Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Auriemma, Fulvio (2008) Particle transport in Reversed Field Pinch plasmas. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
4Mb

Abstract (inglese)

This thesis is aimed at studying the transport of particles
in magnetically confined thermonuclear plasma.
The understanding of the transport properties in
devices for fusion plasmas is one of the key factor to keep the
correct operating conditions in a future fusion reactor.
Indeed one of the open issues in magnetic fusion studies,
which prevents the realization of an efficient thermonuclear
reactor, is the high level of energy and particle transport in
the direction perpendicular to the confining magnetic
field. This phenomenon reduces confinement properties and has to be solved in order to obtain energy from thermonuclear fusion processes.
The amount of particle and energy transport experimentally observed cannot be interpreted in the framework of the classical theory. Understanding the underlying physics of this anomalous transport remains the outstanding critical physical issue in fusion research.
Nowadays it is generally accepted that anomalous transport
is partially due to magnetic chaos owing to the magnetic
perturbations of the equilibrium magnetic fields. The Reversed
Field Pinch (RFP) configuration, with its wide spectrum of
magnetic perturbations, offers a suitable testbed to verify the
theory and to reveal the inner mechanism underlying the transport in fusion magnetic devices. The magnetic perturbations, also dubbed dynamo or MagnetoHydroDynamic (MHD) modes, sustain the RFP configuration against the resistive magnetic diffusion. Unfortunately they have global negative effects: as already stated they lead to the stochastization of the equilibrium magnetic field over a large part of the plasma core and moreover their phase locking generates an interference pattern that results in a global distortion of the plasma column: the so-called Locked Mode (LM) that has its maximum effect at a well defined toroidal position.
Many techniques have been tested with the aim of reducing the MHD modes. The most effective are the Pulsed Poloidal Current Drive (PPCD) that modifies the internal current profile and the active control of the radial field at the edge by means of a system of active coils, the so-called Virtual Shell (VS).
All the transport mechanisms acting inside the plasma modify the shape of the density profile. The density is measured by means of interferometer: a non-perturbative diagnostic that utilizes electromagnetic waves to probe the plasma.

A part of this thesis will be addressed to determine the global particle diffusion coefficients in relation to the magnetic perturbations amplitude. This analysis has been carried on TPE-RX device: a large RFP machine sited in Tsukuba (Jp). In order to study the global confinement properties, the transport analysis has been carried out analyzing data collected far from to the LM, where its local effect could be neglected.
A transport code (in our case TED, acronym of TEmperature and Density) computes the density profile according to transport parameters supplied by the user. The computed profile is compared to the experimental one, determining the correctness of the model assumed to provide the transport coefficients. With this analysis it has been confirmed that damping the MHD modes amplitude by means of the PPCD
the particle confinement globally improves and the diffusion coefficient is strongly reduced in the central zone of the plasma. This result has been further confirmed by the density behaviour during pellet injection experiments, where the particles released by the pellet in PPCD discharges are better confined inside the plasma than in plasmas with standard magnetic perturbations.

The dynamo modes, as already stated, generate a global distortion of the Last Close Flux Surface (LCFS) of the plasma: the LM. The plasma cross section results shrunk in a wide toroidal region of about 100° and bulging in another region of the similar toroidal range. Moreover an helical distortion of the column with magnetic lines that directly hit the wall is present. The VS system installed at RFX-mod (the largest RFP device in the world with design maximum plasma current of 2 MA, located in Padova) provides an important reduction
of the helical perturbation but is less effective on healing the shrinking of the LCFS, highlighting for the first time its effects on plasma confinement.
The two toroidal regions with different cross section have been characterized studying the density profile, the density fluctuations and the magnetic fluctuations: the shrunk region
shows an improved transport, providing the first experimental evidence of toroidal asymmetric confinement properties in an RFP plasma.
Moreover the RFX-mod pulses are affected by spontaneous reorganization of the internal current and magnetic profiles, the so-called Dynamo Relaxation Events (DREs). The density behaviour and the magnetic topology during the DREs have been analyzed, confirming the different nature of the shrunk and the bulging region of the plasma.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Buffa, Antonio
Correlatore:Martini, Stefano
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > INGEGNERIA INDUSTRIALE > ENERGETICA
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):thermonuclear fusion, particle transport, RFX, PPCD, DRE, interferometry
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/03 Fisica della materia
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Elettrica
Codice ID:537
Depositato il:02 Ott 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] http://www.iter.org. Vai! Cerca con Google

[2] http://www.fusion-eur.org. Vai! Cerca con Google

[3] R.J. Goldston and P.H. Rutherford. Introduction to Plasma Physics. Institute of Physics, 1995. Cerca con Google

[4] J.D.Lawson. Some criteria for a power producing thermonuclear reactor. In Proc. Phys. Soc. B, volume 70, 1957. Cerca con Google

[5] H.A.B.Bodin. The Reversed Field Pinch. Nuclear Fusion, 30(9):1717{1737, 1990. Cerca con Google

[6] Jeffrey P. Freidberg. Plasma Physics and Fusion Energy. Cambridge Press, 2007. Cerca con Google

[7] Harold P. Furth, John Killeen, and Marshall N. Rosenbluth. Finite- Resistivity Instabilities of a Sheet Pinch. Physics of Fluids, 6(4):459{484, 1963. Cerca con Google

[8] J.Wesson. Tokamaks. Claredon Press, 1987. Cerca con Google

[9] S. Ortolani and D.D. Schnack. Magnetohydrodynamics of Plasma Relaxation. World Scientific, Singapore, 1993. Cerca con Google

[10] J. B.Taylor. Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Field. Phys. Rev. Lett., 33(19):1139{1141, 1974. Cerca con Google

[11] Teruo Tamano, Wayne D. Bard, Cheng Chu, Yoshiomi Kondoh, Robert J. La Haye, Paul Ss Lee, Milton Saito, Michael Jj Schaffer, and Peter Ll Taylor. Observation of a new toroidally localized kink mode and its role in Reversed Field Pinch plasmas. Phys. Rev. Lett., 59(13):1444, Sep 1987. Cerca con Google

[12] R. Bartiromo and RFX team. Recent progress in reversed field pinch research in the RFX experiment. Nuclear Fusion, 39(11Y):1697{1705, 1999. Cerca con Google

[13] P Zanca and S Martini. m = 0 perturbations of the magnetic surfaces in an RFP. Plasma Physics and Controlled Fusion, 43(2):121{ 135, 2001. Cerca con Google

[14] H. Ji, A. F. Almagri, S. C. Prager, and J. S. Sarff. Time-Resolved Observation of Discrete and Continuous Magnetohydrodynamic Dynamo in the Reversed-Field Pinch Edge. Phys. Rev. Lett., Cerca con Google

73(5):668{671, Aug 1994. Cerca con Google

[15] P.R. Brusnell. Initial Result from the Rebuilt EXTRAP-T2R RFP Device. Plasma Phys. and Control. Fusion, 43:1457{1470, 2001. Cerca con Google

[16] R. Dexter, D. Kerst, T. Lovell, S. Prager, and J. Sprott. The Madison Symmetric Torus. Fusion Technol., 19:131, 1991. Cerca con Google

[17] Y. Yagi, S. Sekine, H. Sakakita, H. Koguchi, K. Hayase, Y. Hirano, I. Hirota, S. Kiyama, Y. Maejima, Y. Sato, T. Shimada, and K. Sugisaki. Design concept and confinement prediction of TPERX Cerca con Google

reversed-field pinch device. Fusion Engineering and Design, 45(4):409, 1999. Cerca con Google

[18] P. Sonato, G. Chitarin, P. Zaccaria, F. Gnesotto, S. Ortolani, A. Buffa, M. Bagatin, W.R. Baker, S. Dal Bello, P. Fiorentin, L. Grando, G. Marchiori, D. Marcuzzi, A. Masiello, S. Peruzzo, N. Pomaro, and G. Serianni. Machine modification for active MHD control in RFX. Fusion Engineering and Design, 66:161, 2003. Cerca con Google

[19] G.Rostagni. RFX: an expected step in RFP research. Fusion Engineering and Design, 25:301{313, 1995. Cerca con Google

[20] A. Alfier and R. Pasqualotto. New Thomson scattering diagnostic on RFX-mod. Review of Scientific Instruments, 78(1):013505, 2007. Cerca con Google

[21] P. Innocente and S. Martini. A two color multichord infrared interferometer for RFX. In Proceedings of the 9th topical conference on high temperature plasma diagnostics, volume 63, pages 4996{4998. AIP, 1992. Cerca con Google

[22] P. Innocente, S. Martini, A. Canton, and L. Tasinato. Upgrade of the RFX CO2 interferometer using in-vessel optics for extended edge resolution. In Proceedings of the eleventh topical conference on high temperature plasma diagnostics, volume 68, pages 694{697. AIP, 1997. Cerca con Google

[23] L. Carraro, E. Casarotto, R. Pasqualotto, M.E. Puiatti, F. Sattin, and P. Scarin. Impurity inux studies in the RFX reversed field pinch. Journal of Nuclear Materials, 220 - 222:646 { 649, 1995. Cerca con Google

[24] G. Serianni, T. Bolzonella, R. Cavazzana, G. Marchiori, N. Pomaro, L. Lotto, M. Monari, and C. Taliercio. Development, tests, and data acquisition of the integrated system of internal sensors Cerca con Google

for RFX. Review of Scienti_c Instruments, 75(10):4338{4340, 2004. Cerca con Google

[25] Andrea Murari, Paolo Franz, Luca Zabeo, Rosario Bartiromo, Lorella Carraro, Gianni Gadani, Lionello Marrelli, Piero Martin, Roberto Pasqualotto, and Marco Valisa. An optimized multifoil soft x-ray Cerca con Google

spectrometer for the determination of the electron temperature with high time resolution. Rev. Sci. Instrum., 70(1):581, 1999. Cerca con Google

[26] Paolo Franz, Lionello Marrelli, Andrea Murari, Gianluca Spizzo, and Piero Martin. Soft X ray tomographic imaging in the RFX reversed field pinch. Nucl. Fusion, 41(6):695, 2001. Cerca con Google

[27] A.Canton, Y.Hirano, P.Innocente, H.Koguchi, H.Sakakita, S.Sekine, T.Shimada, and Y.Yagi. Analysis of the Behaviour of Electron Density in the TPE-RX Reversed Field Pinch and Comparison Cerca con Google

with RFX. In 28th EPS Conference on Plasma Phys., number p1.034 in 25C, 18 - 22 June 2001. Cerca con Google

[28] H. Koguchi, T. Shimada, T. Asai, Y. Yagi, Y. Hirano, and H. Sakakita. Soft x-ray tomography system for the toroidal pinch experiment-RX reversed-field pinch. Review of Scientific Cerca con Google

Instruments, 75(10):4004{4006, 2004. Cerca con Google

[29] Y. Yagi et al. Bull. Electrotech. Lab., 53:270, 1988. (in Japanese). Cerca con Google

[30] J. Sheffield. The physics of magnetic fusion reactors. Rev.Mod.Phys., 66(3):1015{1103, 1994. Cerca con Google

[31] A.B. Rechester and M.N. Rosenbluth. Electron heat transport in a tokamak with destroyed magnetic surfaces. Phys.Rev.Lett., 40(1):38{41, 1978. Cerca con Google

[32] Harvey, R. W., McCoy, M. G., Hsu, J. Y., Mirin, and A. A. Electron Dynamics Associated with Stochastic Magnetic and Ambipolar Electric Fields. Phys. Rev. Lett., 47(2):102{105, Jul 1981. Cerca con Google

[33] D. Gregoratto, L. Garzotti, P. Innocente, S. Martini, and A. Canton. A Behaviour of Electron Density Profiles and Particle Transport Analysis in the RFX Reversed Field Pinch. Nuclear Fusion, Cerca con Google

38(8):1199{1213, 1998. Cerca con Google

[34] Thomas H. Stix. Magnetic Braiding in a Toroidal Plasma. Phys. Rev. Lett., 30(18):833{835, Apr 1973. Cerca con Google

[35] F. D'Angelo and R. Paccagnella. The stochastic diffusion process in reversed-field pinch. Phys.Plasmas, 3(6):2353{2364, 1996. Cerca con Google

[36] J. S. Sarff, S. A. Hokin, H. Ji, S. C. Prager, and C. R. Sovinec. Fluctuation and transport reduction in a reversed field pinch by inductive poloidal current drive. Phys. Rev. Lett., 72(23):3670{ 3673, Jun 1994. Cerca con Google

[37] B. E. Chapman, A. F. Almagri, J. K. Anderson, T. M. Biewer, P. K. Chattopadhyay, C.-S. Chiang, D. Craig, D. J. Den Hartog, G. Fiksel, C. B. Forest, A. K. Hansen, D. Holly, N. E. Lanier, R. O'Connell, Cerca con Google

S. C. Prager, J. C. Reardon, J. S. Sarff, M. D. Wyman, D. L. Brower, W. X. Ding, Y. Jiang, S. D. Terry, P. Franz, L. Marrelli, and P. Martin. High confinement plasmas in the Madison Symmetric Torus reversed-field pinch. Phys.Plasmas, 9(5):2061{2068, 2002. Cerca con Google

[38] R. Bartiromo, P. Martin, S. Martini, T. Bolzonella, A. Canton, P. Innocente, L. Marrelli, A. Murari, and R. Pasqualotto. Core Transport Improvement during Poloidal Current Drive in the RFX Reversed Cerca con Google

Field Pinch. Phys. Rev. Lett., 82(7):1462{1465, Feb 1999. Cerca con Google

[39] Y. Yagi, H. Koguchi, Y. Hirano, T. Shimada, H. Sakakita, S. Sekine, B. E. Chapman, and J. S. Sarff. Increased confinement improvement in a reversed-field pinch using double-pulsed poloidal current drive. Phys.Plasmas, 10(7):2925{2931, 2003. Cerca con Google

[40] L. Marrelli, A.Al_er, T. Bolzonella, F. Bonomo, P. Franz, G. Manduchi M. Gobbin, G. Marchiori, P.Martin, R.Pasqualotto, P.Piovesan, and G.Spizzo. Experiments of active control of internal resistive Cerca con Google

MHD modes in RFX-mod. In 33rd EPS Conference on Plasma Phys., number p5.092 in 30I, 19 { 23 June 2006. Cerca con Google

[41] Paolo Zanca, Lionello Marrelli, Gabriele Manduchi, and Giuseppe Marchiori. Beyond the intelligent shell concept: the clean-modecontrol. Nuclear Fusion, 47(11):1425{1436, 2007. Cerca con Google

[42] S.L. Milora, W.A. Houlberg, L.L. Lengyel, and V. Mertens. Pellet fuelling. Nuclear Fusion, 35(6):657{754, 1995. Cerca con Google

[43] P. B. Parks and R. J. Turnbull. Effect of transonic ow in the ablation cloud on the lifetime of a solid hydrogen pellet in a plasma. Phys. Fluids, 21:1735{1741, 1978. Cerca con Google

[44] B. Pegourie, J.-M. Picchiottino, H.-W. Drawin, A. Geraud, and M. Chatelier. Pellet ablation studies on TORE SUPRA. Nuclear Fusion, 33(4):591{600, 1993. Cerca con Google

[45] L.R. Baylor, A. Geraud, W.A. Houlberg, D. Frigione, M. Gadeberg, T.C. Jernigan, J. De Kloe, P. Kupschus, B.V. Kuteev, P. Lang, A.A.M. Oomens, A.L. Qualls, K.N. Sato, and G.L. Schmidt. An international pellet ablation database. Nuclear Fusion, 37(4):445{50, 1997. Cerca con Google

[46] M. A. Heald and C. B. Warton. Plasma Diagnostic with Microwaves. Wiley, New York, 1965. Cerca con Google

[47] P. Innocente, S. Martini, and A. Schio. Development of a Vibrationcompensated Interferometer for the RFX experiment. Review of Scientific Instruments, 61:2885, 1990. Cerca con Google

[48] A.Canton, R.Lorenzini, F.Auriemma, L.Carraro, P.Innocente, and S.Martini. Density profiles and particle confinement in the modified RFX Reversed Field Pinch. In 32nd EPS Conference on Plasma Phys., number p4.027 in 29C, 27 June { 1 July 2005. Cerca con Google

[49] R. Lorenzini, D. Terranova, F. Auriemma, R. Cavazzana, P. Innocente, S. Martini, G. Serianni, and M. Zuin. Toroidally asymmetric particle transport caused by phase-locking of MHD modes in RFXmod. Nuclear Fusion, 47(11):1468{1475, 2007. Cerca con Google

[50] A. Canton, Y. Hirano, P. Innocente, H. Koguchi, and R. Lorenzini. Electron density behaviour in the TPE-RX reversed field pinch experiment and comparison with the particle transport model of the RFX experiment. Plasma Phys. Control. Fusion, 46, 2004. Cerca con Google

[51] R. Lorenzini, L. Garzotti, B. Pégourié, P. Innocente, and S. Martini. Analysis and modelling of plasma response to pellet injection in RFX. Plasma Physics and Controlled Fusion, 44(2):233{252, 2002. Cerca con Google

[52] Atomic Data and Analysis Structure Database, 1994. (JET Joint Undertaking Report, JET-IR(94)-06). Cerca con Google

[53] K.L. Bell et al. Recommended Data on the Electron Impact Ionization of Light Atoms and Ions. Journal of Physical and Chemical Reference Data, 12:891, 1983. Cerca con Google

[54] R. Lorenzini and F. Auriemma and A. Canton and L. Carraro. Particle transport in reversed field pinch helium plasmas. Physics of Plasmas, 13(11), 2006. Cerca con Google

[55] M.H. Hughes and D.E. Post. A Monte Carlo Algorithm for Calculating Neutral Gas Transport in Cylindrical Plasma. Journal of Computational Physics, 28:43{55, 1978. Cerca con Google

[56] Atomic Data for Fusion, editor. Collision of H, H2, He and Li Atoms and Ions with Atoms and Molecules, volume 1. C.F. Barnet, 1990. Cerca con Google

[57] J. P. Biersack and L. G. Haggmark. A Monte Carlo computer program for the transport of energetic ions in amorphous targets. Nucl. Instrum. Methods, 174:257, 1980. Cerca con Google

[58] Paolo Zanca and David Terranova. Reconstruction of the magnetic perturbation in a toroidal reversed field pinch. Plasma Physics and Controlled Fusion, 46(7):1115{1141, 2004. Cerca con Google

[59] P. Innocente, A. Canton, R. Lorenzini, D. Terranova, A. Alfier, E. Martines, F. Bonomo, and R. Pasqualotto. Particles and energy stochastic transport in the RFX-mod reversed field pinch experiment. In 34th EPS Conference on Plasma Phys., number p2.051 in 31F, 2 { 6 July 2007. Cerca con Google

[60] M. Giubbilei, P. Martin, and S. Ortolani. A Mechanism for Plasma Heating in Driven Relaxing Magnetic Field Configuration. Plasma Phys. Control. Fusion, 34(5):405{411, 1990. Cerca con Google

[61] L.Carraro, S.Costa, M.E.Puiatti, F.Sattin, P.Scarin, and M.Valisa. Reconstruction of the radiation emitted by the intrinsic impurities in the RFX reversed field pinch. Plasma Phys. Control. Fusion, 42(6):731{741, 2000. Cerca con Google

[62] C. DeMichelis and M. Mattioli. Spectroscopy and impurity behaviour in fusion plasmas. Rep.Prog.Phys., 47:1233, 1984. Cerca con Google

[63] L Frassinetti, K Yambe, S Kiyama, Y Hirano, H Koguchi, and H Sakakita. Turbulence and particle confinement in a reversed- field pinch plasma. Plasma Phys. Control. Fusion, 49(3):199{209, 2007. Cerca con Google

[64] F. Auriemma, D. Terranova, H. Koguchi, Y. Hirano, P. Innocente, S.Kiyama, R. Lorenzini, and H. Sakakita. Interaction of pellets with plasma in standard and advanced regimes at TPE-RX reversed Cerca con Google

field pinch experiment. In 34th EPS Conference on Plasma Phys., number p4.156 in 31F, 2 { 6 July 2007. Cerca con Google

[65] P. Innocente, B. Boscolo, S. Martini, and L. Garzotti. Threedimensional time-resolved H pellet trajectory reconstruction in RFX by position sensitive detector H? diagnostic. Proceedings of the 12th topical conference on high temperature plasma diagnostics, 70(1):943{946, 1999. Cerca con Google

[66] P. Zanca and S. Martini. Reconstruction of the plasma surface in a RFP in the presence of non-axisymmetric perturbations. Plasma Physics and Controlled Fusion, 41(10):1251{1275, 1999. Cerca con Google

[67] G. Spizzo, S. Cappello, A. Cravotta, D. F. Escande, I. Predebon, L. Marrelli, P. Martin, and R. B. White. Transport Barrier inside the Reversal Surface in the Chaotic Regime of the Reversed- Field Pinch. Physical Review Letters, 96(2):025001, 2006. Cerca con Google

[68] P. Zanca and F. Sattin. An equilibrium model for RFP plasmas in the presence of resonant tearing modes. Plasma Physics and Controlled Fusion, 45(1):1{26, 2003. Cerca con Google

[69] Lipschultz B. et al. Nucl. Fusion, 24:977, 1984. Cerca con Google

[70] Valisa M. et al. In Proc. 21st Int. Conf. on Fusion Energy, 2006. Cerca con Google

[71] Roca Ch.F., Innocente P., and Martini S. Experiments of active control of internal resistive MHD modes in RFX-mod. In 20th EPS Conference on Plasma Phys., 17C, 26 { 30 July 1993. Cerca con Google

[72] N. E. Lanier, D. Craig, J. K. Anderson, T. M. Biewer, B. E. Chapman, D. J. Den Hartog, C. B. Forest, S. C. Prager, D. L. Brower, and Y. Jiang. An investigation of density uctuations and electron Cerca con Google

transport in the Madison Symmetric Torus reversed-field pinch. Physics of Plasmas, 8(7):3402{3410, 2001. Cerca con Google

[73] R. Lorenzini, F. Auriemma, P. Innocente, E. Martines, S. Martini, and D. Terranova. Confinement loss during Dynamo Relaxation Event in RFX-mod. Plasma Phys. and Control. Fusion, 50(3), 2008. Cerca con Google

accepted for publication. Cerca con Google

[74] P. Innocente, T. Bolzonella, S. Cappello, and D. Terranova. Magnetic relaxation and discrete dynamo action in RFX. In 27th EPS Conference on Plasma Phys., number p4.026 in 24B, 12 - 16 June 2000. Cerca con Google

[75] M. Valisa, T. Bolzonella, L. Carraro, E. Casarotto, S. Costa, L. Garzotti, P. Innocente, S. Martini, R. Pasqualotto, M. E. Puiatti, R. Pugno, and P. Scarin. Locked modes induced plasma-wall interactions in RFX. Journal of Nuclear Materials, 241 - 243:988{992, 1997. Cerca con Google

[76] R. Lorenzini, D. Terranova, A. Al_er, P. Innocente, E. Martines, R. Pasqualotto, and P. Zanca. Single helical axis states in reversed field pinch plasmas. Phys. Rev. Lett., -(-):{, -. submitted to Cerca con Google

PRL in January 2008. Cerca con Google

[77] T. Bolzonella, P. Martin, S. Martini, L. Marrelli, R. Pasqualotto, and D. Terranova. Quasistationary Magnetic Fluctuation Control in the Reversed Field Pinch: A Proof of Principle Experiment. Phys. Rev. Lett., 87(19):195001, Oct 2001. Cerca con Google

[78] D. F. Escande, R. Paccagnella, S. Cappello, C. Marchetto, and F. D'Angelo. Chaos Healing by Separatrix Disappearance and Quasisingle Helicity States of the Reversed Field Pinch. Phys. Rev. Lett., 85(15):3169{3172, Oct 2000. Cerca con Google

[79] J.A. Snipes, E.S. Marmar, J.L. Terry, M.G. Bell, R.V. Budny, K.W. Hill, Di. Jassby, D.K. Mansfield, D.M. Meade, H.K. Park, J.D. Strachan, B.C. Stratton, E.J. Synakowski, G. Taylor, D.N. Ruzic, and M. Shaheen. Wall conditioning with impurity pellet injection on TFTR. Journal of Nuclear Materials, 196 - 198:686 { 691, 1992. Cerca con Google

[80] M.L. Apicella, G. Mazzitelli, V. Pericoli Ridolfini, V. Lazarev, A. Alekseyev, A. Vertkov, R. Zagórski, and FTU Team. First experiments with lithium limiter on FTU. Journal of Nuclear Materials, 363 - 365:1346 { 1351, 2007. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record