Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Kaless, Gabriel (2013) Stability analysis of gravel-bed rivers: comparison between natural rivers and disturbed rivers due to human activities. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

The present research studies fluvial processes –water and sediment flows – that define the shape of an alluvial channel. The relationship between forms and processes is complex because they are interrelated: the channel shape influences the water flow which drives the sediments movement on the channel bed that modifies the channel form, closing a circle. Although, the objective of the work is a very old question in fluvial studies, to explain the shape of rivers in terms of external controls and internal processes, the problem has not been solved yet and this study provies new elements for its solution.

The start of the quest for linking process and forms can be found in the development of regime theories which consists of a set of equations to estimate the width, depth and slope of a stable channel if liquid discharge and sediment supply are known. Regime theories were created in the XIX century within the context of hydraulic engineering in order to design stable irrigation canals (e.g. Kennedy, 1895; Lacey, 1930; Lane, 1955). Leopold and Maddock (1953) introduced the quantitative concept of hydraulic geometry into the context of fluvial geomorphology and showed that alluvial rivers adjust both their slope and channel in order to be in equilibrium for a certain representative discharge. The first studies were eminently empiric, hence there has also been an intense theoretical work focused on explaining regime relations. Parker (1978) demonstrated the importance of bank erodibility, and the need of using improved hydraulic models to calculate the shear stress distribution on irregular cross-sections.

Alternative conceptual approaches have been used to explore geometrical channel properties. Langbein & Leopold (1962) took advantage of thermodynamic principles to suggest that the distribution of energy in a river system tends towards the most probable state. After this first pioneering work, further so-called “extremal” hypotheses were proposed such as: minimum unit stream power (Yang and Song, 1979), minimum stream power (Chang, 1980), minimum energy dissipation rate (Brebner and Wilson, 1967; Yang et al., 1981), maximum sediment transport rate (White et al., 1982), maximum friction factor (Davies and Sutherland, 1983) and maximum resistance to flow (Eaton et al, 2004). Millar & Quick (1993) and Millar (2005) proposed models that take into account the bank strength, a distinctive condition not considered in previous works. Because of their lack of physical-based principles, extremal hypothesis approaches have been extensively criticized (Ferguson, 1986; Parker et al., 2007). Defenders claimed their validity based on the principle of least action (Nanson and Huang, 2008) or on the opposed feedback processes acting at the cross-section scale (Eaton et al., 2006). Regime models usually consider three degrees of freedom (width, depth, and slope) and four external control variables (liquid discharge, sediment supply, bed grain size, and bank strength). However, these variables reflect geomorphic processes acting at different temporal and spatial scales (Weichert et al. 2009) a crucial aspect not considered in regime models.

The first part of the research was then dedicated to review and discuss theoretical issues inherent to the representation of fluvial systems and to regime theories. As a result, I proposed that a) physical laws and constrains describe the behaviour of a population of river reaches, instead of describing the exact processes within a single river reach; and b) each object contained in the population has uncertain boundaries (width, depth) and uncertain properties (median grain size, slope, bankfull discharge). Regime theories were classified according to the number of dimensions and the way of modeling the fluvial system. In this way, light was shed on the current debate about the validity of extremal hypothesis theories.

The second part of the research focus on the study of the river-populations, consisting on the comparison of natural river reaches in Patagonia Region (Argentina) and river reaches disturbed due to human activities in Northern Italy. Extensive field measurements were conducted in Italy and Argentina; five river reaches were surveyed in Italy (belonging to Brenta, Piave and Cordevole rivers, in the Veneto Region) and ten river reaches in Argentina (in the mountain range of Central Patagonia).

River reaches were chosen for their morphological homogeneity and for having at least 20 years of continuous flow record. In Argentina systematic measurements began by the middle of twentieth century. For the selected gauge stations records covered a time span ranging from 25 to 63 years. in Italy, water discharge has been measured at the Brenta River since 1924 at the Barzizza station and for the Piave River, flow records are derived from three gauging stations at Segusino, Belluno y Perarolo. Reaches were selected for being completely alluvial and having at least one bank free to evolve. In some cases a thick vegetation was growing in the banks, and in few cases one of the banks was protected with groynes. All selected reaches started and finish at riffles and extended along a whole wave length comprising three riffles and two pools.

Then extensive and detailed field information was used to compare natural rivers in Patagonia and disturbed in Italy. The comparison was aimed to assess the stability state of Italian rivers, considering the properties of rivers in Patagonia as a reference of stable state. Then, following the concept of spatial scales and channel response proposed by Weichert et al. (2009), the consequences in regime models of considering the hypothesis that, while channel width and depth adjust quickly to changes in water and sediment supply, reach slope requires longer time spans, was explored. Three models, all of them incorporating a bank stability criterion, were considered in this study. In order to evaluate the performance of models introducing the slope as an independent variable, two modifications to previous models were proposed. The study also used published hydraulic geometry of gravel-bed rivers in other geographical regions (92 streams reaches) and laboratory data (36 small stream). Finally, Millar’s (2005) regime model was used to explain recent morphological changes and potential recovery in the Piave and Brenta rivers.

The third and last part of the thesis was dedicated to the development and test of a 2D fully processes-based model, which was named LICAN-LEUFU. This part of the study was based on the assumption that “the channel morphology is driven by and is a consequence of within-channel processes; and a two-spatial-dimensions and depth-averaged model describes best the morphology of the channel”. The first part states that processes are the responsible of observed forms, which is the position hold in this study with regards to the debate on regime models. However, it should not be interpreted that extremal hypotheses are not necessary for predicting the channel shape. Extremal hypotheses express the behaviour at the reach scale while here, reach-scale features are explained by processes acting at a lower spatial scale. The second part means that the 2D model should do better in predicting channel morphology than 1D or aggregated models, i.e, the model is capable of predicting the reach-average form (width and depth) and also within channel morphology (pools and riffles) that are not within the capabilities of 1D or aggregated models.

The model was tested in three different ways. The first test was based on flume measurements conducted at the facilities of the University of Hull. The model was used to predict the response of a laboratory flume that developed a static armour under conditions of sediment starvation. The observational consequences consisted on the bed change, surface grain size distribution change, outgoing sediment transport (bulk and grain size distribution). The second test was a middle-term simulation in which the model had to predict the shape of Azul River providing the actual water discharges, bed material, and estimated sediment supply, i.e., it was an application of the 2D model in the context of regime theories. The last test concerned the application of the model to a field case study: the Brenta River. The model was loaded with the initial morphology and surface grain size distribution and a series of runs were performed imposing the recorded discharges. Model predictions were compared against the final DTM (digital terrain model) and then used for assessing the possible evolution of the reach

Abstract (italiano)

La presente ricerca studia i processi –i flussi dell’acqua e dei sedimenti- che definiscono la forma dei corsi alluviali. Il rapporto tra forme e processi si presenta molto complesso perché queste aspetti interagiscono mutuamente: la forma dell’alveo influisce il flusso delle acque che guida il moto delle particelle sul fondo ed, a sua volta, modifica la forma del canale. Questo studio riprende un vecchio argomento negli studi fluviali, quello di spiegare la forma dei corsi’acqua come risposta a certi controlli esterni e processi interni. Tuttavia, il problema non è risolto e questo studio apporta nuovi elementi.

Il punto di partenza nello studio del rapporto tra forme e processi si trova nelle teorie di regime che consistono in un insieme di equazioni per estimare la larghezza, profondità e pendenza di un corso d’acqua in equilibrio, quando la portata liquida ed il apporto di sedimenti sono conosciuti. Le teorie di regime sono state create nel secolo XIX inquadrate nell’ambito dell’ingegneria idraulica per la progettazione di canali di irrigazioni (Kennedy, 1895; Lacey, 1930; Lane, 1955). Leopold and Maddock (1953) introdussero il concetto di geometria idraulica nella geomorfologia fluviale e dimostrarono che i corsi’acqua modificano la pendenza nonché la sezione trasversale per raggiungere lo stato di equilibrio per una portata rappresentativa. I primi studi sono stati empirici, quindi un intenso lavoro teorico è stato svolto ai fini di spiegare le equazioni di regime. Parker (1978) dimostrò l’importanza di considerare la resistenza delle sponde nelle formulazioni nonché di usare modelli idraulici sofisticati per calcolare correttamente la distribuzione dello sforzo di taglio sul letto dell’alveo.

Una strategia alternativa è stata applicata per esplorare le proprietà geometriche dei canali. Langbein e Leopold (1962) considerarono i principi della termodinamica e suggerirono che la distribuzione dell’energia in un fiume tendeva verso lo stato piu probabile. Questo lavoro aprì un cammino teorico e poi altre teorie, chiamate “extremal hypothesis”, sono state proposte: minima potenzia unitaria della corrente (Yang e Song, 1979), minima potenza della corrente (Chang, 1980), minima dissipazione di energia (Brebner and Wilson, 1967; Yang et al., 1981), massimo trasporto di sedimenti (White et al., 1982), massimo fattore di frizione (Davies e Sutherland, 1983) e massima resistenza al flusso (Eaton et al., 2004). Millar e Quick (1993) e piu recentemente Millar (2005) hanno proposto modelli che prendono in considerazione la resistenza delle sponde, un aspetto che non era stato incorporato nei precedenti lavori. Le teorie “extremal hypothesis” sono state criticate per la loro mancanza di base fisica (Ferguson, 1986; Parker et al., 2007). Tra l’altro, i difensori asseriscono la loro validità sulla base del principio di minima azione (Nanson e Huang, 2008), oppure nella esistenza di due feedback opposti che agiscono ad una scala ridota, quella della sezione trasversale (Eaton et al., 2006). Le teorie di regime normalmente considerano tre gradi di libertà (larghezza, profondità e pendenza) e quattro controlli esterni (portata liquida, apporto di sedimenti, diametro dei sedimenti, e resistenza delle sponde). Tuttavia, i parametri geometrici riflettono anche processi che aggiscono ad scale spaziale e temporali differenti (Weichert et al. 2009), un aspetto che non è stato considerato nelle teorie di regime.

La prima parte della ricerca è stata orientata alla revisione e discussione dei problemi teorici connessi sia con la rappresentazione dei sistemi fluviali sia con le teorie di regime. Come risultato, ho proposto i seguenti aspetti: a) le leggi della fisica ed i vincoli invocati nelle teorie di regime descrivono il comportamento di una popolazione di fiumi invece di descrivere i processi precisi al interno di un singolo tratto fluviale; b) ogni singolo elemento della popolazione ha dei confini incerti (larghezza e profondità) ed anche delle proprietà incerte (diametro medio delle particelle nell’alveo, pendenza e portata a piene rive). Le teorie di regime sono state classificate secondo il numero di dimensioni ed il modo in cui i fiumi sono modellati. La classificazione è stata applicata alle teorie di regime per comprendere il debattito in torno alla validità delle teorie “extremal hypothesis”.

La seconda parte della ricerca è indirizzata verso lo studio delle popolazioni di fiumi. Si presenta un confronto fra fiumi in stato naturale dalla Patagonia Argentina con quelli relativi ai fiumi disturbati dalle attività antropiche localizzati nella regione nordest di Italia. Sono state effettuati rilevamenti intensivi di campo in Italia ed Argentina; cinque tratti sono stati rilevati in Italia (appartenenti ai fiumi Brenta, Piave e Cordevole, tutti localizzati nella Regione del Veneto) e dieci tratti in Argentina (nelle provincie di Chubut e Rio Negro).

I tratti scelti per l’indagine hanno omogeneità morfologica lungo tutto il tratto e le stazione di misure delle portate vicine hanno almeno registri di 20 anni di dati. In Argentina le misure sistematiche delle portate iniziarono verso la metà del secolo scorso e quindi ci sono circa tra 23 e 63 anni di datti nelle stazione selezionate. In Italia, le misurazioni per il fiume Brenta si trovano nella stazione di Barzizza vicina a Bassano del Grappa, che ha registri dall’anno 1924. Per quanto riguarda il fiume Piave, dati da tre stazioni sono state analizzati: Belluno, Segusino e Perarolo. I tratti selezionati sono alluviali ed al meno una delle sponde è libera di evolvere. In certi casi la vegetazione copriva una delle sponde e in pochi tratti c’èrano opere di difesa spondale. Tutti i tratti iniziano in un raschio (“riffle”) e finiscono anche in un’altro raschio, estendendosi lungo almeno una lunghezza di onda.

La informazione di campo, essendo estesa e dettagliata, è stata utilizzata ai fini di confrontare i corsi naturali e disturbati. Il confronto ha permesso di valutare la stabilità raggiunta dai corsi d’acqua italiani, considerando i fiumi patagonici come riferimento dello stato di equilibrio. Inoltre, seguendo il concetto di rapporto fra scale spaziali e risposta del canale proposta dai ricercatori Weirchert et al. (2009), si valutarono le previsioni delle teorie di regime quando si considera la pendenza come una variabile indipendente. Tre modelli, che incorporano un criterio di stabilità delle sponde, sono stati considerati. Ai fini di valutare la loro performance quando la pendenza è un controllo esterno, due modificazioni a questi modelli sono state proposte. Lo studio utilizza i dati dei fiumi rilevati nonché un database pubblicato composto da 92 tratti fluviali e 36 studi di caso di laboratorio. Alla fine, il modello di Millar (2005) è stato utilizzato per spiegare i cambiamenti recenti nei fiumi Brenta e Piave ed anche per valutare la loro possibile tendenza evolutiva.

L’ultima parte della tesi è stata indirizzata allo sviluppo, validazione ed implementazione di un modello bidimensionale basato sui processi, che è stato chiamato LICAN-LEUFU 2D. Questa parte del lavoro si basa sull’ipotesi che “la morfologia del canale è non solo una conseguenza dei processi che aggiscono sul canale ma anche guidata da questi processi; inoltre, due dimensioni spaziali insieme ad un modello “depth-average” permettono di descrivere meglio la morfologia del canale”. La prima parte afferma che i processi sono i responsabili delle forme osservate nel canale, affermazione che costituisce il punto di vista assunto in questo studio per quanto riguarda il dibattito intorno alle teorie di regime. Tuttavia, non deve interpretarsi come un’opposizione alle teorie di “extremal hypothesis”, oppure che non siano utile per prevedere la forma dei canali. Al contrario, come verrà dimostrato nella revisione dello stato dell’arte, le extremalhypotesis esprimono il comportamento del fiume alla scala di tratto, mentre in questo studio, le caratteristiche osservate alla scala di tratto verranno spiegate dai processi che aggiscono ad scale minori. La seconda parte dell’ipotesi significa che un modello bidimensionale dovrebbe prevedere in miglior modo la morfologia di un canale da quanto si ottiene applicando un modello aggregato o unidimensionale, es.., il modello deve essere in grado di prevedere la geometria a scala di tratto (larghezza e profondità) nonchè la morfologia all’interno del tratto (pozze e raschi), che eccedono le capacità dei modelli essistenti.

Il modello è stato testato in tre differenti condizioni. Il primo test è stato realizzato sulla base delle misure di canaletta condotte presso l’Università di Hull. Il modello doveva prevedere la risposta di una canaletta di laboratorio, con fondo sabbioso-ghiaioso, che sviluppava una corazza statica in una situazione di apporto nullo di sedimenti. Nel secondo test il modello è stato utilizzato in una simulazione di medio-termine per estimare la forma del Fiume Azul quando vengono fornite come dati di input, le portate, il materiale di fondo ed il apporto de sedimenti. In questo modo, il test costituisce un’applicazione di un modello 2D nel campo delle teorie di regime. L’ultimo test riguarda l’applicazione del modello per lo studio di un caso: il Fiume Brenta. Il modello è stato caricato con una morfologia iniziale dell’alveo corrispondente all’anno 2010, e la granulometria superficiale. Il modello ha simulato il passaggio di tre piene straordinarie che si susseguirono nel periodo 2010-2011. Le previsioni del modello sono state confrontate con il DTM (modello digitale del terreno) che è stato rilevato alla fine del periodo. Inoltre, il modello è stato utilizzato per valutare la possibile tendenza evolutiva del tratto a medio termine.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Lenzi, Mario Aristide
Correlatore:Serra, Juan Jose Ramon - Mao, Luca
Dottorato (corsi e scuole):Ciclo 24 > Scuole 24 > TERRITORIO, AMBIENTE, RISORSE E SALUTE > IDRONOMIA AMBIENTALE
Data di deposito della tesi:21 Gennaio 2013
Anno di Pubblicazione:21 Gennaio 2013
Parole chiave (italiano / inglese):Gravel bed rivers, Regime theories, numerical simulations, Patagonian rivers, Italian rivers,
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/04 Geografia fisica e geomorfologia
Area 08 - Ingegneria civile e Architettura > ICAR/01 Idraulica
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:5395
Depositato il:16 Ott 2013 09:59
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abad, J. D., Buscaglia G. C., and Garcial M. H. (2008), 2D stream hydrodynamic, sediment transport and bed morphology model for engineering applications. Hydrological Processes, 22, 1443-1459. Cerca con Google

Abril, J. B. (1995), Numerical Modelling of Turbulent Flow in Compound Channels by the Finite Element Method. Hydra 2000, Proceedings of the 26th Congress of the International Association for Hydraulic Research, A. Ervine and T. Telford (Eds), London, U.K., Vol. 5, 1–6. Cerca con Google

Abril, J. B., and Knight W. D. (2004), Stage-discharge prediction for rivers in flood applying a depth-averaged model, Journal of Hydraulic Research, 42(6), 616–629. Cerca con Google

Ackers, P. and White W. R. (1973), Sediment transport: a new approach and analysis, Journal of Hydraulic Engineering, 99(11), 2041-2060. Cerca con Google

Afzalimehr, H. and Anctil, F. (1998), Estimation of gravel-bed river flow resistance, Journal of Hydraulic Engineering, 124(10), 1054-1058. Cerca con Google

Andrews, E. D. (1980), Effective and bankfull discharges of streams in the Yampa River basin, Colorado and Wyoming. Journal of Hydrology, 46, 311-330. Cerca con Google

Andrews, E. D. (1983), Entrainment of gravel from naturally sorted riverbed material, Geol. Soc. Am. Bull., 94, 1225– 1231. Cerca con Google

Andrews, E. D. (1984), Bed material entrainment and hydraulic geometry of gravel-bed rivers in Colorado, Geol. Soc. Am. Bull., 95, 371– 378. Cerca con Google

Andrews, E.D. and Erman D.C. (1986), Persistence in the size distribution of surficial bed material during an extreme snowmelt flood, Water Resources Research 22: 191–197. Cerca con Google

ASCE Task Committee on hydraulics, banks mechanics, and modeling of river adjustment (1998), River width adjustment (I-II), Journal of Hydraulic Engineering, 124(9) 881-917. Cerca con Google

ASCE Task Committee on turbulence Models in Hydraulics Computation, (1988) Turbulence modelling of surface water flow and transport. Parts I-IV, Journal of Hydraulic Engineering, 114(9), 970-1073. Cerca con Google

Bagnold, R. A. (1956), The flow of cohesionless grains in fluids. Philosophical Transactions Royal Society of London, A 249, 235-297. Cerca con Google

Bagnold, R. A. (1980), An empirical correlation of bedload transport rates in flumes and natural rivers, Proc. R. Soc. Longon, Ser. A, 405, 369-374. Cerca con Google

Barnes, H. H. Jr (1967), Roughness characteristics of natural channels, Geological Survery Water-Supply Paper 1849, Washington, 219p. Cerca con Google

Barry, J. J., Buffington, J. M. and King, J. G. (2004), A general power equation for predicting bed load transport rates in gravel bed rivers. Water Resources Research, 40, Doi:10.1029/2004WR003190. Cerca con Google

Barry, J. J., Buffington, J. M, and King, J. G. (2007), Correction to “A general power equation for predicting bed load transport rates in gravel bed rivers”. Water Resources Research, 43, Doi:10.1029/2007WR006103. Cerca con Google

Basile, P. A. (2005), Dinámica del flujo de fluidos viscosos incompresibles, Centro Universitario Rosario de Investigaciones Hidro Ambientales, ICD 0305, Argentina, 43pp. Cerca con Google

Bathurst, J.C. (2002), At-a-site variation and minimum flow resistance for mountain rivers. Journal of Hydrology, 269, 11-26. Cerca con Google

Bathurst, J. C. (2007), Effect of coarse surface layer on bed-load transport, Journal of Hydraulic Engineering, 133(119. Doi: 10.1061/(ASCE)0733-9429(2007)133:11(1192) Cerca con Google

Bernard, R. S. (1993), Numerical model for depth-averaged incompressible flow. US Army Corp of Engineers, Waterways Experimental Station, Technical Report REMR-HY-11. Cerca con Google

Boussinesq, J. (1877), Essai sur la théorie des eaux courantes. Memoires Academie Sciences-Institut de France, 24. Cerca con Google

Bradford, S. F., and B. F. Sander (2002) Finite-volume model for shallow-water flooding of arbitrary topography. Journal of Hydraulic Engineering, 128(3), 289-298. Cerca con Google

Bravo-Espinosa, M., Osterkamp, W- R- and Lopes V. L. (2003), Bedload transport in alluvial channels, Journal of Hydraulic Engineering, 129(10), 783-795. Cerca con Google

Bray, D. I. (1979), Estimating average velocity in gravel-bed rivers. Journal of Hydraulic Division ASCE, 105(9), 1103-1122. Cerca con Google

Bray, D. I. (1982), Regime relations for gravel-bed rivers, in Gravel-Bed Rivers, edited by R. D. Hey, J. C. Bathurst, and C. R. Thorne, pp. 517–542, John Wiley, Chichester, U. K. Cerca con Google

Brebner A, and Wilson K.C. (1967). Derivation of the regime equations from relationships for pressurized flow by use of the principle of minimum energy – degradation rate. ICE Proceedings, 36(1) : 47-62. Cerca con Google

Buffington, J. M. (1995). Effects of hydraulic roughness and sediment supply on surface textures of gravel-bedded rivers [thesis]: Seatle, University of Washington, 184 p. Cerca con Google

Bunte, K. and Abt S. (2001), Sampling surface and subsurface particle-size distributions in wadable gavel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring. Gen. Tech. Rep. RMRS-GTS-74. Fort Collins. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 428 p. Cerca con Google

Cao S. and Knight D.W. (1998) Desing for hydraulic geometry of alluvial channels, Journal of Hydraulic Engineering, 124 (5), 484-492. Cerca con Google

Cao, S. and D. W. Knight (1997), Entropy-based design approach of threshold alluvial channels. Journal of Hydraulic Research, 35(4), 1-21. Cerca con Google

Cao, S. and Knight D. W., (1998), Design for hydraulic geometry of alluvial channels, Journal of Hydraulic Engineering, 124(5), 484-492. Cerca con Google

Cencini, M., Cecconi, F. and Vuppiani, A. (2010) Chaos, from simple models to complex systems. Series on Advances in Statistical Mechanics – Vol. 17. World Scientific, 460p. Cerca con Google

Cereijido, M. (2009). Elogio del desequilibrio, en busca del orden y el desorden en la vida. Colección Ciencia que ladra. Siglo veintiuno Editores, Argentina. Cerca con Google

Chang H.H. (1980). Geometry of gravel streams. Journal of the Hydraulics Division, ASCE 106 : 1443-1456. Cerca con Google

Charlton, F. G., Brown, P. M. and Benson, R. W. (1978) The hydraulic geometry of some gravel rivers in Britain. Hydraulic Research Station Report IT 180. Cerca con Google

Chen, L. and Stone, M. C. (2008) Influence of bed material size heterogeneity on bedload transport uncertainty. Water Resources Research, 44, W01405, doi:10.1029/2006WR005483. Cerca con Google

Chew LC, Ashmore PE. (2001) Channel adjustment and a test of rational regime theory in a proglacial braided stream. Geomorphology 37: 43-63. Cerca con Google

Chow, V. T. (1994), Hidráulica de canales abiertos, McGraw Hill, Colombia, 337p. Cerca con Google

Chow, V. T., D. R. Maidment and L. W. Mays (1994), Hidrología Aplicada. McGraw Hill, Colombia. 584 pp. Cerca con Google

Church M., (2006), Bed material transport and the morphology of alluvial river channels, The Annual Review of Earth and Planetary Science, 34, 325-54. Cerca con Google

Church, M. and D. Jones (1982), Channel bars in gravel-bed rivers. In: Gravel-bed Rivers. Fluvial Processes, Engineering and Management. R.D. Hey, J.C. Bathurst and C.R.Thorne (Eds), Chichester, United Kingdom, John Wiley and Sons, 291-338. Cerca con Google

Church, M., M. A. Hassan and J. F. Wolcott (1998), Stabilizing self-organized structures in gravel-bed stream channels: field and experimental observations, Water Resources Research, 34(11), 3169-3179. Cerca con Google

Church, M., M.A. Hassan and J.F. Wolcott (1998). Stabilizing self-organized structures in gravel-bed stream channels: Field and experimental observations. Water Resources Research 34(11): 3169–3179. Cerca con Google

Clayton, J. A. and J. Pitlick (2007), Persistence of the surface texture of a gravel-bed river during a large flood. Earth Surface Processes and Landforms, 33, 661-673. Doi: 10.1002/esp.1567 Cerca con Google

Clifford, N. J. and J. R. French (1993), Monitoring and modelling turbulent flows: historical and contemporary perspectives, In: Turbulence, perspective on flow and sediment transport, N.J. Clifford, J. R. French and J. Hardisty (Eds), Chichester, U.K., John Wiley and Sons, 1-34. Cerca con Google

Colosino, C., V. A. Copertino and M. Veltri (1988), Friction factor evaluation in gravel-bed rivers, Journal of Hydraulic Engineering, 14(8), 861-876. Cerca con Google

Comiti F., M. Da Canal, N. Surian, L. Mao, L. Picco, and M. A. Lenzi (2011), Channel adjustments and vegetation cover dynamics in a large gravel bed river over the last 200 years, Geomorphology, doi: 10.1016/j.geomorph.2010.09.011 Cerca con Google

Coulthard, T. J. and Van De Wiel, M. J. (2006). A cellular model of river meandering. Earth Surface Processes and Landforms, 31, 123-132. Cerca con Google

Coulthard, T.J., Kirkby, M.J. and Macklin, M.G. (1997). Modeling hydraulic, sediment transport and slope processes, at a catchment scale, using a cellular automaton approach. Proceedings of GeoComputation ’97 & SIRC ’97, 15-24. Cerca con Google

Coulthard, T.J., Lewin, J. and Macklin, M.G. (2005). Modeling differential catchment response to environmental change. Geomorphology, 69, 222-241. Cerca con Google

Da Canal, M (2011) Analisi della dinamica passata ed attuale del fiume Piave nel Vallone Bellunese finalizzata ad una gestione integrata del suo corridoio fluviale. PhD Thesis, Università degli studi di Padova. Cerca con Google

Da Canal, M. (2006). Studio delle variazioni morfologiche del Fiume Piave nel Vallone Bellunese durante gli ultimi duecento anni. Università degli Studi di Padova. Cerca con Google

D'Agostino, V. And Lenzi, M. A. (1999). Bedload transport in the instrumented catchment of the Rio Cordon, Part II: Analysis of bedload rate. Catena, 36, 191-204. Cerca con Google

Davies T.R.H., and Sutherland AJ. (1983) Extremal hypotheses for river behavior. Water Resources Research 19(1) : 141-148. Cerca con Google

Davis, W. M. (1899). Topograhical development of the Triassic formation of the Connecticut Valley. Am. J. Sci., 37: 423-434. Cerca con Google

Davis, W. M. (1902). Base-level, grade, and peneplain. Journal of Geology, Vol. 10, 77-111. Cerca con Google

Dietrich, W.E., J. W. Kirchner, H. Ikeda and F. Iseya (1989), Sediment supply and the development of the coarse surface layer in gravel–bedded rivers, Nature, 340, 215–217. Cerca con Google

Diplas, P. (1990), Characteristics of self-formed straight channels, Journal of Hydraulic Engineering, 116(5), 707-728. Cerca con Google

Diplas, P. and G. Vigilar (1992), Hydraulic geometry of threshold channels. Journal of Hydraulic Engineering, 118(4), 597-614. Cerca con Google

Duan J. G. and Julien, P. Y. (2005). Numerical simulation of the inception of channel meandering. Earth Surface Processes and Landforms, 30, 1093-1110. Cerca con Google

Eaton, B. C. and M. Church (2004), A graded stream response relation for bedload dominated streams. Journal of Geophysical Research – Earth Surface 109(F03011). Doi: 10.1029/2003JF000062. Cerca con Google

Eaton B.C., Church M, and Millar R.G. (2004). Rational regime model of alluvial channel morphology and response. Earth Surface Processes and Landforms 29 : 511-529. DOI: 10.1002/esp.1062. Cerca con Google

Eaton B.C., Church M, and Davis TRH. (2006). A conceptual model for meander initiation in bedload dominant streams. Earth Surfaces Processes and Landforms 31 : 875-891. Cerca con Google

Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics 7 (1): 1–26. doi:10.1214/aos/1176344552. Cerca con Google

Einstein, H. A. (1950), The bed-load function for sediment transportation in open channel flows, Tech. Bull. 1026, Soil Conserv. Serv., U.S. Dep. Of the Army, Washington, D. C. Cerca con Google

Einstein, H. a. and Shen, S. W. (1964). A study of meandering in straight alluvial channels. Journal of Geophysics Research, 69, 5239-5247. Cerca con Google

Emment, W. M. and M. G. Wolman (2001), Effective discharge and gravel-bed rivers. Earth Surface Processes and Landforms 26, 1369-1380. Cerca con Google

Fergunson, R.I. (1986) Hydraulics and hydraulic geometry. Progress in Physical Geography 10, 1-31. Cerca con Google

Fergunson, R.I. (2008). Gravel-bed rivers at the reach scale. In Gravel-bed rivers VI: from processes understanding to river restoration, J.F. Shroder Jr (Ed.), Elsevier, 817p. Cerca con Google

Feynmann R. P., Leighton, R. B., and Sand M. (1964), The Feynman lectures on physics: Mainly electromagnetism and matter (Vol. 2). Addison-Wesley. Cerca con Google

Flintham, T.P., and Carling P.A. (1988), The prediction of mean bed and wall boundary shear in uniform and compositely roughened channels. In: White, W.P. (Ed.), International Conference on River Regime. John Wiley and Sons, Chichester, England, pp. 267–287. Cerca con Google

Garcia, M. H. (2008). Chapter 1: Sediment transport and morphodynamics, In: Sedimentation Engineering, ASCE Manuals and reports on Engineering Practice no. 110, M. H. Garcia (Ed), ASCE, 21-165. Cerca con Google

Garcia-Martinez, R., Espinoza R., Valera E., and Gonzalez G. (2005), An explicit two-dimensional finite element model to simulate short- and long-term bed evolution in alluvial rivers. Journal of Hydraulic Research, 44(6), 755-766. Cerca con Google

Garret, P. W. and Wolman M. G. (1984) Downstream effects of dams on alluvial rivers. Geological Survey Profressional Paper 1296, pp. 83. Cerca con Google

Gomez, B. and Church M. (1989), An assessment of bed load sediment transport formulae for gravel bed rivers, Water Resources Research 25, 1161– 1186. Cerca con Google

Habersack, H. M. and Laronne J. B. (2002), Evolution and improvement of bed load discharge formulas on Helley-Smith sampling in an Alpine gravel bed river. Journal of Hydraulic Engineering, 128(5), 484-499. Cerca con Google

Hassan, M.A., Egozi R. and Parker G. (2006). Experiments on the effect of hydrograph characteristics on vertical grain sorting in gravel bed rivers. Water Resources Research 42: W09408. DOI: 10.1029/2005WR004707 Cerca con Google

Hey R.D., and Thorne C.R. (1986). Stable channels with mobile gravel beds, Journal of Hydraulics Engineering 112(8) : 671-689. Cerca con Google

Hey, R. D., (1988), Bar form resistance in gravel-bed rivers, Journal of Hydraulic Engineering, 114(12), 1498-1508. Cerca con Google

Hirano, M. (1971). River bed degradation with armouring. Proceedings of the Japan Society of Civil Engineering, 195, 55-65. Cerca con Google

Hoey, T. B. and Ferguson R. I. (1994), Numerical simulation of downstream fining by selective transport in gravel bed rivers: Model development and illustration, Water Resources Research, 30, 2251-2260. Cerca con Google

Hoffman, J. D. (2001) Numerical methods for engineers and scientists.Marcel Dekker Inc, New York, 825pp. Cerca con Google

Huang, H.Q. and Nanson A. (2002) A stability criterion inherent in laws governing alluvial channel flow. Earth Surface Processes and Landforms, 2002, 27, 929-944. Cerca con Google

Hunziker, R. and Jaeggi M. N. R. (2002), Grain sorting processes, Journal of Hydraulic Engineering, 128(12), 1060-1068. Cerca con Google

Ikeda, S. (1981), Self-formed straight channels in sandy beds, Journal of Hydraulic Engineering, 107, 389-406. Cerca con Google

Ikeda, S. and Izumi N. (1990), Width and depth of self-formed straight gravel rivers with bank vegetation, Water Resources Research, 26(10), 2353-2364. Cerca con Google

Ikeda, S., Parker G. and Kimura Y. (1988), Stable width and depth of straight gravel rivers with heterogeneous bank materials, Water Resources Research, 24, 713-722. Cerca con Google

Jaeggi, M. (1984), Abflussberechnung in kiesfuehrenden fluessen. Wasserwirtschaft, Friedrich Vieweg, Wiesbaden, Germany, 24(5), 263–267. Cerca con Google

Jang C-L. and Shimizu Y. (2005), Numerical simulation of relative wide, shallow channels with erodible banks, Journal of Hydraulic Engineering, 131(7), 565-575. Cerca con Google

Jia, Y. and Wang, S.S.Y. (1999). Numerical model for channel flow and morphological change studies. Journal of Hydraulic Engineering, 125(9), 924-933. Cerca con Google

Johansen, H. and Parker G. (1989), Linear theory of river meanders. In S. Ikeda and G. Parker (Eds.) River Meandering. AGU Water Resources Monograph 12, 181-213. Cerca con Google

Julien, P. Y. and Wargadalam J. (1995), Alluvial channel geometry: theory and applications. Journal of Hydraulic Engineering, 121(4), 312-325. Cerca con Google

Kamphuis, J. W. (1974), Determination of sand roughness for fixed beds. Journal of Hydraulic Research, 12(2), 193–203. Cerca con Google

Kapitza, H and Eppel D. (1987), A 3-D Poisson solver based on conjugate gradients compared to standard iterative methods and is performance on vector computers. Journal of Computational Physics, 68, 474-484. Cerca con Google

Keller, E. A. and Melhorn W. N. (1973), Bedforms and fluvial processes in alluvial stream channels: selected observations, in M. Morisawa (Ed.) Fluvial geomorphology: SUNY-Binghamton, N.Y., Proc. Fourth Annual Geomorphology Symposium, Pub. Geomorphology, p 253-283. Cerca con Google

Kellerhals, R. (1967), Stable channels with paved gravel beds. J. Waterw. Harb. Div., ASCE 93 (1), 63– 83. Cerca con Google

Kellerhals, R., Neill C. R. and Bray D. I. (1972), Hydraulic and geomorphic characteristics of rivers in Alberta, River Engineering and Surface Hydrology Report No. 72-1, Research Council of Alberta, Edmonton, Alberta, CanadaCharlton et al (1978). Cerca con Google

Kennedy, R.G. (1895), The prevention of silting in irrigated channels. Proc. Inst. of Civil Engrs., London, England, Vol. CXIX. Cerca con Google

Keulegan, G. H. (1938), Laws of turbulent flow in open channels, National Bureau of Standards Research Paper RP 1151, Washington, D.C. Cerca con Google

King, J. G., Emmett, W. W. Whiting, P. J. Kenworthy, R. P. and Barry J. J. (2004), Sediment transport data and related information for selected coarse-bed streams and rivers in Idaho, Gen. Tech. Rep. RMRS-GTR 131, 26 pp., Rocky Mt. Res. Stn., U.S. Dep. of Agric. For. Serv., Fort Collins, Colo. Cerca con Google

Klingeman, P. C., Chaquette, C. J. and Hammond S. B. (1979), Bed Material Characteristics near Oak Creek Sediment Transport Research Facilities, 1978-1979, Oak Creek Sediment Transport Report No. BM3, Water Resources Research Institute, Oregon State University, Corvallis, Oregon, June. Cerca con Google

Knight, D. W. (1981), Boundary shear in smooth and rough channels. Journal of the Hydraulics Division, 107, HY7, 839–851. Cerca con Google

Knight, D. W. and Patel H. S. (1985), Boundary shear in smooth rectangular ducts. Journal of Hydraulic Engineering, 111(1), 29–47. Cerca con Google

Knight, D. W., and Yu G. (1995), A geometric model for self-formed channels in uniform sand. Hydra 2000, Proceedings of the 26th Congress of the International Association for Hydraulic Research, A. Ervine and T. Telford (Eds), London, U.K., Vol. 1, 354-359. Cerca con Google

Knighton, D. (1998), Fluvial forms and processes: a new perspective, John Wiley & Sons, New York, 383pp. Cerca con Google

Kovacs, A. and Parker G. (1994), A new vectorial bedload formulation and its application to the time evolution of straight river channels, Journal of Fluid Mechanics, 267, 153-183. Cerca con Google

Kuhnle, R.A. (1992), Fractional transport rates of bedload on Goodwin Creek. In Dynamics of Gravel-Bed Rivers, P. Billi, R. D. Hey, C. R. Thorne, T. Tacconi (Eds). Wiley, New York, 141–155. Cerca con Google

Kuhnle, R. A. (1993), Fluvial transport of sand and gravel mixtures with bimodal distributions, Sedimentary Geology, 85, 17-24. Cerca con Google

Lacey, G. (1930) Stable channel in alluvium. Minutes of the Proceedings, 229, 259-292. Cerca con Google

Lane E. W. (1957). A study of the shape of channels formed by natural streams flowing in erodible material. U.S. Army Engineer Division, Missouri River, Corps of Engineering. Cerca con Google

Lane, E.W. and Carlson E.J. (1953), Some factors affecting the stability of canals constructed in coarse granular material. Proceedings of the 5th Congress of the International Association for Hydraulic Research, 37-48. Cerca con Google

Lane S. N. and Richards K. S. (1997). Linking river channel form and process: time, space and causality revisited. Earth Surface Processes and Landforms, 22, 249-260. Cerca con Google

Lane, S. N. and Richards K. S. (1998), High resolution, two-dimensional spatial modeling of flow processes in a multi-tread channel. Hydrological Processes 12, 1279-1298. Cerca con Google

Langbein, W. B. and Leopold L. B. (1968), River channel bars and dunes: Theory of kinematic waves, Geological Survey Professional Paper 422-L, 23p. Cerca con Google

Lenzi, M. A., D'Agostino, V. and Billi P. (1999). Bedload transport in the instrumented catchment of the Rio Cordon, Part I: Analysis of bedload records, conditions and threshold of bedload entrainment. Catena. 36, 171-190. Cerca con Google

Lenzi, M. A., D’Agostino V. and D. Sonda (2000), Ricostruzione morfologica e recupero ambientale dei torrenti. Editoriale Bios. Cosenza, Italia. Cerca con Google

Leopold, L. B. (1982). Water surface topography in river channels and implications for meander development. In Gravel-bed Rivers, R. D. Hey, J. C. Bathurst and C. R. Thorne (Eds.), John Wiley $ Sons, 359-388. Cerca con Google

Leopold L. B. (1994). River morphology as an analog to Darwin’s theory of natural selection. Proceeding of the American Philosophical Society, 138 (1), 31-47. Cerca con Google

Leopold, L. B. (1994). A View of the River. Harvard University Press, Cambridge, Massachusetts USA, 298p. Cerca con Google

Leopold L. B., and Maddock T. (1953) The hydraulic geometry of streams channels and some physiographic implications, U. S. Geological Survey Professional Paper, 252, 56p. Cerca con Google

Leopold, L. B., Wolman M. G. and J. P. Miller (1964), Fluvial Processes in Geomorphology, W. H. Freeman and Company, San Francisco, 522p. Cerca con Google

Li R., Simons M. and Stevens M. A. (1976). Morphology of cobble streams in small watersheds. Journal of Hydraulics Division, Vol. 102, HY8, 1101-1117. Cerca con Google

Li, S. S. and Millar R.G. (2007), Simulating bed-load transport in a complex gravel-bed river. Journal of Hydraulic Engineering, 133(3), Doi:10.1061/(ASCE)0733- 9429(2007)133:3(323). Cerca con Google

Liao, H. and D. W. Kinght (2007), Analytic stage-discharge formulas for flow in straight prismatic channels. Journal of Hydraulic Engineering, 133(10), Doi: 10.1061/(ASCE)0733-9429(2007)133:10(1111). Cerca con Google

Limerinos, J. T. (1970), Determination of the Manning coefficient for measured bed toughness in natural channels. Water Supply paper 1898-B, U.S. Geological Survey, Washington D.C. Cerca con Google

Lindley E.S. 1919. Regime Channels. Proceedings Punjab Engineering Congress, Vol Vii, p. 63. Cerca con Google

Lisle, T.E. (1995), Particle size variations between bed load and bed material in natural gravel bed channels. Water Resources Research, 31(4), 1107-1118. Cerca con Google

Lisle, T.E., J. M. Nelson, J. Pitlick, M. A. Madej, B. L. Barkett (2000), Variability of bed mobility in natural, gravel-bed channels and adjustments to sediment load at local and reach scales. Water Resources Research 36, 3743– 3755. Cerca con Google

Lopez, R., and Barragan J. (2008), Equivalent roughness of gravel-bed rivers, Journal of Hydraulic Engineering, 134(6), Doi: 10.1061/(ASCE)0733-9429(2008)134:6(847). Cerca con Google

Lu, X. L. (1986), Nonuniform bed load transport rate and coarsening stabilization. Thesis for Master Degree of Chengdu University of Technology. Cerca con Google

Lundgren, H. and Jonsson I. G. (1964), Shear and velocity distribution in shallow channels, Journal of Hydraulic Engineering, 90, 1-21. Cerca con Google

Mackin, J. H. (1948), Concept of the graded river, Geol. Soc. Am. Bull., 59, 463-512. Cerca con Google

Manning, G. (1889). On the flow of water in open channels and pipes. Transaccions of the Institution of Civil engineers of Ireland, 24, 179-207. Cerca con Google

Mao L., Cooper, J. & Frostick, L. (2011) Grain size and topographical differences between static and mobile armour layers. Earth surface Processes and Landforms, DOI: 10.1002/esp.2156. Cerca con Google

Mao, L., (2012). The effect of hydrographs on bed load transport and bed sediment spatial arrangement. Journal of Geophysical Research, 117, F03024, doi:10.1029/2012F002428. Cerca con Google

McCandless, T. L. (2003), Maryland stream survey: Bankfull discharge and channel characteristics of streams in the Allegheny Plateau and the Valley and Ridge hydrologic regions, Rep. CBFO-S03-01, 33 pp., Chesapeake Bay Field Off., U.S. Fish and Wildlife Serv., Annapolis, Md. Cerca con Google

McCormack, R. W. (1969), The effect of viscosity in hypervelocity impact cratering. AIAA Paper 69-354, American Institute Aeronautics and Asutronautics, Cincinnati, OH. Cerca con Google

Meyer-Peter, E. and Müller R. (1948), Formulas for bed-load transport. International Association for Hydraulic Structures Research, 2nd Meeting, Proceedings. Stockholm. Cerca con Google

Milhous, R. T. (1973), Sediment transport in a gravel-bottomed stream, Ph.D. thesis, Oregon State University, Corvallis. Cerca con Google

Millar, R. G. (1999), Grain and form resistance in gravel bed rivers, Journal of Hydraulic Research, 37, 303–312. Cerca con Google

Millar R.G. (2005) Theoretical regime equations for mobile gravel-bed rivers with stable banks, Geomorphology 64 : 207-220. Cerca con Google

Millar R.G., and Quick M.C. (1993). Effect of bank stability on geometry of gravel rivers. Journal of Hydraulic Engineering, ASCE 119: 1343-1363. Cerca con Google

Miller, B. A. and Wenzel H. G. (1985), Analysis and simulation of low flow hydraulics, Journal of Hydraulic Engineering, 111(12). Cerca con Google

Montgomery, D. R. and Buffington J. M. (1997), Channel-reach morphology in mountain drainage basins, Geol. Soc. Am. Bull., 109, 596–611, doi:10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2. Cerca con Google

Moretto J., Rigon, E. Mao, L. Delai, F. Picco L. and Lenzi M. A. (2012) Assessing morphological changes in gravel bed rivers using LiDAR data and colour bathymetry. Erosion and Sediments Yields in the Changing Environments, Proceedings of a symposium held at the Institute of Mountain Hazards and Environment, China. IAHS Publ. 356, 419-427. Cerca con Google

Mueller, E. R. and Pitlick J. (2005), Morphologically based model of bed load transport capacity in a headwater stream, Journal of Geophysical Research, 110, F02016, doi:10.1029/2003JF000117. Cerca con Google

Mueller, E.R., Pitlick, J. and Nelson J. (2005) Variation in the reference shear stress for bedload transport in gravel bed streams and rivers, Water Resources Research, 41,W04006, doi:101029/2004WR003692. Cerca con Google

Murray, A. B. and Paola, C. (1994). A cellular model of braided rivers. Nature 371, 54-57. Cerca con Google

Murray, A. B. and Paola, C. (1997). Properties of a cellular braided-stream model. Earth Surface Processes and Landforms, 22, 1001-1025. Cerca con Google

Nagata, N., Hosoda T. and Muramato Y. (2000), Numerical analysis of river channel processes with bank erosion. Journal of Hydraulic Engineering, 126(4), 243-252 Cerca con Google

Nanson, G. C., and Huang H. Q. (2008), Least action principle, equilibrium states, iterative adjustment and the stability alluvial channels. Earth Surface Processes and Landforms 33, 923-942. Cerca con Google

Orlanski, I. (1976). A simple boundary condition for unbounded hyperbolic flows. Journal of computational physics 21, 251-269. Cerca con Google

Paintal, A. S. (1971), Concept of critical shear stress in loose boundary open channels, Journal of Hydraulic Research, 9: 91-113. Cerca con Google

Paola C. and Seal R. (1995), Grain size patchiness as a cause of selective deposition and downstream fining. Water Resources Research 31: 1395–1407. Cerca con Google

Parker G. (1976). On the cause and characteristics scales of meandering and braiding in rivers, Journal of Fluvial Mechanics, 76, 457-480. Cerca con Google

Parker, G. (1978), Self-formed straight rivers with equilibrium mobile bed, 2, the gravel river, Journal of Fluid Mechanics, 89, 127-146. Cerca con Google

Parker, G. (1979). Hydraulic geometry of active gravel rivers. Journal of the Hydraulics Division, ASCE, Vol. 105, HY9, Proc. Paper 14841, 1185-1201. Cerca con Google

Parker, G. (1983), Discussion of “Lateral bed load transport on side slopes”, Journal of Hydraulic Engineering, 109, 197-199. Cerca con Google

Parker, G. (1990), Surface-based bedload transport relation for gravel rivers, Journal Hydraulic Research, 28(4), 417–436. Cerca con Google

Parker, G. (1991a), Selective sorting and abrasion of river gravel. I: Theory, Journal of Hydraulic Engineering, 117(2): 131-149. Cerca con Google

Parker, G. (1991b), Selective sorting and abrasion of river gravel. II: Application, Journal of Hydraulic Engineering, 117(2): 150-171. Cerca con Google

Parker, G. (2008). Chapter 3: Transport of gravel and sediment mixtures, in Sedimentation Engineering: Processes, measurements, modeling and practice. Garcia, M. H. (Editor). ASCE Manuals and Reports on Engineering Practice No. 110. Cerca con Google

Parker, G. and Peterson A. W. (1980), Bar resistance of gravel bed streams, Journal of the Hydraulics Division Am. Soc. Civ. Eng., 106, 1559– 1575. Cerca con Google

Parker, G, and Klingeman P. C. (1982), On why gravel bed rivers are paved. Water Resources Research, 18(5), 1409–1423. Cerca con Google

Parker, G., Klingeman P. C. and McLean D. G. (1982a), Bed load and size distribution in paved gravel-bed streams, Journal of Hydraulic Engineering, 108(4), 544–571. Cerca con Google

Parker, G., Dhamotharan S. and Stefan H. (1982b), Model experiments on mobile, paved gravel bed streams, Water Resources Research, 18, 1395– 1408, doi: 10.1029/ WR018i005p01395. Cerca con Google

Parker, G. and Sutherland A. J. (1990), Fluvial armor, Journal of Hydraulic Research, 28(5), 529-544. Cerca con Google

Parker, G. and Wilcock P. R. (1993), Sediment feed and recirculating flumes: fundamental difference. Journal of Hydraulic Engineering, 119(11), 1192-1204. Cerca con Google

Parker, G. and Toro-Escobar C. M. (2002), Equal mobility of gravel in streams: the remains of the day, Water Resources Research, 38(11), 1264. Cerca con Google

Parker, G., Toro-Escobar C. M., Ramey M. and Beck S. (2003), The effect of floodwater extraction on the morphology of mountain streams, Journal of Hydraulic Engineering, 129(11), 885-895. Cerca con Google

Parker, G., Wilcock, P.R., Paola, C., Dietrich, W., and Pitlick, J. (2007) Physical basis for Quasi universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers, Journal of Geophysical Research, 112, Doi: 10.1029/2006JF000549. Cerca con Google

Parker G., Hassan M. and Wilcock P. (2008), Adjustment of the bed surface size distribution of gravel-bed rivers in response to cycled hydrographs, In: Gravel Bed Rivers 6: From process understanding to river restoration, H. Habersack, H. Piegay and M. Rionaldi (Eds), Elsevier, 836p. Cerca con Google

Pellegrini, G. B., Surian N., and Urbinati C. (2004). Dating and explanation of Late Glacial – Holocene landslides: a case study from Southern Alps, Italy. Zeitschrift für Geomorphologie, 48, 245-258. Cerca con Google

Petit, F. and Pauquet, A. (19979. Bankfull discharge recurrence intervalle in gravel-bed rivers. Earth Surface Processes and Landforms, 22, 685-693. Cerca con Google

Philips, J. D. (1992). Non-linear dynamical systems in geomorphology: revolution or evolution. Geomorphology, 5, 219-229. Cerca con Google

Pitlick, J. (1992), Flow resistance under conditions of intense gravel transport, Water Resources Research, 28(3), 891-903. Cerca con Google

Pitlick, J. and Cress R. (2002), Downstream changes in the channel geometry of a large gravel bed river, Water Resources Research, 38, Doi: 10.1029/2001WR000898. Cerca con Google

Pizzuto, J. E. (1990), Numerical simulation of gravel river widening, Water Resources Research, 26(9), 1971-1980. Cerca con Google

Pizzuto, J. E. and the ASCE Task Committee on hydraulic, bank mechanics and modelin of river width adjustment (2008). Chapter 7: Streambank erosion and river width adjustment. In Sedimentation Engineering: Processes, measurements, modeling and practice. Garcia, M. H. (Editor). ASCE Manuals and Reports on Engineering Practice No. 110. Cerca con Google

Powell, D.M., Reid, I. Laronne J. B. (2001), Evolution of bed load grain size distribution with increasing flow strength and the effect of flow duration on the calibre of bed load sediment yield in ephemeral gravel bed rivers. Water Resources Research 37: 1463 –1474. Cerca con Google

Powell, D. M., Laronne, J. B., and Reid, I. (2003) The dynamics of bedload sediment transport in low-order, upland, ephemeral gravel-bed rivers, Advances in Environmental Monitoring and Modelling, 1(2), http://www.kcl/ac/uk/advances/. Vai! Cerca con Google

Prandtl, L. (1925), Bericht über utersuchungen zur ausgebildeten turbulenz, Z. Angew. Math. Meth., 5, 136-139. Cerca con Google

Prestegaard, K. (1983), Bar resistance in gravel bed streams at bankfull stage. Water Resources Research, 19(2), 472-476. Cerca con Google

Proffitt, G.T. (1980) Selective Transport and Armoring of Nonuniform Alluvial Sediments, Report No. 80/22. Department of Civil Engineering, University of Canterbury: Christchurch; 203. Cerca con Google

Pyrce, R. S and Ashmore P. E. (2003), The relation between particle path length distribution and channel morphology in gravel-bed streams: a synthesis. Geomorphology, 56, 167-187. Cerca con Google

Rabassa, J. and Clapperton C. M. (1990). Quaternary glaciations of the southern Andes. Quaternary Science Reviews, 9, 153-174. Cerca con Google

Reid, I., Laronne, J. B. and Powell D. M. (1995), The Nahal Yatir bedload database: sediment dynamics in a gravel-bed ephemeral stream, Earth Surface Processes and Landforms, 20, 845-857. Cerca con Google

Reid, I., Powell, D. M. and Laronne, J.B. (1996), Prediction of bed-load transport by desert flash floods, Journal of Hydraulic Engineering, 122, 170–173. Cerca con Google

Reynolds, C. W. (1987), Flocks, herds, and schools: a distributed behavioral model. Computer Graphics 21(4), M. C. Stone (Ed), 25-34. Cerca con Google

Reynolds, O. (1883). An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and the law of resistance in parallel channels. Philosophical Transactions of the Royal Society of London, 174, 935-982. Cerca con Google

Reynolds, O. (1895). On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions of the Royal Society of London, 186, 123-164. Cerca con Google

Rhodes, D. G. and Knight D. W. (1994), Distribution of shear force on boundary of smooth rectangular duct, Journal of Hydraulic Engineering, 120(7), 787– 807. Cerca con Google

Rice, S. And Church M. (1996), Sampling surficial fluvial gravels: the precision of size distribution percentile estimates. Journal of Sedimentary Research, 66(3), 654-665. Cerca con Google

Rickenmann, D. (1991). Hyperconcentrated flow and sediment transport at steep slopes. Journal of Hydraulic Engineering. 117(11), 1419-1439. Cerca con Google

Rigon, E., Moretto, J., Mao, L., Picco, L., Delai, F., Ravazzolo, D., Lenzi,I M.A., and Kaless G. (2012). Thirty years of vegetation cover dynamics and planform changes in the Brenta River (Italy): implications for channel recovery. IAHS Publication 356, 178-186; ISSN 0144-7815. Cerca con Google

Rodi, W. (1993), Turbulent models and their applications in hydraulics, A state-of-the-art review, 3rd Edition. IAHR Monograph Series, Taylor & Francis, New York, 104p. Cerca con Google

Rodriguez, J. F., Bombardelli, F. A. García, M. H. Frothingham, K. M. Rhoads B.L. and Abad J. D. (2004), High-resolution numerical simulation of flow through a highly sinuously river reach. Water Resources Management, 18, 177-199. Cerca con Google

Rozovskii, I. L. (1961), Flow of water in bends of open channels. Translated by Y. Prushansky, Israel Program Sci. Translation, Jerusalem, Israel. Cerca con Google

Schoklitsch, A. (1962), Handbuch des wasserbaues, 3rd Ed., Springer, Vienna, Austria. Cerca con Google

Sear, D. A. (1996), Sediment transport processes in pool-riffle sequences. Earth Surface Processes and Landforms 21, 241-262. Cerca con Google

Shames, I.H. (1995) Mecánica de fluidos. 3rd Edition. McGraw-Hill, Colombia, pp.829. Cerca con Google

Shin Y.H., and Julien P.Y. (2010). Changes in hydraulic geometry of the Hwang River below the Hapcheon Re-regulation dam, South Korea. International Journal of River Basin Management 8(2) : 139-150. DOI 10.1080/15715121003651252 Cerca con Google

Shiono, K. and Knight, D. W. (1991), Turbulent open channel flows with variable depth across the channel. Journal of Fluid Mechanics, 222, 617-646. Cerca con Google

Sime, L. C., Ferguson R. I. and Church M. (2007), Estimating shear stress from moving boat acoustic dopper velocity measurements in a large gravel bed river. Water Resources Research, 43. Doi: 10.1029/2006WR005069. Cerca con Google

Smart, G. M. and Jaeggi M. N. R. (1983), Sediment transport on steep slopes, Mitteilungen 64 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zurich, 19-76. Cerca con Google

SsRRHH: Subsecretaría de Recursos Hídricos, (2002), Atlas Digital de los recursos Hídricos Superficiales de la República Argentina, CD-ROM, Buenos Aires, Argentina. Also available in the web-site: Vai! Cerca con Google

Strickler, A. (1923), Beitrage zur Frage der Geschwindigkeitsformel und der Rauhigkeitszahlen fur Strome, Kanale und geschlossene Leitungen. Mitteilungen des Eidgenossischen Amtes fur Wasserwirtschaft 16, Bern, Switzerland (Translated as ‘‘Contributions to the question of a velocity formula and roughness data for streams, channels and closed pipelines.’’ by T. Roesgan and W. R. Brownie, Translation T-10, W. M. Keck Lab of Hydraulics and Water Resources, Calif. Inst. Tech., Pasadena, Calif. January 1981). Cerca con Google

Sun Z. and Donahue J. (2000), Statistically derived bedload formula for any fraction of nonuniform sediment, Journal of Hydraulic Engineering, 126(2), 105-111. Cerca con Google

Surian, N. (1998), Fluvial processes in the alpine environment during the last 15.000 years: a case study from the Venetian Alps, Italy. Géomorphologie : relief, processus, environment, nº 1, 17-25. Cerca con Google

Surian, N. (1999). Channel changes due to river regulation: the case of the Piave River, Italy. Earth Surface Processes and Landforms, 24, 1135-1151. Cerca con Google

Surian, N. and Pellegrini, G. B. (2000). Paraglacial sedimentation in the Piave valley (Eastern Alps, Italy): an example of fluvial processes conditionated by glaciations. Geografia Fisica e Dinamica Quaternaria, 23, 87-92. Cerca con Google

Surian, N. and Rinaldi M. (2003). Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology, 50, 307-326. Cerca con Google

Surian N, and Rinaldi M. (2004). Channel Adjustments in response to human alteration of sediment fluxes: examples from Italy rivers. In: Golosov, V., Belyaev, V., Walling, E.E (Eds.) Sediment Transfer Trhough the Fluvial System, . IAHS Public. 288, 276-282. Cerca con Google

Surian, N. and Cisotto A. (2007), Channel adjustments, bedload transport and sediment sources in a gravel-bed river, Brenta River, Italy. Earth Surface Processes and Landforms 32, 1641-1656. Cerca con Google

Surian, N., Ziliani, L. Comiti, F. Lenzi M. A. and Mao L. (2009), Channel adjustments and alteration of sediment fluxes in gravel-bed rivers of North-Eastern Italy: potentials and limitations for channel recovery. River Research and Applications. DOI: 10.1002/rra.1231. Cerca con Google

Suzuki, K., and Hano A. (1992), Grain size change of bed surface layer and sediment discharge of an equilibrium river bed. Proc., Int. Seminar on Grain Sorting, Ascona, Mitteilungen Nr. 117 der Versuchsanstalt fu¨r Wasserbau, Hydrologie und Glaziologie, ETH, Zuerich. Cerca con Google

Suzuki, K., and Kato K. (1991), Mobile bed armouring of bed surface in a steep slope river with gravel and sand mixture, Proc., Int. Workshop on Fluvial Hydraulics of Mountain Regions, Trento, Lecture Notes in Earth Sciences No. 37, Springer Verlag, Berlin, 393–404. Cerca con Google

Thompson A. (1986), Secondary flows and the pool–riffle unit – a case-study of the processes of meander development. Earth Surface Processes and Landforms 11(6): 631–641. Cerca con Google

Thorn, C. E. and Welford M. R. (1994). The equilibrium concept in geomorphology. Annals of the Association of American Geographers, 84, 4, 666-696. Cerca con Google

Tominaga, A., Nezu I., Ezaki K. and Nakagawa H. (1989), Turbulent structure in straight open channel flows, Journal of Hydraulic Research, 27(1), 149–173. Cerca con Google

Venditti, J. G., Church M. A. and Bennet S. J. (2005), Bed form initiation from a flat sand bed, Journal of Geophysical Research, 110, Doi:10.1029/2004JF000149 Cerca con Google

Weichert, R. b., Bezzola G. R. and Minor H. E. (2009), Bed erosion in steep open channel. Journal of Hydraulic Research, 47(3), 360-371. Cerca con Google

White, W.R., Bettess R. and Paris, E. (1982), Analytical approach to river regime. Journal of Hydraulics Division American Society of Civil Engineers 108, 1179-1193. Cerca con Google

Whiting, P. J. and Dietrich W. E. (1990), Boundary shear stress and roughness over mobile alluvial beds, Journal of Hydraulic Engineering, 116(12), 1495-1511. Cerca con Google

Whiting, P. J., Stamm, J. F. Moog D. B. and Orndorff R. L. (1999), Sediment-transporting flows in headwater streams, Geological Society American Bulletin, 111, 450-466. Cerca con Google

Wilcock, P. R. (1997), The components of fractional transport rate, Water Resources Research, 33(1), 247-258. Cerca con Google

Wilcock, P. R. and Southard J. B. (1988), Experimental study of incipient motion in mixed-size sediment, Water Resources Research, 24(7), 1137-1151. Cerca con Google

Wilcock, P. R. and McArdell B. W. (1993), Surface-based fractional transport rates: mobilization thresholds and partial transport of a sand-gravel sediment. Water Resources Research 29(4), 1297–1312. Cerca con Google

Wilcock, P. R., Kenworthy, S. T. and Crowe, J. (2001). Experimental study of the transport of mixed sand and gravel. Water Resources Research, 37(12), 3349-3358. Cerca con Google

Wilcock, P. R. and Crowe J. C. (2003), Surface-based transport model for mixed-size sediment, Journal of Hydraulic Engineering, 129(2), 120-128. Cerca con Google

Wilcock, P.R. and DeTemple B.T. (2005), Persistence of armor layers in gravel-bed streams. Geophysical Research Letters, 32, L08402. DOI: 10.1029/2004GL021772. Cerca con Google

Williams G. P. (1978) Bank-full discharge of rivers. Water Resources Research, 14(6), 1141-1154. Cerca con Google

Williams, G. P. and Rosgen D. L. (1989), Measured total sediment load (suspended load and bed load) for 93 United States streams, Open-File Report 89-67, USGS. Cerca con Google

Wolman, M. G. (1954) A method of sampling coarse bed material. American Geophysical Union, Transactions, 35, 951-956. Cerca con Google

Wolman, M. G. and Millar, J. P. (1960). Magnitude and frequency of forces in geomorphic processes. Journal of Geology, 68, 54-74. Cerca con Google

Wong M. and Parker G. (2003), Reanalysis and correction of bed-load relation of Meyer-Peter and Müller using their own database. Journal of Hydraulic Engineering, 132(11). Doi: 10.1061/(ASCE)0733-9429(2006)132:11(1159). Cerca con Google

Wong, M. and Parker, G. (2006). One-dimensional modeling of bed evolution in a gravel bed river subject to a cycled flood hydrograph. Journal of Geophysical Research, 111, FO3018, doi:1029/2006JF000478. Cerca con Google

Woods, W. (1917). Normal data of design for “Kennedy” channels. Punjab Irrigation Branch, Lahore. Cerca con Google

Wu, W. (2008) Computational river dynamics. Taylor and Francis, 494p. Cerca con Google

Wu, W. (2004). Depth-average two-dimensional numerical modeling of unsteady flow and nonuniform sediment transport in open channels. Journal of Hydraulic Engineering, 130(10), 1013-1024. Cerca con Google

Wu, W., Wang S. S. Y. and Jia Y. (2000), Nonuniform sediment transport in alluvial rivers, Journal of Hydraulic Research, 38(6), 427-434. Cerca con Google

Yang C.T, Song C.C.S., and Woldenberg M.J. (1981). Hydraulic geometry and minimum rate of energy dissipation. Water Resources Research 14(4): 1014-1018. Cerca con Google

Yang, C.T. and Song CCS. 1979. Theory of minimum rate of energy dissipation. Journal of the Hydraulics Division, ASCE 105 : 759-784. Cerca con Google

Yang, C. T. (1971), Potential energy and stream morphology. Water Resources Research 7, 311-322. Cerca con Google

Yen, B. C. (1992), Dimensionally Homogeneous Manning’s formula. Journal of Hydraulic Engineering, 118(9), 1326-1332. Cerca con Google

Yen, B. C. (2002), Open Channel Flow Resistance, Journal of Hydraulic Engineering, 128(1), Doi:10.1061/(ASCE)0733-9429(2002)128:1(20). Cerca con Google

Zadeh, L. A. (1965). Fuzzy sets. Information and control, Vol. 8, 338-353. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record