Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Schiavazzi, Daniele (2013) Redundant Multiresolution Uncertainty Propagation. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (Tesi di Dottorato) - Accepted Version
8Mb

Abstract (english)

Stochastic partial differential equations can be efficiently solved using collocation approaches combined with polynomial expansion in parameter space. Estimators based on these concepts show smaller variance than traditional or stratified Monte Carlo approaches under mild dimensionality. Research efforts in this context are focused on improving the efficiency of these methodologies for high dimensional problems (increasing number of input random variables) or for problems with discontinuous response in parameter space. In the present work, we use Compressive Sampling in order to minimize the number of deterministic computations needed to evaluate expansion coefficients for stochastic responses which are sparse in selected dictionaries of basis. Moreover, multiresolution approximation techniques are extended in the context of non-intrusive uncertainty propagation. Finally, an adaptive Importance Sampling strategy is used where samples are iteratively added to locations containing relevant features of increasingly smaller size. Applications are presented for analytical functions, stochastic differential equations, dynamical systems whose response is discontinuous or characterized by large gradients. Engineering problems involving robust optimization of windmill airfoils and passive damping of structures under uncertainty are also discussed. The last Chapter is devoted to methodologies aiming to restore element conservativeness for numerical and experimental velocity fields.

Abstract (italian)

Metodi non intrusivi basati sull’espansione della risposta di un dato sistema nello spazio dei parametri (Chaos expansion methods) consentono di risolvere equazioni differenziali stocastiche con un numero di soluzioni deterministiche minori rispetto ad approcci tradizionali alla Monte Carlo con campionamento classico o stratificato. In tale ambito gli sforzi di ricerca odierni sono volti allo sviluppo di metodologie atte alla riduzione del costo computazionale in problemi caratterizzati da alta dimensionalitá (numero significativo di variabili aleatorie in input) ed al trattamento di problemi con risposta discontinua nello spazio dei parametri. La ricerca condotta si é concentrata sull’utilizzo di recenti tecniche di Compressive Sampling per la minimizzazione del numero di soluzioni deterministiche necessarie alla ricostruzione di risposte dotate di sparsitá secondo un pre-definito dizionario di basi. Inoltre, tecniche di approssimazione multi-risoluzione sono state estese a metodologie non intrusive di propagazione dell’incertezza. Infine, tecniche di Importance Sampling sono state utilizzate per determinare in modo adattativo l’ubicazione di nuovi samples al fine di cogliere le scale maggiormente importanti nelle risposte approssimate. Le metodologie approfondite ed implementate nell’ambito della ricerca svolta sono state applicate ad un insieme di funzioni analitiche, sistemi descritti da equazioni differenziali stocastiche, sistemi dinamici con risposte caratterizzate da elevati gradienti o discontinuitá, problemi ingegneristici con particolare riferimento all’ottimizzazione robusta della performance aerodinamica di profili per pale eoliche e sistemi passivi di smorzamento delle vibrazioni operanti sotto incertezza. Vengono inoltre presentate metodologie atte a ripristinare doti di conservazione di massa in flussi numerici e sperimentali.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Putti, Mario and Iaccarino, Gianluca
Ph.D. course:Ciclo 25 > Scuole 25 > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE,
Data di deposito della tesi:16 January 2013
Anno di Pubblicazione:16 January 2013
Key Words:Quantificazione dell’incertezza, metodi non intrusivi di propagazione dell’incertezza, Alpert multiwavelets, campionamento per importanza, Compressed Sensing, approssimazioni multirisoluzione, espansioni secondo chaos polinomiale, equazioni differenziali stochastiche, Stochastic Collocation, filtri a divergenza nulla. Uncertainty quantification, Non intrusive uncertainty propagation, Alpert multiwavelets, Importance Sampling, Compressed Sensing, Multiresolution approximation, Polynomial Chaos expansion, Stochastic partial differential equations, Stochastic Collocation, divergence-free filtering.
Settori scientifico-disciplinari MIUR:Area 01 - Scienze matematiche e informatiche > MAT/08 Analisi numerica
Area 01 - Scienze matematiche e informatiche > MAT/06 Probabilità e statistica matematica
Struttura di riferimento:Dipartimenti > Dipartimento di Matematica
Codice ID:5361
Depositato il:11 Oct 2013 13:22
Simple Metadata
Full Metadata
EndNote Format

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record