Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Bortolini, Marco (2013) Design, control and management of renewable energy plants and technologies. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
13Mb

Abstract (inglese)

Nowadays, and even more in the next decades, the availability and easy-access to energy sources represent a crucial asset for the world development and the progress of people and nations. At the same time, the depletion of natural resources, together with the increase of the anthropic activity impact on the Earth ecosystem and climate, force communities and institutions, at all levels, to discuss and actuate different approaches to achieve the social and economic growth, based on the so-called sustainable development pattern. In such a scenario, renewable energy sources, i.e. solar, wind, hydro, biomass, geothermal, etc., certainly play a key role to join progress and attention to the environmental issues.
The present Ph.D. dissertation focuses on such topics investigating strategies, methods and innovative approaches for the effective design, control and management of renewable energy plants and technologies.
Specifically, the energy scenario is investigated from a global point of view proposing studies and optimization models highlighting the relevance and the potential impact of the major energy sources, both renewable and conventional. Such sources represent the elements of a big puzzle, i.e. the energy mix, in which their economic and environmental strengths should be emphasized minimizing the associated negative impacts and weaknesses.
Among renewable sources, solar energy is of primary importance for availability, diffusion and potential impact. The present Ph.D. dissertation particularly investigates such a source presenting models, methods and prototypes to increase its relevance in the energy mix. The fundamentals of solar energy, together with innovative approaches to estimate the solar radiation components, are provided. Furthermore, the pioneering concentrating solar sector is deeply focused presenting the design, development and preliminary field-test of a bi-axial Fresnel solar photovoltaic/thermal (PV/T) concentrating prototype. Possible solar tracking strategies and control algorithms are, then, investigated describing a customized semi-automatic motion control platform, developed in LabViewTM programming environment. Finally, the last section, proposes an effective approach for the design of a solar simulator, the most frequently adopted device in solar optic laboratory tests.
In conclusion, the present Ph.D. dissertation describes effective strategies for the renewable energy spread, considering their performances and their potential impact to achieve the ambitious challenge of a sustainable living planet.

Abstract (italiano)

Oggigiorno, ed in misura crescente nei prossimi decenni, la disponibilità e facilità di accesso alle fonti energetiche rappresenta un fattore determinante per lo sviluppo mondiale ed il progresso di popoli e nazioni. Parallelamente a ciò, il progressivo sfruttamento delle risorse naturali, unito all’aumento dell’impatto delle attività antropiche sull’ecosistema terrestre e sul clima, impongono a comunità ed istituzioni, ad ogni livello, un ripensamento e l’attuazione di differenti strategie per garantire lo sviluppo sociale ed economico attraverso il ricorso ad approcci basati sul concetto di sviluppo sostenibile. In questo contesto, le fonti energetiche rinnovabili, i.e. solare, eolica, idroelettrica, da biomasse, geotermica, ecc., assumono certamente un ruolo determinante per coniugare progresso ed attenzione alle tematiche ambientali.
La presente Tesi di Dottorato si incentra su queste tematiche approfondendo strategie, metodi ed approcci innovativi per l’efficace progettazione, controllo e gestione di impianti e tecnologie per le energie rinnovabili.
Nel dettaglio, lo scenario d’insieme delle fonti energetiche è analizzato con logica di sistema ed orientamento all’ottimizzazione globale proponendo studi e modelli che evidenzino l’importanza ed il potenziale delle principali risorse, rinnovabili e non, come elementi di un grande mosaico, i.e. il mix energetico globale, nel quale le potenzialità economiche ed ambientali di ogni risorsa sono enfatizzate minimizzando, nel contempo, gli impatti negativi e le rispettive debolezze.
Tra le possibili fonti rinnovabili, la fonte solare assume primaria importanza per disponibilità, diffusione ed impatto potenziale. La presente Tesi di Dottorato analizza, in dettaglio, questa risorsa energetica presentando modelli, metodi ed impianti sviluppati per accrescere l’incidenza di questa risorsa nel mix energetico. Gli elementi ed aspetti fondamentali, insieme ad approcci innovativi per la stima delle componenti della radiazione solare, sono presentati nell’elaborato. Successivamente, l’innovativo settore della concentrazione solare è analizzato, in dettaglio, anche attraverso l’illustrazione delle scelte progettuali, lo sviluppo e la campagna sperimentale preliminare di un concentratore solare fotovoltaico/termico (PV/T) a lenti di Fresnel ed inseguimento biassiale. Nel seguito, vengono approfondite possibili strategie per l’inseguimento biassiale ed algoritmi di controllo, implementati in una piattaforma semi-automatizzata sviluppata in ambiente di programmazione grafica LabViewTM. L’ultima sezione propone, infine, un approccio per la progettazione di un simulatore solare, un dispositivo spesso adottato nei test di ottica solare.
In conclusione, la presente Tesi di Dottorato, descrive una molteplicità di strategie orientate alla diffusione delle energie rinnovabili, con attenzione alle performance ed all’impatto potenziale che esse hanno verso il raggiungimento dell’obiettivo ambizioso di un sostenibile living planet.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Ferrari, Emilio
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > INGEGNERIA INDUSTRIALE > MECCATRONICA E SISTEMI INDUSTRIALI
Data di deposito della tesi:17 Gennaio 2013
Anno di Pubblicazione:31 Gennaio 2013
Parole chiave (italiano / inglese):Energia rinnovabile Renewable energy Energia solare Solar energy Concentrazione solare Solar concentration Modello radiazione solare Solar radiation model Impianto solare a concentrazione Concentrating solar plant Simulatore solare Solar simulator
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/17 Impianti industriali meccanici
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:5365
Depositato il:16 Ott 2013 11:30
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Chapter 1 Cerca con Google

1. Arif Ozgur, M., (2008). Review of Turkey’s renewable energy potential. Renewable Energy 33:2345-2356. Cerca con Google

2. Baltas, A.E., Dervos, A.N., (2012). Special framework for the spatial planning & the sustainable development of renewable energy sources. Renewable Energy 48:358-363. Cerca con Google

3. Bradbrook, A.J., (1996). The development of a legislative framework for renewable energy and energy conservation. Renewable Energy 8(1):107-116. Cerca con Google

4. International Energy Agency (IEA), (2010). Key World energy Statistics. OECD/IED ed. Paris, France. Cerca con Google

5. International Energy Agency (IEA), (2011). CO2 Emissions from Fuel Combustion - Highlights. OECD/IED ed. Paris, France. Cerca con Google

6. Jacobsson, S., Johnson, A., (2000). The diffusion of renewable energy technology: an analytical framework and key issues for research. Energy Policy 28:625-640. Cerca con Google

7. Quaschning, V., (2005). Understanding Renewable Energy Systems. Earthscan ed. London, UK. Cerca con Google

8. Sivek, M., Kavina, P., Jirásek, J., Malečková, V., (2012). Factors influencing the selection of the past and future strategies for electricity generation in the Czech Republic. Energy Policy 48:650-656. Cerca con Google

9. Tsuchiya, H., (2012). Electricity supply largely from solar and wind resources in Japan. Renewable Energy 48:318-325. Cerca con Google

10. United Nations (UN), (2011). The Millennium Development Goals Report 2011. Lois Jensen ed., New York, USA. Cerca con Google

11. Winkler, H., (2005). Renewable energy policy in South Africa: policy options for renewable electricity. Energy Policy 33:27-38. Cerca con Google

12. World Bank, (2009). Beyond Bonn – World Bank Group Progress on Renewable Energy and Energy Efficiency in Fiscal 2005-2009. The World Bank Group ed. Washington D.C., USA. Cerca con Google

13. Wüstenhagen, R., Menichetti, E., (2012). Strategic choices for renewable energy investment: conceptual framework and opportunities for further research. Energy Policy 40:1-10. Cerca con Google

Web - references Cerca con Google

14. European Commission, (2010). Energy 2020 – A strategy for competitive, sustainable and secure energy. Brussels, Belgium. Available on line: Cerca con Google

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2010:0639:FIN:EN:PDF Vai! Cerca con Google

15. Renewable Energy Policy Network for the 21st Century (REN21), (2011). Renewables 2011 – Global Status Report. Paris, France. Available on line: Cerca con Google

http://www.ren21.net/Portals/97/documents/GSR/REN21_GSR2011.pdf Vai! Cerca con Google

16. United Nations (UN), (2010). Energy for a Sustainable Future. The Secretary-General’s Advisory Group on Energy and Climate Change (AGECC) – Summary report and recommendations. New York, USA. Available on line: Cerca con Google

http://www.un.org/wcm/webdav/site/climatechange/shared/Documents/AGECC%20summary%20report[1].pdf Vai! Cerca con Google

17. United Nations – Energy (UN-Energy), (2005). The Energy Challenge for Achieving the Millennium Development Goals. New York, USA. Available on line: Cerca con Google

http://www.un-energy.org/sites/default/files/share/une/un-enrg_paper.pdf Vai! Cerca con Google

18. World Bank, (2011). Promotion of New Clean Energy Technologies and the World Bank Group – Background paper for the World Bank Group Energy Sector Strategy. Washington D.C., USA. Available on line: Cerca con Google

http://siteresources.worldbank.org/INTESC/Resources/Clean_tech_background_paper.pdf Vai! Cerca con Google

Chapter 2 Cerca con Google

19. Al-Salaymeh, A., Al-Hamamre, Z., Sharaf, F., Abdelkader, M.R., (2010). Technical and economical assessment of the utilization of photovoltaic systems in residential buildings: the case of Jordan. Energy Conversion and Management 51:1719-1726. Cerca con Google

20. Audenaert, A., Boeck, L.D., Cleyn, S.D., Lizin, S., Adam, J.F., (2010). An economic evaluation of photovoltaic grid connected systems (PVGCS) in Flanders for companies: a generic model. Renewable Energy 35:2674-2682. Cerca con Google

21. Barbose, G., Wiser, R., Bolinger, M., (2008). Designing PV incentive programs to promote performance: a review of current practice in the US. Renewable and Sustainable Energy Reviews 12:960-998. Cerca con Google

22. Bazmi, A.A., Zahedi, G., (2011). Sustainable energy systems: role of optimization modeling techniques in power generation and supply - a review. Renewable and Sustainable Energy Reviews 15:3480-3500. Cerca con Google

23. Becerra-López, H.R., Golding, P., (2008). Multi-objective optimization for capacity expansion of regional power-generation systems: Case study of far west Texas. Energy Conversion and Management 49:1433-1445. Cerca con Google

24. Bernal-Agustin, J.L., Dufo-Lopez, R., (2006). Economical and environmental analysis of grid connected photovoltaic system in Spain. Renewable Energy 31:1107-1128. Cerca con Google

25. Bortolini, M., Gamberi, M., Graziani, A., Mora, C., (2013). Multi-country and multi-parameter analysis for the technical and economical assessment of photovoltaic systems in the European Union area. Energy Conversion and Management [under review]. Cerca con Google

26. Bounovas, V., Papadopoulos, A.I., Seferlis, P., Voutetakis, S., (2011). Energy supply chain optimization under demand variation and emission constraits. Chemical Engineering Transactions 25:1043-1048. Cerca con Google

27. Bouzembrak, Y., Allaoui, H., Goncalves, G., Bouchriha, H., (2011). A multi-objective green supply chain network design. Proceedings of the 4th International Conference on Logistics 358-361. Cerca con Google

28. Campoccia, A., Dusonchet, L., Telaretti, E., Zizzo, G., (2007). Feed-in tariffs for grid-connected PV systems: the situation in the European community. Proceedings of 2007 IEEE Lausanne Powertech 1981-1986. Cerca con Google

29. Campoccia, A., Dusonchet, L., Telaretti, E., Zizzo, G., (2009). Comparative analysis of different supporting measures for the production of electrical energy by solar PV and wind systems: four representative European cases. Solar Energy 83:287-297. Cerca con Google

30. Diarra, D.C., Akuffo, F.O., (2002) Solar photovoltaic in Mali: potential and constraints. Energy Conversion and Management 43:151-163. Cerca con Google

31. Di Dio, V., Favuzza, S., La Caseia, D., Miceli, R., (2007). Economical incentives and systems of certification for the production of electrical energy from renewable energy resources. Proceeding of 2007 International Conference on Clean Electrical Power 277-282. Cerca con Google

32. Dong, M., He, F., Wei, H., (2012). Energy supply chain design optimization for distributed energy systems. Computer and Industrial Engineering 63:546-552. Cerca con Google

33. EurObserv’ER (2007). Photovoltaic energy barometer 2007 - EurObserv’ER Systèmes solaires, Le journal des énergies renouvelables 178:49-70. Cerca con Google

34. EurObserv’ER (2009). Photovoltaic energy barometer 2009 - EurObserv’ER Systèmes solaires, Le journal des énergies renouvelables 190:72-102. Cerca con Google

35. EurObserv’ER (2010). Photovoltaic energy barometer 2010 - EurObserv’ER Systèmes solaires, Le journal des énergies renouvelables 196:128-160. Cerca con Google

36. EurObserv’ER (2011). Photovoltaic energy barometer 2011 - EurObserv’ER Systèmes solaires, Le journal des énergies renouvelables 202:144-171. Cerca con Google

37. EurObserv’ER (2012). Photovoltaic energy barometer 2012 - EurObserv’ER Systèmes solaires, Le journal des énergies renouvelables 7:108-131. Cerca con Google

38. Fernandez-Infantes, A., Contreras, J., Bernal-Agustìn, J.L., (2006). Design of grid connected PV system considering electrical, economical and environmental aspect: a practical case. Renewable Energy 31:2042-2062. Cerca con Google

39. Focacci, A., (2009). Residential plants investment appraisal subsequent to the new supporting photovoltaic economic mechanism in Italy. Renewable and Sustainable Energy Reviews 13:2710-2715. Cerca con Google

40. Fthenakis, V., Mason, J.E., Zweibel, K., (2009). The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US. Energy Policy 37:387-399. Cerca con Google

41. Ghoneim, A.A., Al-Sahan, A.Y., Abdullah, A.H., Economic analysis of photovoltaic-powered solar domestic hot water systems in Kuwait. Renewable Energy 25:81–100. Cerca con Google

42. Hernàndez, J.C., Medina, A., Jurado, F., (2008). Impact comparison of PV system integration into rural and urban feeders. Energy Conversion and Management 49:1747-1765. Cerca con Google

43. Hammond, G.P., Harajli, H.A., Jones, C.I., Winnett, A.B., (2012). Whole systems appraisal of a UK Building Integrated Photovoltaic (BIPV) system: energy, environmental, and economic evaluations. Energy policy 40:219-230. Cerca con Google

44. Lam, H.L., Verbanov, P.S., Klemeš, J.J., (2010). Optimisation of regional energy supply chains utilising renewables: P-graph approach. Computer and Chemical Engineering 34:782-792. Cerca con Google

45. Mitscher, M., Rüther, R., (2012). Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil. Energy Policy 49:688–694. Cerca con Google

46. Nässén, J., Evertsson, J., Andersson, B.A., (2002). Distributed power generation versus grid extension: an assessment of solar photovoltaics for rural electrification in Northern Ghana. Progress in Photovoltaics: Research and Applications 10:495–510. Cerca con Google

47. Nelson, J., Johnston, J., Mileva, A., Fripp, M., Hoffman, I., Petros-Good, A., Blanco, C., Kammen, D.M., (2012). High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures. Energy Policy 43:436-447. Cerca con Google

48. Papapostolou, C., Kondili, E., Kaldellis, J.K., (2011). Development and implementation of an optimisation model for biofuels supply chain. Energy 36:6019-6026. Cerca con Google

49. Reiche, D., Bechberger, M., (2004). Policy differences in the promotion of renewable energies in the EU member states. Energy Policy 32:843-849. Cerca con Google

50. Rowlands, I.H., (2005). Envisaging feed-in tariffs for solar photovoltaic electricity: European lessons for Canada. Renewable and Sustainable Energy Reviews 9:51-68. Cerca con Google

51. Šály, V., Ružinský, M., Baratka, S., (2006). Photovoltaics in Slovakia - status and conditions for development within integrating Europe. Renewable Energy 31:865-875. Cerca con Google

52. Zhang, D., Chai, Q., Zhang, X., He, J., Yue, L., Dong, X., Wu, S., (2012). Economical assessment of large-scale photovoltaic power development in China. Energy 40:370-375. Cerca con Google

Legislation references Cerca con Google

53. French legislation, Arrêté du 4 mars 2011 fixant les conditions d'achat de l'électricité produite par les installations utilisant l'énergie radiative du soleil telles que visées au 3° de l'article 2 du décret 2000-1196 du 6 décembre 2000. Cerca con Google

54. German legislation, EEG Gesetz für den Vorrang Erneuerbarer Energien (Erneuerbare-Energien-Gesetz), 2009 (last amended on 01/01/2012). Cerca con Google

55. Greece Legislation, Renewable Energy Legislation, Law 3581/2010 amending the law 3468/2006, Generation of Electricity using Renewable Energy Sources and High-Efficiency Cogeneration of Electricity and Heat and Miscellaneous Provisions. Cerca con Google

56. Italian Legislation, Incentivation of electricity production from solar photovoltaic plants, Decreto Ministeriale 05/05/2011. Cerca con Google

57. Italian Legislation, Incentivation of electricity production from solar photovoltaic plants, Decreto Ministeriale 05/07/2012. Cerca con Google

58. Legal sources on renewable energy (Res-Legal). Available on line: Cerca con Google

http://www.res-legal.de/ Vai! Cerca con Google

59. Spanish legislation, Real Decreto 1565/2010, de 19 de noviembre, por el que se regulan y modifican determinados aspectos relativos a la actividad de producción de energía eléctrica en régimen especial, R.D. 1565 19/11/2010. Cerca con Google

60. Spanish legislation, C 14/2010, de 23 de diciembre, por el que se establecen medidas urgentes para la corrección del déficit tarifario del sector eléctrico, R.D. 14 23/12/2010. Cerca con Google

61. Turkish legislation, Law on utilization of renewable energy sources for the purpose of generating electrical energy, Law n. 5436, 10/05/2005, Amended by Law 6094, 29/12/2010. Cerca con Google

62. Turkish legislation, Law 6094/2010 amending the Law 5436/2005, Law on utilization of renewable energy sources for the purpose of generating electrical energy. Cerca con Google

Chapter 3 Cerca con Google

63. Akinoglu, B.G., (1991). Review of sunshine-based models used to estimate monthly average global solar radiation. Renewable Energy 1(3-4):479-497. Cerca con Google

64. Angus, R.C., Muneer, T., (1993). Sun position for daylight models: precise algorithms for determination. Lighting Research & Technology 25(2):81-83. Cerca con Google

65. Badescu, V., Gueymard, C.A., Cheval, S., Oprea, C., Baciu, M., Dumitrescu, A., Iacobescu, F., Milos, I., Rada, C., (2012). Computing global and diffuse solar hourly irradiation on clear sky. Review and testing of 54 models. Renewable and Sustainable Energy Reviews 16:1636-1656. Cerca con Google

66. Bakirci, K., (2009). Models of solar radiation with hours of bright sunshine: a review. Renewable and Sustainable Energy Reviews 13:2580-2588. Cerca con Google

67. Ball, D.W., (2005). The baseline: The solar spectrum. Spectroscopy 20(6):1-30. Cerca con Google

68. Bellocchi, G., Acutis, M., Fila, G., Donatelli, M., (2002). An indicator of solar radiation model performance based on fuzzy expert system. Agronomy Journal 94(6):1222-1233. Cerca con Google

69. Benford, F., Bock, J.E., (1939). A time analysis of sunshine. Transactions of the Illuminating Engineering Society 34:200-217. Cerca con Google

70. Björck, Å., (1997). Numerical methods for least squares problems. Society for Industrial and Applied Mathematics. Amsterdam, The Netherlands. Cerca con Google

71. Bortolini, M., Gamberi, M., Graziani, A., Manzini, R., Regattieri, A., Santarelli, G., (2011). Multi-location approach to estimate solar energy radiation in the EU countries with a diffuse fraction correlation model. Proceedings of the XVI Summer School Francesco Turco, Abano Terme, Italy. Cerca con Google

72. Bortolini, M., Gamberi, M., Graziani, A., Manzini, R., Mora, C., (2013). Multi-location model for the estimation of the horizontal daily diffuse fraction of solar radiation in Europe. Energy Conversion & Management 67:208-216. Cerca con Google

73. Claywell, R., Muneer, T., Asif, M., (2005). An efficient method for assessing the quality of large solar irradiance datasets. Journal of Solar Energy Engineering 127:150-152. Cerca con Google

74. Cooper, P.I., (1969). The absorption of radiation in solar stills. Solar Energy 12(3):333-346. Cerca con Google

75. Duffie, J.A., Beckman, W.A., (2006). Solar Engineering for Thermal Processes. 3rd Edition. John Wiley & Sons inc. New York, USA. Cerca con Google

76. Fritz, S., (1958). Transmission of solar energy through the Earth’s clear and cloudy atmosphere. Transactions of the Conference on Use of Solar Energy 1:17. Cerca con Google

77. Geiger, M., Diabaté, L., Ménard, L., Wald, L., (2002). A web service for controlling the quality of measurements of global solar irradiation. Solar Energy 73:475-480. Cerca con Google

78. Gibbas, M.J., Gilbert, C., (2005). A description of the weather source comprehensive global weather observation database. 85th AMS Annual Meeting – Combined Preprints 1167-1172. Cerca con Google

79. Glahn, H.R., Ruth, D.P., (2003). The new digital forecast database of the national weather service. Bulletin of the American Meteorological Society 84(2):195-201. Cerca con Google

80. Goody, R., (2002). Observing and thinking about the atmosphere. Annual Review of Energy and the Environment 27:1-20. Cerca con Google

81. Gueymard, C.A., (2004). The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Solar Energy 76:423-453. Cerca con Google

82. Hottel, H.C., Woertz, B.B., (1942). Performance of flat-plane solar heat collectors. Transactions of ASME 64:91. Cerca con Google

83. Hsu, H., (1998). Prabability, Random Variables and Random Processes, Schaum’s McGraw-Hill. New York, USA. Cerca con Google

84. Iqbal, M., (1983). Introduction to solar radiation, Academic. Toronto, Canada. Cerca con Google

85. Jamil Ahmad, M., Tiwari, G.N., (2010). Solar radiation models – A review. International Journal of Energy Research 35:271-290. Cerca con Google

86. Jiang, Y., (2009). Computation of monthly mean daily global solar radiation in China using artificial neural networks and comparison with other empirical models. Energy 34:1276-1283. Cerca con Google

87. Journée, M., Bertrand, C., (2011). Quality control of solar radiation data within the RMIB solar measurements network. Solar Energy 85:72-86. Cerca con Google

88. Khatib, T., Mohamed, A., Sopian, K., (2012). A review of solar energy modeling techniques. Renewable and Sustainable Energy Reviews 16:2864-2869. Cerca con Google

89. Kiselman, D., Pereira, T.M.D., Gustafsson, B., Asplund, M., Meléndez, J., Langhans, K., (2011). Is the solar spectrum latitude-dependent? An investigation with SST/TRIPPEL. Astronomy & Astrophysics 535:1-9. Cerca con Google

90. Li, H., Lian, Y., Wang, X., Ma, W., Zhao, L., (2011). Solar constant values for estimating solar radiation. Energy 36:1785-1789. Cerca con Google

91. Lin, W., Gao, W., Pu, S., Lu, E., (1999). Ranking the overall performance of eight sunshine-based global solar radiation models with a nonparametric statistical procedure. Energy Conversion & Management 40:233-241. Cerca con Google

92. Liu, B.Y.H., Jordan, R.C., (1960). The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Solar Energy 4:1-19. Cerca con Google

93. Lu, Y., Khalil, M.A.K., (1996). The distribution of solar radiation in the Earth’s atmosphere: the effects of ozone, aerosols and clouds. Chemosphere 32(4):739-758. Cerca con Google

94. Mihelić-Bogdanić, A., Budin, R., Filipan, V., (1996). Investigation of solar declination. Renewable Energy 7(3):271-277. Cerca con Google

95. Moon, P., (1940). Proposed standard solar radiation curves for engineering use. Journal of the Franklin Institute 230(5):583-617. Cerca con Google

96. Müller, M., (1995). Equation of time – problem in astronomy. Acta Physica Polonica A 88:S-49. Cerca con Google

97. Munawwar, S., Muneer, T., (2007). Statistical approach to the proposition and validation of daily diffuse irradiation models. Applied Energy 84:455-475. Cerca con Google

98. Muneer, T., Munawwar, S., (2006). Improved accuracy models for hourly diffuse solar radiation. Transaction of the ASME 128:104-116. Cerca con Google

99. Nijmeh, S., Mamlook, R., (2000). Testing of two models for computing global solar radiation on tilted surfaces. Renewable Energy 20:75-81. Cerca con Google

100. Quaschning, V., (2003). Technology fundamentals: the sun as an energy resource. Renewable Energy World 6(5):90-93. Cerca con Google

101. Reindl, D.T., Beckman, W.A., Duffie, J.A., (1990). Diffuse fraction correlations. Solar Energy 45(1):1-7. Cerca con Google

102. Ryuji, S., Toshio, Y., Hisashi, K., (1997). Regression of the sun declination and the equation of time for processing observed data of daylight illuminance and solar radiation. Technology Reports of the Osaka University 47(2267-2282):111-118. Cerca con Google

103. Seghouani, N., (2006). High resolution spectrum: Towards a new observational strategy. European Space Agency (ESA) – special publication. Noordwijk, The Netherlands. Cerca con Google

104. Spencer, J.W., (1971). Fourier series representation of the position of the sun. Search 2(5):172-173. Cerca con Google

105. Steiner, J.J., Minoura, T., Xiong, W., (2005). WeatherInfo: a web-based weather data capture system. Agronomy Journal 97(2):633-639. Cerca con Google

106. Stone, R.J., (1993). Improved statistical procedure for the evaluation of solar radiation estimation models. Solar Energy 51(4):289-291. Cerca con Google

107. Thekaekara, M.P., (1974). Data on incident solar energy. Supplement to the Proceedings of the Twentieth Annual Meeting of the Institute for Environmental Science 21. Cerca con Google

108. Ulgen, K., Hepbasli, A., (2004). Solar radiation models. Part 1: a review. Energy Source 26(5):507-520. Cerca con Google

109. Wenham, S.R., Green, M.A., Watt, M.E., Corkish, R., (2000). Applied photovoltaics, 2nd Edition, Earthscan. London, UK. Cerca con Google

110. Whillier, A., (1965). Solar radiation graphs. Solar Energy 9:164. Cerca con Google

111. Yorukoglu, M., Celik, A.N., (2006). A critical review on the estimation of daily global solar radiation from sunshine duration. Energy Conversion & Management 47:2441-2450. Cerca con Google

112. Younes, S., Claywell, R., Muneer, T., (2006). Quality control of solar radiation data: present status and proposed new approaches. Energy 30:1533-1549. Cerca con Google

Web - references Cerca con Google

113. European Climate Assessment Dataset project – ECA&D Cerca con Google

http://eca.knmi.nl/ Vai! Cerca con Google

114. European Environmental Agency – EEA Cerca con Google

http://www.eea.europa.eu/ Vai! Cerca con Google

115. European Solar Radiation Atlas – CEC – Helioclim Cerca con Google

http://www.helioclim.org/esra/ Vai! Cerca con Google

116. National Climatic Data Center – NCDC Cerca con Google

http://www.ncdc.noaa.gov/ Vai! Cerca con Google

117. National Oceanic and Atmospheric Administration – NOAA Cerca con Google

http://www.noaa.gov/ Vai! Cerca con Google

118. Photovoltaic Geographical Information System – PVGIS Cerca con Google

http://re.jrc.ec.europa.eu/pvgis/ Vai! Cerca con Google

119. World Meteorological Organization – WMO Cerca con Google

http://www.wmo.int/ Vai! Cerca con Google

120. World Radiation Data Center – WRDC Cerca con Google

http://wrdc.mgo.rssi.ru/ Vai! Cerca con Google

Chapter 4 Cerca con Google

121. Al-Badi, A.H., Malik, A., Gastli, A., (2011). Sustainable Energy usage in Oman – opportunities and barriers. Renewable and Sustainable Energy Reviews 15:3780-3788. Cerca con Google

122. Alpert, D.J., Mancini, T.R., Houser, R.M., Grossman, J.W., James, W., Schissel, P., Carasso, M., Jorgensen, G., Scheve, M., (1991). Solar concentrator development in the United States. Solar Energy Materials 24(1-4):307-319. Cerca con Google

123. Bakos, G.C., (2009). Distributed power generation: a case study of small scale PV power plant in Greece. Applied Energy 86:1757-1766. Cerca con Google

124. Baur, C., Bett, A.W., Dimroth, F., Siefer, G., Meusel, M., Bensch, W., Köstler, W., Strobl, G., (2007). Triple-Junction III-V based concentrator solar cells: perspectives and challenges. Transactions of the ASME 129:258-265. Cerca con Google

125. Borton, D.N., (2010). Distributed industrial scale hybrid solar concentrator photovoltaics and thermal energy. Proceedings of the 4th International Conference on energy Sustainability – ASME 431-433. Cerca con Google

126. Cheknane, A., Benyoucef, B., Chaker, A., (2006). Performance of concentrator solar cells with passive cooling. Semiconductor Science and Technology 21:144-147. Cerca con Google

127. Convery, M.R., (2011). Closed-loop control for power tower heliostats. Proceeding of SPIE 8108, High and Low Concentrator Systems for Solar Electric Applications VI. Cerca con Google

128. Cotal, H., Fetzer, C., Boisvert, J., Kinsey, G., King, R., Hebert, P., Yoon, H., Karam, N., (2009). III-V multijunction solar cells for concentrating photovoltaics. Energy and Environmental Science 2:174-192. Cerca con Google

129. Deambi, S., Chaurey, A., (1992). Fixing the sunshine through photovoltaic concentrators: an overview of recent achievements. RERIC International Energy Journal 14(1):1-15. Cerca con Google

130. Faiman, D., (2004). Terrestrial solar power plants – current perspectives and long term visions. Proceedings of the 4th International Conference on Solar Power from Space. Cerca con Google

131. Fluri, T.S., (2009). The potential of concentrating solar power in South Africa. Energy Policy 37:5075-5080. Cerca con Google

132. Gharavi, H., Ghafurian, R., (2011). Smart grid: the electric energy system of the future. Proceedings of the IEEE, Smart grid: the electric energy system of the future 99(6):917-921. Cerca con Google

133. Gombert, A., Heile, I., Wüllner, J., Gerstmaier, T., Van Riesen, S., Gerster, E., Röttger, M., Lerchenmüller, H., (2010). Recent progress in concentrator photovoltaics. Proceedings of SPIE7725, Photonics for Solar Energy Systems III. Cerca con Google

134. Gudimetla, B., Katiraei, F., Romero Agüero, J., Enslin, J.H.R., Alatrash, H., (2012). Integration of micro-scale photovoltaic distributed generation on power distribution systems: dynamic analyses. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference. Cerca con Google

135. Hang, Q., Jun, Z., Xiao, Y., Junkui, C., (2008). Prospect of concentrating solar power in China – the sustainable future. Renewable and Sustainable Energy Reviews 12:2505-2514. Cerca con Google

136. Janjai, S., Laksanaboonsong, J., Seesaard, T., (2011). Potential application of concentrating solar power systems for the generation of electricity in Thailand. Applied Energy 88:4960-4967. Cerca con Google

137. Jayarama Reddy, P., (2012). Solar power generation – technology, new concepts & policy. CRC Press - Taylor & Frencis Group ed. London, UK. Cerca con Google

138. Kalagirou, S.A., (2004). Solar thermal collectors and applications. Progress in Energy and Combustion Science 30:231-295. Cerca con Google

139. Kaygusuz, K., (2011). Prospect of concentrating solar power in Turkey: the sustainable future. Renewable and Sustainable Energy Reviews 15:808-814. Cerca con Google

140. Leutz, R., Suzuki, A., Akisawa, A., Kashiwagi, T., (1999). Deisgn of a nonimaging Fresnel lens for solar concentrators. Solar Energy 65(6):379-387. Cerca con Google

141. Lo, A., Arenberg, J., (2006). New architecture for space telescopes uses Fresnel lenses. SPIE newsroom – The international Society for Optical Engineering 10.1117/2.1200608.0333. Cerca con Google

142. Luque, A., Andreev, V., (2007). Concentrator photovoltaics. Springer ed. Berlin, Germany. Cerca con Google

143. Machinda, G.T., Chowdhury, S., Arscott, R., Chowdhury, S.P., Kibaara, S., (2011). Concentrating solar thermal power technologies: a review. Proceedings of 2011 Annual IEEE India Conference: Engineering Sustainable Solutions – INDICON – 2011. Cerca con Google

144. McConnell, R., Kurtz, S., Symko-Davies, M., (2005). Concentrator photovoltaic technologies. Refocus 6(4):35-39. Cerca con Google

145. Miles, R.W., Hynes, K.M., Forbes, I., (2005). Photovoltaic solar cells: an overview of state-of-the-art cell development and environmental issues. Progress in Crystal Growth and Characterization of Materials 51:1-42. Cerca con Google

146. Müller-Steinhagen, H., Trieb, F., (2004). Concentrating solar power – a review of the technology. Ingenia 18. Cerca con Google

147. Noone, C.J., Torrilhon, M., Mitsos, A., (2012). Heliostat field optimization: a new computationally efficient model and biomimetic layout. Solar Energy 86:792-803. Cerca con Google

148. Pavlović, T.M., Radonjić, I.S., Milosavljević, D.D., Pantić, L.S., (2012). A review of concentrating solar power plants in the world and their potential use in Serbia. Renewable and Sustainable Energy Reviews 16:3891-3902. Cerca con Google

149. Peng, L., Ya, G.S., (2011). Clean energy grid-connected technology based on smart grid. Energy Procedia 12:213-218. Cerca con Google

150. Pérez-Higueras, P., Muñoz, E., Almonacid, G., Vidal, P.G., (2011). High concentrator photovoltaics efficiencies: present status and forecast. Renewable and Sustainable Energy Reviews 15:1810-1815. Cerca con Google

151. Pitz-Paal, R., Amin, A., Bettzuge, M.O., Eames, P., Flamant, G., Fabrizi, F., Holmes, J., Kribus, A., Van der Laan, H., Lopez, C., Novo, F.G., Papagiannakopoulos, P., Pihl, E., Smith, P., Wagner, H.J., (2012). Concentrating solar power in Europe, the Middle East and North Africa: a review of development issues and potential to 2050. Journal of Solar Energy Engineering 134:0245011-0245015. Cerca con Google

152. Rabl, A., (1976). Comparison of solar concentrators. Solar Energy 18:93-111. Cerca con Google

153. Richter, C., (2009). Solar power and chemical energy systems. SolaPaces Annual Report 2009. International Energy Agency (IEA). Cerca con Google

154. Royne, A., Dey, C.J., Mills, D.R., (2005). Cooling of photovoltaic cells under concentrated illumination: a critical review. Solar Energy Materials and Solar Cells 86:451-483. Cerca con Google

155. Sánchez, M., Romero, M., (2006). Methodology for generation of heliostat field layout in central receiver systems based on yearly normalized energy surfaces. Solar Energy 80:861-874. Cerca con Google

156. Sharma, V.K., Colangelo, A., Spagna, G., (1995). Outlook for high efficiency solar cells to be used with and without concentration. Energy Conversion and Management 36(4):239-255. Cerca con Google

157. Sierra, C., Vázquez A.J., (2005). High solar Energy concentration with a Fresnel lens. Journal of Materials Science 40:1339-1343. Cerca con Google

158. Swanson, R.M., (2000). The promise of concentrators. Progress in Photovoltaics: Research and Applications. 8:93-111. Cerca con Google

159. Taylor, R.W., Davenport, R.L., (2010). Concentrating solar power opportunities. Proceedings of the World Energy Engineering Congress 1947-1987. Cerca con Google

160. Teo, H.G., Lee, P.S., Hawlader, M.N.A., (2012). An active cooling system for photovoltaic modules. Applied Energy 90:309-315. Cerca con Google

161. Ummadisingu, A., Soni, M.S., (2011). Concentrating solar power – technology, potential and policy in India. Renewable and Sustainable Energy Reviews 15:5169-5175. Cerca con Google

162. Van Kessel, T., Abduljabar, A., Khonkar, H., Moumen, N., Sandstrom, R., Al-Saaedi, Y., Martin, Y., Guha, S., (2009). Concentrator photovoltaic reliability testing at extreme concentrations up to 2000 suns. Proceedings of the 34th IEEE Photovoltaic Specialists Conference – PVSC 001020-001023. Cerca con Google

163. Wang, Z., Li, X., Yao, Z., Zhang, M., (2010). Concentrating solar power development in China. Journal of Solar Energy Engineering 132:0212031-0212038. Cerca con Google

164. Xie, W.T., Dai, R.Z., Wang, R.Z., Sumathy, K., (2011). Concentrated solar energy applications using Fresnel lenses: a review. Renewable and Sustainable Energy Reviews 15:2588-2606. Cerca con Google

165. Yamaguchi, M., Luque, A., (1999). High efficiency and high concentration in photovoltaics. IEEE Transactions on Electron Devices 46(10):2139-2143. Cerca con Google

166. Zhang, H., Wang, Z., Guo, M., Liang, W., (2009). Cosine efficiency distribution of heliostats field of solar thermal power tower plants. Proceedings of the 2009 Asia-Pacific Power and Energy Engineering Conference – APPEEC. Cerca con Google

Web – references Cerca con Google

167. Peatross, J., Ware, M., (2011). Physics of light and optics. Available on line: Cerca con Google

http://optics.byu.edu/BYUOpticsBook_2011c.pdf Vai! Cerca con Google

168. Tatum, J.B., (2006). Geometric optics. Available on line: Cerca con Google

http://orca.phys.uvic.ca/~tatum/goptics/goptics.zip Vai! Cerca con Google

Chapter 6 Cerca con Google

169. Abdullah, M.A., Yatim, A.H.M., Tan, C.W., Saidur, R., (2012). A review of maximum power point tracking algorithms for wind energy systems. Renewable and Sustainable Energy Reviews 16:3220-3227. Cerca con Google

170. Alata, M., Al-Nimr, M.A., Qaroush, Y., (2005). Developing a multipurpose sun tracking system using fuzzy control. Energy Conversion and Management 46:1229-1245. Cerca con Google

171. Alexandru, C., Pozna, C., (2008). Different tracking strategies for optimizing the energetic efficiency of a photovoltaic system. Proceedings of the AQTR’08 3:434-439. Cerca con Google

172. Al-Jumaily, K.E.J., Al-Kaysi, M.K.A., (1998). The study of the performance and efficiency of flat linear Fresnel lens collector with sun tracking system in Iraq. Renewable Energy 14(1-4):41-48. Cerca con Google

173. Al-Mohamad, A., (2004). Efficiency improvements of photo-voltaic panels using a sun-tracking system. Applied Energy 79:345-354. Cerca con Google

174. Al-Naima, F.M., Al-Taee, B.R., (2010). An FPGA Based Stand-alone Solar Tracking System. Proceedings of EnergyCon’10 513-518. Cerca con Google

175. Aracil, C., Quero, J.M., Castañer, L., Osuna, R., Franquelo, L.G., (2006). Tracking system for solar power plants. Proceedings of IECON’06 3024-3029. Cerca con Google

176. Bakos, G.C., (2006). Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement. Renewable Energy 31:2411-2421. Cerca con Google

177. Barchowsky, A., Parvin, J.P., Reed, G.F., Korytowski, M.J., Grainger, B.M., (2011). A comparative study of MPPT methods for distributed photovoltaic generation. Proceedings of the Innovative Smart Grid Technologies - IEEE PES 1-7. Cerca con Google

178. Bortolini, M., Gamberi, M., Accorsi, R., Manzini, R., Mora, C., Regattieri, A., (2010). Sun tracking system and testing for solar energy conversion systems. Proceedings of the XV Summer School “Francesco Turco” 257-262. Cerca con Google

179. Bortolini, M., Gamberi, M., Graziani, A., Manfroni, M., Manzini, R., (2012). Hybrid strategy for bi-axial solar tracking system. Journal of Control Engineering and Technology 2(4):130-142. Cerca con Google

180. Chen, Y.T., Chong, K.K., Lim, C.S., Lim, B.H., Tan, K.K,, Aliman, O., Bligh, T.P., Tan, B.K., Ismail, G., (2002). Report of the first prototype of non-imaging focusing heliostat and its application in high temperature solar furnace. Solar Energy 72(6):531-544. Cerca con Google

181. Chin, C.S., Babu, A., McBride, W., (2011). Design, modeling and testing of a standalone single axis active solar tracker using MATLAB/Simulink. Renewable Energy 36:3075-3090. Cerca con Google

182. Chong, K.K., Wong, C.W., (2009). General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector. Solar Energy 83:298-305. Cerca con Google

183. Chong, K.K., Wong, C.W., (2010). Open-loop azimuth-elevation sun-tracking system using on-axis general sun-tracking formula for achieving tracking accuracy of below 1 mrad. Proceedings of PVSC’10 3019-3024. Cerca con Google

184. Chong, K.K., Tan, M.H., (2011). Range of motion study for two different sun-tracking methods in the application of heliostat field. Solar Energy 85:1837-1850. Cerca con Google

185. Clifford, M.J., Eastwood, D., (2004). Design of a novel passive solar tracker. Solar Energy 77:269-280. Cerca con Google

186. Davies, P.A., (1993). Sun-tracking mechanism using equatorial and ecliptic axes. Solar Energy 50(6):487-489. Cerca con Google

187. Edwards, B.P., (1978). Computer based sun following system. Solar Energy 21:491-496. Cerca con Google

188. Edwards, B.P., (1981). A computational alignment method for paraboloidal collectors. Solar Energy 26:121-125. Cerca con Google

189. Fairbanks, J.W., Morse, F.H., (1972). Passive solar array orientation devices for terrestrial application. Solar Energy 14:67-79. Cerca con Google

190. Grena, R., (2008). An algorithm for the computation of the solar position. Solar Energy 82:462-470. Cerca con Google

191. Guo, M., Wang, Z., Zhang, J., Sun, F., Zhang, X., (2011). Accurate altitude-azimuth tracking angle formulas for a heliostat with mirror-pivot offset and other fixed geometrical errors. Solar Energy 85:1091-1100. Cerca con Google

192. Hession, P.J., Bonwick, W.J., (1984). Experience with a sun tracker system. Solar Energy 32(1):3-11. Cerca con Google

193. Hossain, E., Muhida, R., Ali, A., (2008). Efficiency Improvement of Solar Cell Using Compound Parabolic Concentrator and Sun Tracking System. Proceedings of Electrical Power and Energy Conference. Cerca con Google

194. Huang, B.J., Ding, W.L., Huang, Y.C., (2011). Long-term field test of solar PV power generation using one-axis 3-position sun tracker. Solar Energy 85:1935-1944. Cerca con Google

195. Ishaque, K., Salam, Z., (2013). A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition. Renewable and Sustainable Energy Reviews 19:475-488. Cerca con Google

196. Kalogirou, S.A., (1996). Design and construction of a one-axis sun-tracking system. Solar Energy 57(6):465-469. Cerca con Google

197. Kang, D., Martínez, E.A., Chaparro, E., (2011). Solar Tracker System Based on a Digital Heuristic Controller. Proceedings of Trondheim Power Tech’11. Cerca con Google

198. Karimov, K.S., Saqib, M.A., Akhter, P., Ahmed, M.M., Chattha, J.A., Yousafzai, S.A., (2004). A simple photo-voltaic tracking system. Solar Energy Materials and Solar Cells 87:49-59. Cerca con Google

199. Koyuncu, B., Balasubramanian, K., (1991). A microprocessor controlled automatic sun tracker. IEEE Transaction on Consumer Electronics 37(4):913-917. Cerca con Google

200. Li, Z.M., Zhou, R., (2011). Sun tracker design based on AVR. Proceedings of APPEEC’11. Cerca con Google

201. Lu, H.C., Shih, T.L., (2010). Fuzzy System Control Design with Application to Solar Panel Active Dual-Axis Sun Tracker System. Proceedings of SCM’10 1878-1883. Cerca con Google

202. Luque, A., Andreev V., (2007). Concentrator Photovoltaics. Springer ed. Berlin, Germany. Cerca con Google

203. Lynch, W.A., Salameh, Z.M., (1990). Simple electro-optically controlled dual-axis sun tracker. Solar Energy 45(2):65-69. Cerca con Google

204. Mashohor, S., Samsudin, K., Noor, A.M., Rahman, A.R.A., (2008). Evaluation of generic algorithm based solar tracking system for photovoltaic panels. Proceedings of ICSET’08 269-273. Cerca con Google

205. Mosher, D.M., Boese, R.E., Soukup, R.J., (1977). The advantages of sun tracking for planar silicon solar cells. Solar Energy 19:91-97. Cerca con Google

206. Mousazadeh, H., Keyhani, A., Javadi, A., Mobli, H., Abrinia, K., Sharifi, A., (2009). A review of principle and sun-tracking methods for maximizing solar systems output. Renewable and Sustainable Energy Reviews 13:1800-1818. Cerca con Google

207. Ngan, M.S., Tan, C.W., (2011). A study of maximum power point tracking algorithms for stand-alone photovoltaic systems. IEEE Applied Power Electronics Colloquium 22-27. Cerca con Google

208. Nuwayhid, R.Y., Mrad, F., Abu-Said, R., (2001). The realization of a simple solar tracking concentrator for university research applications. Renewable Energy 24:207-222. Cerca con Google

209. Ponniran, A., Hashim, A., Munir, H.A., (2011). A design of single axis sun tracking system. Proceedings of PEOCO’11 107-110. Cerca con Google

210. Poulek, V., Libra, M., (1998). New solar tracker. Solar Energy Materials and Solar Cells 51:113-120. Cerca con Google

211. Ranganathan, R., Mikhael, W., Kutkut, N., Batarseh, I., (2010). Adaptive sun tracking algorithm for incident energy maximization and efficiency improvement of PV panels. Renewable Energy 36:2623-2626. Cerca con Google

212. Reza Reisi, A., Moradi, M.H., Jamasb, S., (2013). Classification and comparison of maximum power point tracking techniques for photovoltaic system: a review. Renewable and Sustainable Energy Reviews 19:433-443. Cerca con Google

213. Roth, P., Georgiev, A., Boudinov, H., (2004). Design and construction of a system for sun-tracking. Renewable Energy 29:393-402. Cerca con Google

214. Rubio, F.R., Ortega, M.G., Gordillo, F., López-Martínez, M., (2007). Application of a new control strategy for sun tracking. Energy Conversion and Management 48:2174-2184. Cerca con Google

215. Rumala, S.S.N., (1986). A shadow method for automatic tracking. Solar Energy 37(3):245-247. Cerca con Google

216. Salas, V., Olías, E., Barrado, A., Lázaro, A., (2006). Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Solar Energy Materials & Solar Cells 90:1555-1578. Cerca con Google

217. Sefa, I., Demirtas, M., Çolak, I., (2009). Application of one-axis sun tracking system. Energy Conversion and Management 50:2709-2718. Cerca con Google

218. Seme, S., Štumberger, G., (2011). A novel prediction algorithm for solar angles using solar radiation and differential evolution for dual-axis sun tracking purposes. Solar Energy 85:2757-2770. Cerca con Google

219. Shama, F., Roshani, G.H., Ahmadi, A., Roshani, S., (2011). A novel and experimental study for a two-axis sun tracker. Proceedings of APPEEC’11. Cerca con Google

220. Subudhi, B., Pradhan, R., (2012). A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Transactions on Sustainable Energy 4(1):89-98. Cerca con Google

221. Tang, R., Yu, Y., (2010). Feasibility and optical performance of one axis three positions sun-tracking polar-axis aligned CPCs for photovoltaic applications. Solar Energy 84:1666-1675. Cerca con Google

222. Tao, Y., Guo, W., (2010). Study on tracking strategy of automatic sun-tracking system based on CPV Generation. Proceedings of ISDEA’10 506-509. Cerca con Google

223. Vorobiev, P., Vorobiev, Y., (2010). Automatic sun tracking solar electric system for applications on transport. Proceedings of CCE’10 66-70. Cerca con Google

224. Wai, R.J., Wang, W.H., Lin, J.Y., (2006). Grid-connected photovoltaic generation system with adaptive step-perturbation method and active sun tracking scheme. Proceedings of IECON’06 224-228. Cerca con Google

225. Wu, C.S., Wang, Y.B., Liu, S.Y., Peng, Y.C., Xu, H.H., (2008). Study on automatic sun-tracking technology in PV generation. Proceedings of DRPT’08 2586-2591. Cerca con Google

226. Xiao, W., Elnosh, A., Khadkikar, V., Zeineldin, H., (2011). Overview of maximum power point tracking technologies for photovoltaic power systems. Proceedings of 37th Annual Conference on IEEE Industrial Electronics Society 3900-3905. Cerca con Google

227. Xie, Y., Guo, W., (2010). The design of ARM-based automatic sun tracking system. Proceedings of ISDEA’10 608-611. Cerca con Google

228. Zhou, Y., Zhu, J., (2010). Application of fuzzy logic control approach in a microcontroller-based sun tracking system. Proceedings of ICIE’10 161-164. Cerca con Google

229. Zogbi, R., Laplaze, D., (1984). Design and construction of a sun tracker. Solar Energy 33(3-4):369-372. Cerca con Google

Chapter 7 Cerca con Google

230. Amoh, H., (2004). Design for multi-solar simulator. Proceedings of SPIE – The International Society for Optical Engineering 5520:192-199 Denver (Colorado, USA). Cerca con Google

231. Chen, C.F., Lin, C.H., Jan, H.T., (2010). A solar concentrator with two reflection mirrors designed by using a ray tracing method. Optik 121:1042-1051. Cerca con Google

232. Codd, D.S., Carlson, A., Rees, J., Slocum, A.H., (2010). A low cost high flux solar simulator. Solar Energy 84:2202-2212. Cerca con Google

233. Cooper, T., Steinfeld, A., (2011). Derivation of the angular dispersion error distribution of mirror surfaces for Monte Carlo ray-tracing applications. Journal of Solar Energy Engineering 133(4) 44501 1-4. Cerca con Google

234. Domínguez, C., Antón, I., Sala, G., (2008). Solar simulator for concentrator photovoltaic systems. Optics express 16(19):14894-14901. Cerca con Google

235. Domínguez, C., Askins, S., Antón, I., Sala, G., (2009). Characterization of five CPV module technologies with the Helios 3198 solar simulator. IEEE 1004-1008. Cerca con Google

236. Hussain, F., Othman, M.Y.H., Yatim, B., Ruslan, H., Sopian, K., (2011). Fabrication and irradiance mapping of low cost solar simulator for indoor testing of solar collector. Journal of Solar Energy Engineering 133(4) 44502 1-4. Cerca con Google

237. Johnston, G., (1995). On the analysis of surface error distributions on concentrated solar collectors. Transations of the ASME 117:294-296. Cerca con Google

238. Kruger, K.R., Davidson, J.H., Lipiński, W., (2011). Design of a new 45kWe high-flux solar simulator for high-temperature solar thermal and thermo-chemical research. Journal of Solar Energy Engineering 133(4) 11013 1-8. Cerca con Google

239. Meng, Q., Wang, Y., Zhang, L., (2011a). Irradiance characteristics and optimization design of a large-scale solar simulator. Solar Energy 85:1758-1767. Cerca con Google

240. Meng, Q., Wang, Y., (2011b). Testing and design of a low-cost large scale solar simulator. Proceedings of SPIE – The International Society for Optical Engineering 8128 San Diego (California, USA). Cerca con Google

241. Ota, Y., Nishioka, K., (2010). 3-dimensional simulator for concentrator photovoltaic modules using ray-trace and circuit simulator. Proceedings of the 35th IEEE Photovoltaic Specialists Conference, PVSC 2010 3065-3068 Honolulu (Hawaii, USA). Cerca con Google

242. Petrash, J., Coray, P., Meier, M., Brack, M., Hӓberling, P., Wuillemin, D., Steinfeld, A., (2007). A novel 50kW 11.000 suns high-flux solar simulator based on an array of xenon arc lamps. Journal of Solar Energy Engineering 129:405-411. Cerca con Google

243. Pravettoni, M., Galleano, R., Dunlop, E.D., Kenny, R.P., (2010). Characterization of a pulsed solar simulator for concentrator photovoltaic cell calibration. Measurement Science and Technology 21:1-8. Cerca con Google

244. Renh, H., Hartwig, U., (2010). A solar simulator design for concentrating photovoltaics. Proceedings of SPIE – The International Society for Optical Engineering 7785 San Diego (California, USA). Cerca con Google

245. Steinfeld, A., Fletcher, E.A., (1988). Solar energy absorption efficiency of an ellipsoidal receiver-reactor with specularly reflecting walls. Energy 13(8):609–614. Cerca con Google

246. Steinfeld, A., (1991). Exchange factor between two spheres placed at the foci of a specularly reflecting ellipsoidal cavity. International Communications in Heat and Mass Transfer 18:19-26. Cerca con Google

Web - reference Cerca con Google

247. OSRAM company website Cerca con Google

http://www.osram.com Vai! Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record