Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Bonomo, Federica (2008) Experimental Measurements of Soft X-Ray Emissivity Distribution and Electron Temperature Profile in Reversed Field Pinch Plasmas. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
8Mb

Abstract (inglese)

This thesis reports the work performed during the three years of my Ph.D. course at the Physics Department of the University of Padova. Most of my research activity has been performed in Consorzio RFX (Padova) where the RFX experiment is located. RFX (Reversed Field eXperiment) is the largest toroidal device to study magnetically confined plasmas of thermonuclear interest in the so-called reversed field pinch (RFP) configuration. The RFP is one of the main configurations used to confine plasmas in toroidal devices with the purpose of studying controlled thermonuclear fusion as an energy source. The energy production by fusion in magnetically confined plasmas is an ambitious and important goal, which could contribute to solve the problem of a sustainable energy source for mankind. To be an efficient energy source, a sufficiently dense and hot plasma must be confined for a sufficiently long time. In order to fulfill this goal, energy and particle losses need to be understood and eventually controlled. In RFPs, transport is at present dominated by magnetic chaos, even if, under some circumstances that will be presented in this thesis, it can decrease to lower levels. The RFX experiment has been modified in order to investigate in a controlled way the effect of the magnetic boundary on plasma performances. In order to obtain such these information, my research activity has been focused on performing spatially resolved measurements of the plasma emissivity in the soft x-ray (SXR) energy range. In particular, I was involved in experimental and laboratory activities, in diagnostic operation and optimization, along with the design and realization of a new SXR diagnostic. I also analyzed SXR data, allowing a characterization of the plasma column and of the MHD plasma activity. The tomographic algorithms applied to the SXR signals allow for the reconstruction of the SXR emissivity distribution 2, which reflects the plasma magnetic topology. Such information can be completed by the estimation of the electron temperature (Te) profile, calculated with the two-foil technique.
During my Ph.D., I was also involved in the collaboration between RFX and the University of Wisconsin, Madison, where the Madison Symmetric Torus (MST) experiment is located. My activity has been part of the collaboration between RFP groups for experimental studies on MHD processes and was focused on operating the SXR tomographic diagnostic installed in MST and realized by the RFX group. Data analysis was aimed at obtaining 2D profiles of the plasma electron temperature. My personal contribution has concerned the optimization of the geometry of the detection system and the electronic system, as well as the diagnostic operation. Moreover, I was directly involved in dedicated experimental campaigns and in the data analysis: the results are presented in this thesis.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Martin, Piero
Correlatore:Franz, Paolo
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > FISICA
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):Imaging SXR Tomography Plasma Emissivity Electron Temperature
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/03 Fisica della materia
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica "Galileo Galilei"
Codice ID:536
Depositato il:05 Set 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] B. H. Kevles, Naked to the Bone, Rutgers Univ. Press, New Brunswick, NY, 1997. Cerca con Google

[2] M. Friedman and G. W. Friedland, Medicine’s 10 Greatest Discoveries, Yale Univ. Press, New Haven, CT, 1998. Cerca con Google

[3] Wyndham E.B. Lloyd, A 100 Years of Medicine, Gerald Ducworth & Co. Ltd., London, England, 1968. Cerca con Google

[4] S. J. Reiser, Medicine and the Reign of Technology, Cambridge Univ. Press, Cambridge, MA, 1978. Cerca con Google

[5] A. M. Cormack, J. Appl. Phys. 34, 2722 (1963). Cerca con Google

[6] A. M. Cormack, J. Appl. Phys. 35, 2908 (1964). Cerca con Google

[7] A. M. Cormack, Nobel Lecture (8th December 1979). Cerca con Google

[8] A. M. Cormack and B. J. Doyle, Phys. Med. Iol. 22, 994 (1977). Cerca con Google

[9] A. L. Boyer, M. Goitein, A. J. Lomax, and E. S. Pedroni, Physics Today 55, 35 (September 2002). Cerca con Google

[10] A. L. Boyer, Physics Today 55, 38 (September 2002). Cerca con Google

[11] G. N. Hounsfield, Nobel Lecture (8th December, 1979). Cerca con Google

[12] P. C. Sabatier, Basic Method of Tomography and Inverse Problems, Adam Hilger, Bristol, 1987. Cerca con Google

[13] R. J. Goldston and P. H. Rutherford, Introduction to Plasma Physics, IOP, London, 1995. Cerca con Google

[14] I. H. Hutchinson, Principles of Plasma Diagnostics, Cambridge Univ. Press, Cambridge, 1987. Cerca con Google

[15] S. von Goeler, W. Stodiek, and N. Sauthoff, Phys. Rev. Lett. 33, 1201 (1974). Cerca con Google

[16] M. A. Dubois, D. A. Marty, and A. Pochelon, Nucl. Fusion 20, 1355 (1980). Cerca con Google

[17] N. R. Sauthoff, K. M. McGuire, and S. von Goeler, Rev. Sci. Instrum. 57, 2139 (1986). Cerca con Google

[18] P. Smeulders, Nucl. Fusion 23, 529 (1983). Cerca con Google

[19] Y. Nagayama, S. Tsuji, K. Kawahata, N. Noda, and S. Tanahashi, Jpn. J. Appl. Phys. 20, L779 (1981). Cerca con Google

[20] J. F. Camacho and R. S. Granetz, Bull. Am. Phys. Soc. 29, 1224 (1984). Cerca con Google

[21] P. Smeulders, A Fast Plasma Tomography Routine with Second-Order Accuracy and Compensation for Spatial Resolution, Technical Report IPP2252, Max-Planck-Insitut fur Plasmaphysik, Garching, 1983. Cerca con Google

[22] R. S. Granetz, X-ray Tomography in Fusion Research - Diagnostic for Contemporary Fusion Experiments, P.E. Stott, D.D. Akulina, G. Gorini and E.Sindoni (Eds.), SIF, Bologna, 1991. Cerca con Google

[23] R. S. Granetz and J. F. Camacho, Soft-X ray Tomography on Alcator C, Plasma Fusion Centre, Massachusetts Institute of Technology, Cambridge, MA 02139, 1985. Cerca con Google

[24] P. Franz, L. Marrelli, A. Murari, G. Spizzo, and P. Martin, Nucl. Fusion 41, 695 (2001). Cerca con Google

[25] Y. Nagayama, J. Appl. Phys. 62, 2702 (1987). Cerca con Google

[26] ITER Physics Expert Groups, ITER Physics Expert Group Chairs and Co- Chairs, and TER Joint Central Team and Physics Integration Unit, Nucl. Fusion 39, 2137 (1999). Cerca con Google

[27] D. J. Campbell, Phys. Plasmas 8, 2041 (2001). Cerca con Google

[28] K. Miyamoto, Plasma physics for nuclear fusion, MIT press, Cambridge, MA, 1989. Cerca con Google

[29] J. D. Lawson, Proc. Phys. Soc. B70, 6 (1957). Cerca con Google

[30] J. P. Freidberg, Ideal Magnetohydrodynamics, Plenum Press, New York, 1987. Cerca con Google

[31] T.J.M. Boyd and J.J. Sanderson, The physics of plasmas, Cambridge University Press, 2003. Cerca con Google

[32] G. Bateman, MHD instabilities, MIT Press, Cambridge, MA, 1978. Cerca con Google

[33] S. Ortolani and D. D. Schnack, Magnetohydrodynamics of Plasma Relaxation, World Scientific, Singapore, 1993. Cerca con Google

[34] S. Cappello, F. D’Angelo, D. F. Escande, R. Paccagnella, and D. Bénisti, Single and multiple helicity states in the Reversed Field Pinch, volume 23J, page 981, Maastricht, the Netherlands, 1999, 26th EPS Conf. on Contr. Fusion and Plasma Physics, ECA. Cerca con Google

[35] B. B. Kadomtsev, Tokamak plasma: a complex physical system, Institute of Physics Pub., Bristol, UK, 1992. Cerca con Google

[36] D. Biskamp, Nonlinear magnetohydrodynamics, Cambridge University Press, Cambridge, UK, 1993. Cerca con Google

[37] E. J. Caramana and D. A. Baker, Nucl. Fusion 24, 423 (1984). Cerca con Google

[38] Y. B. Zeldovich, Magnetic fields in astrophysics, Gordon & Breach, New York, 1983. Cerca con Google

[39] D. Bonfiglio, S. Cappello, and D. F. Escande, Phys. Rev. Lett. 94, 145001 (2005). Cerca con Google

[40] P. Martin et al., Nucl. Fusion 43, 1855 (2003). Cerca con Google

[41] S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996). Cerca con Google

[42] P. Franz et al., Phys. Rev. Lett. 92, 125001 (2004). Cerca con Google

[43] I. Predebon, L. Marrelli, R. B. White, and P. Martin, Phys. Rev. Lett. 93, 145001 (2004). Cerca con Google

[44] R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984). Cerca con Google

[45] T. Tamano et al., Phys. Rev. Lett. 59, 1444 (1987). Cerca con Google

[46] G. Rostagni, Fusion Engineering and Design 25, 301 (1995). Cerca con Google

[47] P. Sonato et al., Fusion Engineering and Design 66, 161 (2003). Cerca con Google

[48] L. Marrelli et al., Experiments of active control of internal resistive MHD modes in RFX-mod, in 33rd EPS Conference on Plasma Phys., pages P– 5.092, Rome, 2006, ECA Vol.30I. Cerca con Google

[49] S. Martini et al., High current RFPs in RFX-mod with induced Locked Mode rotation, in 34th EPS Conference on Plasma Phys., pages P–5.134,Warsaw, 2007, ECA Vol.31F. Cerca con Google

[50] P. Zanca, L. Marrelli, G. Manduchi, and G. Marchiori, Nucl. Fusion 47, 1425 (2007). Cerca con Google

[51] L. Marrelli et al., Plasma Phys. Contr. Fusion 49, B359 (2007). Cerca con Google

[52] J. S. Sarff, S. A. Hokin, H. Ji, S. C. Prager, and C. R. Sovinec, Phys. Rev. Lett. 72, 3670 (1994). Cerca con Google

[53] B. E. Chapman et al., Phys. Plasmas 9, 2061 (2002). Cerca con Google

[54] R. Bartiromo et al., Phys. Rev. Lett 82, 1462 (1999). Cerca con Google

[55] T. Bolzonella et al., Phys. Rev. Lett. 87, 195001 (2001). Cerca con Google

[56] D. Terranova et al., Phys. Rev. Lett. 99, 95001 (2007). Cerca con Google

[57] P. Zanca, Plasma Phys. Contr. Fusion 49, 113 (2007). Cerca con Google

[58] R. Dexter, D. Kerst, T. Lovell, S. Prager, and J. Sprott, Fusion Technol. 19, 131 (1991). Cerca con Google

[59] T. P. Donaldson, Plasma Physics 20, 1279 (1978). Cerca con Google

[60] R. S. Granetz and P. Smeulders, Nucl. Fusion 28, 457 (1988). Cerca con Google

[61] J. R. L. Branham, Scientific Data Analysis of Integral Equations, Claredon Press, Oxford, 1984. Cerca con Google

[62] P. Martin et al., Rev. Sci. Instrum. 68, 1256 (1997). Cerca con Google

[63] P. Franz et al., Rev. Sci.Instrum. 75, 4013 (2004). Cerca con Google

[64] J. Kiraly, Nucl. Fusion 27, 397 (1987). Cerca con Google

[65] P. Martin, A. Murari, and L. Marrelli, Plasma Phys. Contr. Fusion 38, 1023 (1996). Cerca con Google

[66] A. Murari et al., Rev. Sci. Instrum. 70, 581 (1999). Cerca con Google

[67] L. Carraro et al., Nucl. Fusion 36, 1623 (1996). Cerca con Google

[68] F. Bonomo et al., Rev. Sci. Instrum. 77, 10F313 (2006). Cerca con Google

[69] P. Franz et al., Phys. Plasmas 13, 012510 (2006). Cerca con Google

[70] P. Martin et al., Plasma Phys. Control. Fusion 49, A177 (2007). Cerca con Google

[71] D. F. Escande et al., Phys. Rev. Lett. 85, 1662 (2000). Cerca con Google

[72] R. Paccagnella et al., Phys. Rev. Lett. 97, 75001 (2006). Cerca con Google

[73] L. Marrelli et al., Phys. Plasmas 9, 2868 (2002). Cerca con Google

[74] A. Alfier and R. Pasqualotto, Rev. Sci. Instrum. 78, 013505 (2007). Cerca con Google

[75] A. Alfier, Electron temperature measurements by Thomson scattering in plasma fusion devices, PhD thesis, Universitá degli Studi di Padova, Italy, 2006. Cerca con Google

[76] M. Gobbin, L. Marrelli, P. Martin, , and R. B. White, Phys. Plasmas 14, 072305 (2007). Cerca con Google

[77] D. F. Escande, R. Paccagnella, S. Cappello, F. D’Angelo, and C. Marchetto, PHys. Rev. Lett. 85, 3169 (2000). Cerca con Google

[78] P. Franz et al., Europhys. Lett. 59, 48 (2002). Cerca con Google

[79] S. V. Annibaldi et al., Phys. Plasmas 14, 112515 (2007). Cerca con Google

[80] F. Porcelli, E. Rossi, G. Cima, and A. Wootton, Phys. Rev. Lett. 82, 1458 (1999). Cerca con Google

[81] S. V. Annibaldi, P. Buratti, E. Giovannozzi, D. Frigione, and F. Porcelli, Nucl. Fusion 44, 12 (2004). Cerca con Google

[82] A. Intravaia et al., Phys. Rev. Lett. 83, 5499 (1999). Cerca con Google

[83] A. Alfier et al., Electron temperature measurements and heat transport improvement in the RFX-mod experiment, Orlando, Florida, November 12-16, 2007, 49th Annual Meeting of the Division of Plasma Physics. Cerca con Google

[84] P. Buratti et al., Plasma Phys. Control. Fusion 39, B383 (1997). Cerca con Google

[85] D. Terranova et al., Enhanced confinement, magnetic topology and diffusion in RFX-mod for poloidal current drive, Orlando, Florida, November 12-16, 2007, 49th Annual Meeting of the Division of Plasma Physics. Cerca con Google

[86] J. K. Anderson, Measurement of the Electrical Resistivity Profile in the Madison Symmetric Torus, PhD thesis, University of Wisconsin (Madison), WI, 2001. Cerca con Google

[87] R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Angstrom - Hydrogen Through Krypton, Naval Research Laboratories, Washington, D.C., 1973. Cerca con Google

[88] B. H. Deng et al., Rev. Sci. Instrum. 77, 10F108 (2006). Cerca con Google

[89] P. Franz et al., Rev. Sci. Instrum. 77, 10F318 (2006). Cerca con Google

[90] B. E. Chapman et al., Generation and confinement of hot ions and electrons in MST, Orlando, Florida, November 12-16, 2007, 49th Annual Meeting of the Division of Plasma Physics. Cerca con Google

[91] B. E. Chapman, Improved confinement MST RFP plasmas with hot ions and high density, Philadelphia, Pennsylvania, October 30-November 3, 2006, 48th Annual Meeting of the Division of Plasma Physics. Cerca con Google

[92] D. Craig, D. J. Den Hartog, D. A. Ennis, S. Gangadhara, and D. Holly, Rev. Sci. Instrum. 78, 013103 (2007). Cerca con Google

[93] D. J. Den Hartog et al., Rev. Sci. Instrum. 77, 10F122 (2006). Cerca con Google

[94] S. Gangadhara, D. Craig, D. A. Ennis, and D. J. Den Hartog, Rev. Sci. Instrum. 77, 10F109 (2006). Cerca con Google

[95] M. Wyman et al., submitted to Phys. Plasmas . Cerca con Google

[96] H. Cummings, J. A. Reusch, R. O’Connell, and D. J. Den Hartog, Bull. Am. Phys. Soc. 50, 37 (2005). Cerca con Google

[97] F. Bonomo et al., Phys. Plasmas 12, 093301 (2005). Cerca con Google

[98] W. H. Press, B. P. Flannery, S. A. Teukolsky, andW. T.Wetterlig, Cambridge University Press, first edition, Cambridge, MA, 1987. Cerca con Google

[99] S. Gull and G. Danniel, Nature 272, 686 (1978). Cerca con Google

[100] L. Wang and R. Granetz, Rev. Sci. Instrum. 62, 842 (1991). Cerca con Google

[101] L. Wang and R. Granetz, Rev. Sci. Instrum. 62, 1115 (1991). Cerca con Google

[102] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library, second edition, 1958. Cerca con Google

[103] C. DeMichelis and M. Mattioli, Nucl. Fusion 21, 677 (1981). Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record