Processing by Semi-Global Matching and Mutual Information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30:328–341, February 2008. 96, 102, 108 Cerca con Google

. [64]  H. Hirschmuller. Stereo Processing by Semiglobal Matching and Mutual Information. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, pages 328–341, February 2008. 30 Cerca con Google

. [65]  MESA Imaging. SR4000 user manual. http://www.mesa-imaging.ch. 21 Vai! Cerca con Google

. [66]  I. S. Kweon K. J. Yoon. Adaptive support-weight approach for correspondence search. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, pages 650–656, April 2006. 28 Cerca con Google

. [67]  T. Kahlmann and H. Ingensand. Calibration and development for increased accuracy of 3D range imaging cameras. Journal of Applied Geodesy, 2:1–11, 2008. 9, 10, 33, 34, 44 Cerca con Google

. [68]  T. Kanade and M. Okutomi. A stereo matching algorithm with an adaptive window: theory and experiment. In IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 16, pages 920 – 932, September 1994. 28 Cerca con Google

. [69]  Y. M. Kim, C. Theobald, J. Diebel, J. Kosecka, B. Miscusik, and S. Thrun. Multi-view Image and ToF Sensor Fusion for Dense 3D Reconstruction. In Proc. of 3DIM Conf., 2009. 44 Cerca con Google

. [70]  V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and C. Rother. Bi-layer segmentation of binocular stereo video. In IEEE Conference on Computer Vision and Pattern Recognition, 2, page 1186 vol. 2, june 2005. 80 Cerca con Google

. [71]  K. D. Kuhnert and M. Stommel. Fusion of Stereo-Camera and PMD- Camera Data for Real-Time Suited Precise, 2006. 44, 58 Cerca con Google

. [72]  L. Ladicky, P. Sturgess, C. Russell, S. Sengupta, Y. Bastanlar, W. Clocksin, and P. Torr. Joint Optimisation for Object Class Seg- mentation and Dense Stereo Reconstruction. BMVC special award issue, pages 1–12, 2011. 80 Cerca con Google

. [73]  R. Lange. 3D Time-Of-Flight distance measurement with custom solid-state image sensors in CMOS/CCD-technology. PhD thesis, University of Siegen, 2000. 7, 11, 13, 44, 48 Cerca con Google

. [74]  J. Leens, S. Pie ́rard, O. Barnich, M. Van Droogenbroeck, and J.-M. Wagner. Combining Color, Depth, and Motion for Video Segmentation. In ICVS’09, pages 104–113, 2009. 80 Cerca con Google

. [75]  M. Lehmann, R. Kaufmann, F. Lustenberger, B. Bttgen, and T. Og- gier. CCD/CMOS lock-in pixel for range imaging: Challenges, limitations and state-of-the-art. In CSEM, Swiss Center for Electronics and Microtechnology, 2004. 44 Cerca con Google

. [76]  S. Z. Li. Markov Random Field Modeling in Image Analysis. Springer, New York, 3rd edition edition, 2009. 29, 60 Cerca con Google

. [77]  S. Mattoccia, S. Giardino, and S. Gambini. Accurate and Efficient Cost Aggregation Strategy for Stereo Correspondence Based on Approximated Joint Bilateral Filtering. In ACCV, 2009. 57, 58 Cerca con Google

. [78]  M.J. McDonnell. Box-filtering techniques. In Computer Graphics and Image Processing, 17, September 1981. 28 Cerca con Google

. [79]  V. Mezaris, I. Kompatsiaris, and M.G. Strintzis. Still Image Segmentation Tools for Object-based Multimedia Applications. International Journal of Pattern Recognition and Artificial Intelligence, 18(4):701–725, June 2004. 80 Cerca con Google

. [80]  F. Mufti and R. Mahony. Statistical analysis of measurement processes for time-of flight cameras. Proceedings of SPIE the International Society for Optical Engineering, 2009. 7, 9, 10, 11 Cerca con Google

. [81]  R. Nair, F. Lenzen, S. Meister, H. Schaefer, C. Garbe, and D. Kondermann. High Accuracy ToF and Stereo Sensor Fusion At Interactive Rates. In Springer, editor, Proceedings of 2nd Workshop on Consumer Depth Cameras for Computer Vision, Florence, Italy, 2012. 44, 45 Cerca con Google

. [82]  J. Pearl. Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference. Morgan Kaufmann Publishers Inc., 1988. 45, 63 Cerca con Google

. [83]  D. Piatti and F. Rinaudo. SR-4000 and CamCube3.0 Time of Flight (ToF) Cameras: Tests and Comparison. Remote Sensing, 4(4):1069–1089, 2012. 44 Cerca con Google

. [84]  C. Rosenberger and K. Chehdi. Genetic fusion: application to multi- components image segmentation. In ICASSP, 2000. 87, 88, 90 Cerca con Google

. [85]  G. Sanguinetti, J. Laidler, and N. Lawrence. A probabilistic approach to spectral clustering: Using KL divergence to find good clusters. In Pascal Statistics and Optimization of Clustering Workshop, London, UK, Jul 2005. 86 Cerca con Google

. [86]  D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. International Journal of Computer Vision, 2001. 1, 27, 57, 93 Cerca con Google

. [87]  J. Shi and J. Malik. Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000. 79, 81, 85, 86 Cerca con Google

. [88]  D. Stoppa and F. Remondino, editors. TOF Range-Imaging Cameras. Springer, 2012. 1, 3 Cerca con Google

. [89]  J. Sun, N. Zheng, and H. Shum. Stereo Matching Using Belief Propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25:787– 800, 2003. 29, 56, 57, 58, 59 Cerca con Google

. [90]  R. Szeliski. Computer Vision: Algorithms and Applications. Springer, New York, 2010. 16, 24, 25, 26, 79 Cerca con Google

. [91]  R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen, and C. Rother. A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30:1068 –1080, 2008. 29, 45, 63 Cerca con Google

. [92]  F. Tombari, S. Mattoccia, and L. Di Stefano. Segmentation-based adaptive support for accurate stereo correspondence. In Proceedings of IEEE Pacific-Rim Symposium on Image and Video Technology, Santiago, Chile, December 2007. 28 Cerca con Google

. [93]  C. Uriarte, B. Scholz-Reiter, S. Ramanandan, and D. Kraus. Modeling Distance Nonlinearity in ToF Cameras and Correction Based on Integration Time Offsets. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Springer Berlin / Heidelberg, 2011. 9 Cerca con Google

. [94]  M. Wainwright, T. Jaakkola, and A. Willsky. MAP estimation via agreement on (hyper)trees: Message-passing and linear programming approaches. IEEE Transactions on Information Theory, 51:3697–3717, 2002. 45, 63 Cerca con Google

. [95]  M. Wallenberg, M. Felsberg, P. Forssen, and B. Dellen. Channel coding for joint colour and depth segmentation. In Lecture Notes in Computer Science (Proceedings of the 33rd Annual Symposium of the German Association for Pattern Recognition), 6835, pages 306–315. Springer, 2011. 80 Cerca con Google

. [96]  L. Wang, C. Zhang, R. Yang, and C. Zhang. TofCut: Towards Ro- bust Real-time Foreground Extraction using Time-of-flight Camera. In Proceedings of 3DPVT 2010, Paris, France, May 2010. 80 Cerca con Google

. [97]  John W. Woods. Multidimensional Signal, Image, And Video Processing And Coding. Elsevier Inc., 2006. 53 Cerca con Google

. [98]  Q. Yang, K.H. Tan, B. Culbertson, and J. Apostolopoulos. Fusion of Active and Passive Sensors for Fast 3D Capture. In Multimedia Signal Processing (MMSP), IEEE International Workshop on, 2010. 44, 45, 58, 77 Cerca con Google

. [99]  Q. Yang, R. Yang, J. Davis, and D. Nister. Spatial-Depth Super Resolution for Range Images. In IEEE Conference on Computer Vision and Pattern Recognition, 0, pages 1–8. IEEE Computer Society, 2007. 44, 58, 77 Cerca con Google

. [100]  H. Zhang, J.E. Fritts, and S.A. Goldman. Image segmentation evaluation: A survey of unsupervised methods. CVIU, 2008. 87 Cerca con Google

. [101]  L. Zhang, B. Curless, and S.M. Seitz. Spacetime stereo: shape recovery for dynamic scenes. In IEEE Conference on Computer Vision and Pattern Recognition, 2003. 38, 65 Cerca con Google

. [102]  J. Zhu, L. Wang, J. Gao, and R. Yang. Spatial-Temporal Fusion for High Accuracy Depth Maps Using Dynamic MRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32:899–909, 2010. 44, 45, 47, 48, 58, 59 Cerca con Google

. [103] J. Zhu, L. Wang, R. Yang, and J. Davis. Fusion of time-of-flight depth and stereo for high accuracy depth maps. In IEEE Conference on Computer Vision and Pattern Recognition, 2008. 44, 45, 47, 48, 58, 59 Cerca con Google

. [104] J. Zhu, L. Wang, R. Yang, J. E. Davis, and Z. Pan. Reliability Fu- sion of Time-of-Flight Depth and Stereo Geometry for High Quality Depth Maps. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33:1400–1414, 2011. 44, 45, 47, 48, 77 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record