Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Marzaro, M (2013) Corn seed coated with neonicotinoids: environmental contamination and bee losses in spring. [Ph.D. thesis]

Full text disponibile come:

PDF Document - Published Version

Abstract (english)

The last ten years have witnessed, both at a national and an international level, a crisis in the beekeeping sector due to the death of bees often causing a complete depopulation of hives. This phenomenon has assumed a particularly serious intensity in the three years 2005-2008 with a loss of up to 40% of hives in some states in Europe, amongst these Italy, and losses up to 40-60% in the United States. The name “Colony Collapse Disorder has been coined to describe these generalised bee deaths and a number of questions have been raised as to the causes, amongst these are the spread of parasites such as Varroa destructor or Nosema spp., ever more extreme beekeeping techniques and the widespread environmental pollution due in great measure the use of phyto-sanitary products. The colony losses that have been observed in the Autumn in particular, are generally due to the instance of varroa, while the Spring losses, before the banning of neonicotinoids in 2008, appeared at the same time as the Spring sowing of maize seed where seed coated with insecticide of the neonicotinoid family were sown using pneumatic seed drills.
This text studies in depth aspects which are concerned with the death of bees, particularly in the Spring period. It is possible, in fact, to distinguish the causes which differentiate the losses in the Autumn, caused essentially by the bee mite Varroa destructor from the Spring losses the cause of which is associated with the sowing of maize with neonicotinoids. The means by which poisoning occurred were virtually unknown until the start of the present thesis. Up to this point the deaths had in fact been attributed to poisoning by sub-lethal doses which bees had picked up from the self-sown vegetation surrounding the sowing areas. Instead, the hypothesis has been considered that there exist sources of acute poisoning connected to the sowing of maize. Two different poisoning mechanisms were hypothesised. The first consisted of the release of droplets containing substantial quantities of active ingredient with which the bees could come into contact through a physiological phenomenon called guttation; the second mechanism considered was poisoning with insecticide through the sowing of coated maize seed, whereby large quantities of dust, containing high concentrations of insecticide, poisoned the bees in flight.
Young plants which develop raised root pressure frequently show an emission of liquid around the edge of the leaves, a phenomenon called guttation. The “drops of dew” seen on the leaves of graminaceous plants in the morning are, for most part, guttation drops, in particular on the points of the leaves. The drops are produced and remain on the lamina of the leaves of maize seedlings, often for some hours, but they can drop off or dry out rapidly if wind is present. Guttation can even remain in the calyx of the plant for the whole day. During the Spring period such drops can be used by bees as a water source with which to moisten the hive
The first two studies in this thesis illustrate and show the results of the first year of doctoral activity, that is the discovery that the droplets of guttation contain elevated concentrations, some hundreds of ppm, of inscticides (neonicotinoids) employed in the seed coating. This insecticide, being systemic (water soluble), enters into the circulation of the plant, and is thus released through guttation. Such concentrations, if we consider a bees capacity to ingest (estimated around 20-30µl), proves to be well above the lethal dose for ingestion or, even for contact (ca. 20-40µl of a.i. per bee). However, the implication of guttation in the catastrophic Spring deaths has been excluded through the observations in the field, in which it came to light that such droplets do not constitute a normal water source for bees, unless we assume a long period of drought.
Therefore, in subsequent studies the hypothesis was considered that the toxic effects of neonicotinoids used for the coating of maize seed could be directly related the exposure of bees to the dust emitted during the maize sowing. Field trials were undertaken, both with regard to the emission of particulates, and to determine the mechanisms and the factors that caused the lethal poisoning of bees.
From chemical analysis (conducted by the Department of Chemistry of the University of Padua) it was shown that, even after a single flight in the vicinity of the seed drill, that quantities from between about 50 and 1000 ng per bee were present with a maximum encountered equal to 11µg/bee. In parallel with the field trials steps were taken to quantify the amount of dust emitted by the seed drill with great precision (six trials), and at the same time to determine the dimensions of the “toxic cloud” made up of particulates projected into the air during the sowing. In the fifth study in this thesis, the presence of a toxic cloud around the machine was demonstrated which, in the absence of a sustained wind, had an ellipsoidal form of approximately 20 metres in diameter and at least 3 metres in height. Among the various results obtained, it is also important to underline the setting up of a simple biological test to establish the toxic effect to bees flying near the seed drill. These results are in precise agreement with the analytical data of emissions and/or the fall of particulates emanating from the seed drill.
The chemical analysis, in particular, allowed the putting on place of an innovative protocol to determine the amount of neonicotinoid insecticide in a single bee (seventh study); up to that point all the analysis reported in the literature concerned the examination of at least several hundreds of bees (for example kg of dead insects). It follows that the more refined chemical analysis allows the quantification of contamination in a single insect with an evident advantage in the understanding and evaluation of the cause of poisoning.

Abstract (italian)

Negli ultimi dieci anni si è assistito, a livello nazionale ed internazionale, ad una crisi nel settore dell’apicoltura dovuto a morie di api che portano spesso ad un completo spopolamento degli alveari. Questo fenomeno ha assunto intensità particolarmente gravi nel triennio 2005-2008, con perdite fino al 40% del totale degli alveari produttivi in alcuni stati europei, tra cui l’Italia e sino al 40-60% negli Stati Uniti. Questa generalizzata moria delle api, denominata “Colony Collapse Disorder” (CCD) ha comportato una serie di interrogativi sulle cause, tra le quali la diffusione di parassiti come la Varroa destructor oppure il Nosema spp., le tecniche apistiche sempre più spinte e il diffuso inquinamento ambientale dovuto in gran parte all’uso di prodotti fitosanitari. In particolare, la perdita di colonie che si osserva in autunno è dovuta nella generalità dei casi alla varroa, mentre le perdite primaverili, osservate prima del bando dei neonicotinoidi nel 2008, avvengono in corrispondenza delle semine primaverili del mais, dove si impiegano sementi conciate con insetticidi appartenenti alla famiglia dei neonicotinoidi e seminatrici pneumatiche.
In questa tesi si sono approfonditi gli aspetti che riguardano la moria delle api, soprattutto in riferimento al periodo primaverile. Si possono infatti distinguere le cause che differenziano le perdite delle colonie nel periodo autunnale provocate essenzialmente dall’acaro Varroa destructor, dalle perdite primaverili, le cui cause, pur essendo associate alle semine del mais con neonicotinoidi, erano praticamente sconosciute nel modalità di intossicazione sino all’inizio della presente tesi; si attribuiva infatti la morte delle api a dosi sub letali acquisite dalla vegetazione spontanea circostante i seminativi. Si è considerata invece l’ipotesi che esistessero fonti di intossicazione acuta legate alla semina del mais. Si sono ipotizzati due diversi meccanismi d’azione nell’avvelenamento delle api. Il primo consiste nel rilascio, sottoforma di gocce, attraverso un fenomeno fisiologico chiamato guttazione, di ingenti quantità di principio attivo con le quali le api potrebbero venire a contatto; l’altro meccanismo considera l’intossicazione da insetticidi attraverso la semina di mais conciato con la liberazione nell’aria di particolato contenente concentrazioni altissime di insetticida con il quale le api si intossicano in volo.
Le giovani piante che sviluppano una pressione radicale elevata, mostrano frequentemente la fuoriuscita di liquido dai margini delle foglie, un fenomeno detto guttazione. Le “gocce di rugiada” osservate sulle foglie delle graminacee al mattino sono per lo più gocce di guttazione, in particolare se presenti sulla punta delle foglie. Le gocce sono prodotte e permangono sulla lamina delle foglie delle piantine di mais anche per parecchie ore, ma possono cadere o asciugarsi rapidamente in presenza di vento. Nel calice, la guttazione permane anche per tutto il giorno. Tali gocce durante il periodo primaverile possono venir utilizzate dalle api come fonte idrica anche per umettare l’alveare.
Nei primi due lavori presenti in questa tesi sono illustrati i risultati del primo anno dell’attività di dottorato, cioè la scoperta che le gocce di guttazione contengono concentrazioni elevate, anche centinaia di ppm, di insetticidi (neonicotinoidi) impiegati nella concia dei semi: queste molecole essendo idrosolubili entrano in circolo nella pianta e sono quindi parzialmente rilasciati attraverso le guttazioni. Tali concentrazioni, se si considera la capacità di ingestione di un’ape ( stimata attorno a 20-30 µl), risultano ben al di sopra della dose letale sia per ingestione ed anche per contatto (circa 20-40 ng di p.a./ape). Si è tuttavia esclusa l’implicazione delle guttazioni nelle catastrofiche morie primaverili attraverso osservazioni di campo che hanno messo in luce come tali gocce non costituiscano di norma una fonte idrica per le api a meno che, si suppone, non perduri un lungo periodo di siccità.
Nei lavori successivi si è quindi considerata l’ipotesi che l’effetto tossico dei neonicotinoidi usati per la concia del seme di mais, fosse direttamente connesso all’esposizione delle api alle polveri emesse durante la semina. Si sono svolte prove in campo, sia per quanto riguarda l’emissione del particolato, sia sul meccanismo e i fattori che provocavano un intossicazione letale alle api.
Dalle analisi chimiche (eseguite dal Dipartimento di Scienze Chimiche dell’Università di Padova), le quantità di insetticidi rinvenuti su api morte, anche dopo un solo volo vicino alla seminatrice, sono comprese tra circa 50 e 1000 ng per ape, con una punta massima riscontrata pari a 11 µg/ape.
Parallelamente alle prove in campo, si è provveduto a quantificare con maggior precisione la quantità di polvere che viene emessa dalla seminatrice (sesto lavoro) e contemporaneamente a determinare la dimensione della “nube tossica” formata dal particolato proiettato in aria durante la semina. Nel quinto lavoro presente nella tesi, è stata dimostrata così la presenza di una nube tossica attorno alla macchina, che in assenza di vento sostenuto, ha la forma di un elissoide di circa 20 metri di diametro e di almeno 3 metri d’altezza. Tra i vari risultati ottenuti è rilevante sottolineare anche la messa a punto un semplice test biologico per saggiare l’effettiva intossicazione delle api in vicinanza delle seminatrici i cui risultati sono in ottimo accordo con i dati analitici di emissione e/o di ricaduta delle particelle originate con la semina.
Le analisi chimiche, in particolare, hanno consentito di mettere a punto un protocollo innovativo per la determinazione di insetticidi neonicotinoidi in singole api (settimo lavoro); sino ad ora tutte le analisi riportate in letteratura riguardano l’esame di campioni di almeno alcune decine di api (es. kg di insetti morti). Ne consegue che l’analisi chimica più raffinata permette di quantificare la contaminazione del singolo insetto con un evidente vantaggio per la comprensione e valutazione delle cause di intossicazione.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Girolami, V
Data di deposito della tesi:21 January 2013
Anno di Pubblicazione:31 January 2013
Key Words:guttation, neonicotinoids, honeybee, Apis mellifera, seed coating, toxic powder, humidity influence, clothianidin, imidacloprid, driller modification, drift of dust evaluation, colony losses
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/11 Entomologia generale e applicata
Struttura di riferimento:Dipartimenti > Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente
Codice ID:5398
Depositato il:15 Oct 2013 14:16
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Aizen M, Garibaldi L, Cunningham S, Klein A (2008) Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18: 1572–1575. Cerca con Google

Aizen MA, Harder LD (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19: 915–918. Cerca con Google

Altmann R (2003) Poncho: a new insecticidal seed treatment for the control of major maize pests in Europe. Pflanzenschutz Nachrichten Bayer (English edition) 56: 102–110. Cerca con Google

Altmann R, Springer B (2003) Control of rootworms (Diabrotica spp.) in corn (Zea mays) using seed treatment of Clothianidin. International Symposium on the ecology and management of Western Corn Rootworm, 19-23 January 2003, University Goettingen, Germany. Cerca con Google

Andersch W, Schwarz M (2003) Clothianidin seed treatment (Poncho Reg.): the new technology for control of corn rootworms and secondary pests in US-Corn production. Pflanzenschutz Nachrichten Bayer 56: 147–172. Cerca con Google

Anderson D (2000) Variation in the parasitic bee mite Varroa jacobsoni Oud. Apidologie 31: 281–292. Cerca con Google

Anderson DL, Trueman JWH (2000) Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp. Appl. Acarol. 24: 165–189. Cerca con Google

Apenet (2011) http://reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/4094. [accessed 14 December 2012]. Vai! Cerca con Google

Bernal J, Garrido-Bailon E, del Nozal MJ, Gonzalez-Porto AV, Martin-Hernandez R, Diego JC, Jimenez JJ, Bernal JL, Higes M (2010) Overview of pesticide residues in stored pollen and their potential effect on bee colony (Apis mellifera) losses in Spain. J Econ Entomol 103:1964–1971. Cerca con Google

Biesmeijer JC, Roberts SPM, Reemer M, Ohlemuller R, Edwards M, Peeters T (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313: 351–354. Cerca con Google

Bonmatin JM, Marchand PA, Charvet R, Moineau I, Bengsch ER, Colin ME (2005) Quantification of imidacloprid uptake in maize crops. J Agric Food Chem 53: 5336–5341. Cerca con Google

Bortolotti L, Montanari R, Marcelino J, Medrzycki P, Maini S, Porrini C (2003) Effect of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull. Insectol. 56: 63-67. Cerca con Google

Bortolotti L, Sabatini AG, Multinelli F, Astuti M, Lavazza A, Piro R, Tesoriero D, Medrzycki P, Sgolastra F, Porrini C (2009) Spring honey bee losses in Italy. Julius Kühn Arch. 423: 148−151. Cerca con Google

Butchart SH, Walpole M, Collen B, van Strien A, Scharlemann JP, Almond RE, Baillie JE, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke, J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque JF, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Hernández Morcillo M, Oldfield TE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vié JC, Watson R (2010) Global biodiversity: Indicators of recent declines. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010). Cerca con Google

Calderone NW (2012) Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009. PLoS ONE 7(5): e37235. doi:10.1371/journal.pone.0037235. Cerca con Google

Cane JH, Schiffhauer D (2003) Dose-response relationships between pollination and fruiting refine pollinator comparisons for cranberry (Vaccinium macrocarpon [Ericaceae]). Am. J. Bot. 90: 1425–1432. Cerca con Google

Charriere JD, Neumann P (2010) Surveys to estimate colony losses in Switzerland. J. Apic. Res. 49(1): 132-133. Cerca con Google

Chauzat MP, Faucon JP, Martel AC, Lachaize J, Cougoule N, Aubert M (2006) A survey of pesticide residues in pollen loads collected by honey bees in France. J. Econ. Entomol. 99: 253-262. Cerca con Google

Chauzat MP, Martel AC, Zeggane S, Drajnudel P, Schurr F, Clement MC, Ribiere-Chamber M, Aubert M, Faucon JP (2010). A case control study and a survey on mortalities of honey bee colonies (Apis mellifera) in France during the winter of 2005-6. J. Apic. Res. 49(1): 40-51. Cerca con Google

Chen Y, Evans JD, Smith IB, Pettis JS (2008) Nosema ceranae is a long-present and wide-spread microsporidean infection of the European honey bee (Apis mellifera) in the United States. J. Invertebr. Pathol. 97: 186–188. Cerca con Google

Chen YP, Evans JD (2007) Historical presence of Israeli acute paralysis virus in the United States. Am. Bee J. 147:1027-1028. Cerca con Google

Colin ME, Bonmatin JM, Moineau I, Gaimon C, Brun S and Vermandere JP (2004) A method to quantify and analyze the foraging activity of honey bees: relevance to the sub-lethal effects induced by systemic insecticides. Arch Environ Contam Toxicol 47:387–395. Cerca con Google

Colliot F, Kukorowski KA, Hawkins DW, Roberts DA (1992). Fipronil: a new soil and foliar broad spectrum insecticide. In abstracts of Brighton Crop Protection Conference: Pests and Diseases, Vol.3, pp. 29.34. London: British Crop Protection Council. Cerca con Google

Costanza RR, d’Arge R, deGroot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1998) The value of the world’s ecosystem services and natural capital. Ecol. Econ. 25: 3–15. Cerca con Google

Cox-Foster D, VanEngelsdorp D (2009) Saving the honeybee. Sci Am 300: 40–47. Cerca con Google

Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese S, Hornig M, Geiser DM, Martinson V, vanEngelsdorp D, Kalkseitn AL, Drysdale L, Hui J, Zhai J, Cui L, Hutchison S, Simons JF, Egholm M, Pettis JS, LipkinWI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318: 283–287. Cerca con Google

Decourtye A, Devillers J (2010) Ecotoxicity of neonicotinoid insecticides to bees. Adv. Exp. Med. Biol. 683: 85−95. Cerca con Google

Decourtye A, Devillers J, Genecque E, Le Menach K, Budzinski H, Cluzeau S, Pham-Delegue MH (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch Environ Contam Toxicol 48: 242–250. Cerca con Google

Delaplane, K.S. & Mayer DF (2000). Crop Pollination by Bees. CABI Publishing, New York. Cerca con Google

Elbert A, Haas M, Springer B, Thielert W, Nauen R (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Manage. Sci. 64: 1099−1110. Cerca con Google

Elbert A, Overbeck H, Iwaya K, Tsuboi S (1990) Imidacloprid, a novel systemic nitromethylene analogue insecticide for crop protection. Proc. Brighton Crop Prot. Conf. Pests Dis. 1: 21–28. Cerca con Google

Ellis J, Evans JD, Pettis J (2010) Reviewing colony losses and Colony Collapse Disorder in the United States. J. Apic. Res. 49: 134–136. Cerca con Google

Food and Agriculture Organization of United Nations (FAO), 2011. FAOSTAT. http://faostat.fao.org/site/573/DesktopDefault.aspx?PageID=573#ancor. [accessed 14 December 2012]. Vai! Cerca con Google

Frazier M, Mullin C, Frazier J, Ashcraft S (2008) What have pesticides got to do with it? Am. Bee J. 148 (6): 521–523. Cerca con Google

Fries I, Feng F, da Silva A, Slemenda SB, Pieniazek NJ (1996) Nosema ceranae sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur. J. Protistol. 32: 356–365. Cerca con Google

Fries I, Hansen H, Imdorf A, Rosenkranz P (2003) Swarming in honey bees (Apis mellifera) and Varroa destructor population development in Sweden. Apidologie 34: 389–398. Cerca con Google

Fries I, Perez-Escala S (2001) Mortality of Varroa destructor in honey bee (Apis mellifera) colonies during winter. Apidologie 32: 223–229. Cerca con Google

Gallai N, Salles JM, Settele J, Vaissiere BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68: 810–821. Cerca con Google

Genersch E, von der Ohe W, Kaatz H, Schroeder A, Otten C, Büchler R (2010) The German Bee Monitoring: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41: 332–352. Cerca con Google

Girolami V, Marzaro M, Vivan L, Mazzon L, Greatti M, Giorio C, Marton D, Tapparo A (2011) Fatal powdering of bees in flight with particulates of neonicotinoids seed coating and humidity implication. J. Appl. Entomol. 136: 17−26. Cerca con Google

Goatley JL, Lewis RW (1966) Composition of guttation fluid from rye, wheat, and barley seedlings. Plant Physiol. 41: 373-375. Cerca con Google

Gray A, Peterson M, Teale A (2010) An update on recent colony losses in Scotland from a sample survey covering during 2006-2008. J. Apic. Res. 49(1): 129-131. Cerca con Google

Greatti M, Barbattini R, Stravisi A, Sabatini A, Rossi S (2006) Presence of the a.i. imidacloprid on vegetation near corn fields sown with Gaucho dressed seeds. Bull. Insectol. 59:99–103. Cerca con Google

Greatti M, Sabatini AG, Barbattini R, Rossi S, Stravisi A (2003) Risk of environmental contamination by the active ingredient imidacloprid used for corn seed dressing. Preliminary results. Bull. Insectol. 56: 69−72. Cerca con Google

Guzsvany V, Kadar M, Gaal F, Toth K, Bjelica L (2006) Rapid differential pulse polarographic determination of thiamethoxam in commercial formulations and some real samples. Microchim. Acta. 154: 321–328. Cerca con Google

Higes M, Martin R, Meana A (2006) Nosema ceranae, a new microsporidian parasite in honey bees in Europe. J. Invertebr. Pathol. 92: 93–95. Cerca con Google

Higes M, Martín-Hernández R, Garrido-Bailón E, González-Porto AV, García-Palencia P, Meana A, del Nozal MJ, Mayo R, Bernal JL (2009) Honey bee colony collapse due to Nosema ceranae in professional apiaries. Environ. Microbiol. Rep. 1: 110–113. Cerca con Google

Highfield AC, El Nager A, Mackinder LCM, Noel LMLJ, Hall MJ, Martin SJ, Schroeder DC (2009) Deformed wing virus implicated in overwintering honeybee colony losses. Appl. Environ. Microbiol. 75: 7212–7220. Cerca con Google

Huang Z (2012) Pollen nutrition affects honey bee stress resistance. Terr Arthropod Rev. 5(2): 175-189. Cerca con Google

Hughes RN, Brimblecombe P (1994) Dew and Guttation - Formation and Environmental Significance. Agricultural and Forest Meteorology 67: 173-190. Cerca con Google

ISPRA (2011) http://www.isprambiente.gov.it/files/api/indagine-tecnico-conoscitiva-moria-api-rapporto-finale.pdf. [accessed 13 January 2013]. Vai! Cerca con Google

Ivanoff S (1963) Guttation injuries of plants. Bot. Rev. 29: 202-229. Cerca con Google

Jeschke P, Nauen R (2008) Neonicotinoids - From zero to hero in insecticide chemistry. Pest Manag. Sci. 64: 1084-1098. Cerca con Google

Johnson RM, Ellis MD, Mullin CA, Frazier M (2010) Pesticides and bee toxicity–USA. Apidologie 41: 312–331. Cerca con Google

Klein AM, Vaissiere B, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C (2007). Importance of crop pollinators in changing landscapes for world crops. Biol. Sci. 274: 303–313. Cerca con Google

Kraus B, Page RE (1995) Effect of Varroa jacobsoni (Mesostigmata: Varroidae) on feral Apis mellifera (Hymenoptera: Apidae) in California. Environ. Entomol. 24: 1473–1480. Cerca con Google

Laurent FM, Rathahao E (2003) Distribution of [C-14] imidacloprid in sunflowers (Helianthus annuus L.) following seed treatment. J Agric Food Chem 51:8005–8010. Cerca con Google

Laurino D, Porporato M, Patetta A and Manino A (2011) Toxicity of neonicotinoid insecticides to honey bees: laboratory tests. Bull. Insectol. 64: 107-113. Cerca con Google

Le Conte Y, Ellis M, Ritter W (2010) Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie 41: 353–363. Cerca con Google

Magalhaes LC, Hunt TE, Siegfried BD (2009) Efficacy of neonicotinoid seed treatments to reduce soybean aphid populations under field and controlled conditions in Nebraska. J. Econ. Entomol. 102: 187-195. Cerca con Google

Maienfisch P, Angst M, Brandl F, Fischer W, Hofer D, Kayser H, Kobel W, Rindlisbacher A, Senn R, Steinemann A, Widmer H (2001) Chemistry and biology of thiamethoxam: a second generation neonicotinoid. Pest Manag. Sci. 57: 906–913. Cerca con Google

Maini S, Medrzycki P, Porrini C (2010) The puzzle of honey bee losses: a brief review. Bull. Insectol. 63: 153−160. Cerca con Google

Marzaro M, Vivan L, Targa A, Mazzon L, Mori N, Greatti M, Petrucco Toffolo E, Di Bernardo A, Giorio C, Marton D, Tapparo A, Girolami V (2011) Lethal aerial powdering of honey bees with neonicotinoids from fragments of maize seed coat. Bull. Insectol. 64: 119−126. Cerca con Google

Medrzycki P, Montanari R, Bortolotti L, Sabatini AG and Maini S (2003) Effects of imidacloprid administered in sub-lethal doses on honey bee behaviour. Laboratory tests. Bull. Insectol. 56:59–62. Cerca con Google

Moritz RFA, de Miranda J, Fries I, Le Conte Y, Neumann P, Paxton RJ (2010) Research strategies to improve honeybee health in Europe. Apidologie 41: 227–242. Cerca con Google

Mutinelli F, Costa C, Lodesani M, Baggio A, Medrzycki P, Formato G, Porrini C (2010). Honey bee colony losses in Italy. J. Apic. Res. 49(1): 119-120. Cerca con Google

Naug D (2009) Nutritional stress due to habitat loss may explain recent honey colony collapses. Biol. Convers. 142: 2369–2372. Cerca con Google

Neumann P, Carreck NL (2010) Honey bee colony losses. J. Apic. Res. 49: 1–6. Cerca con Google

Neumann P, Elzen P ( 2004 ) The biology of the small hive beetle (Aethina tumida Murray, Coleoptera: Nitidulidae): gaps in our knowledge of an invasive species. Apidologie 35: 229 – 247. Cerca con Google

Oldroyd BP (2007) What's killing American honey bees? PLoS Biol. 5:e168. Cerca con Google

Paxton RJ, Klee J, Korpela S, Fries I (2007) Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie 38: 558–565. Cerca con Google

Porrini C, Sabatini AG, Girotti S, Fini F, Monaco L, Celli G, Bortolotti L, Ghini S (2003) The death of honey bees and environmental pollution by pesticides: the honey bees as biological indicators. Bull. Insectol. 56 (1): 147-152. Cerca con Google

Potts SG, Roberts SPM, Dean R, Marris G, Brown MA, Jones HR, Neumann P, Settele J (2010) Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49: 15–22. Cerca con Google

Ransome HN (1937) The Sacred Bee. Dover Publication Inc., London, 308 p. Cerca con Google

Ratnieks FLW, Carreck NL (2010) Clarity on honey bee collapse? Science 327:152–153. Cerca con Google

Robinson P (2001) Evaluation of the new active thiamethoxam in the product cruiser 350 fs insecticide seed treatment. National Registration Authority for Agricultural and Veterinary Chemicals, Australia. Cerca con Google

Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr. Pathol. 103:S96–S119. Cerca con Google

Rosenkranz P, Kirsch R, Renz R (2006) Population dynamics of honey bee colonies and Varroa tolerance: a comparison between Uruguay and Germany In: Santana, Lobo, Hartfelder (Eds.), Proceedings 7th Encontro Sobre Abelhas, USP, Ribeirao Preto, Brazil. Cerca con Google

Schmuck R, (1999) No causal relationship between Gaucho1 seed dressing in sunflowers and the French bee syndrome. Pflanzenschutz Nachrichten Bayer 52: 257-299. Cerca con Google

Schmuck R, Schoning R, Stork A, Schramel O (2001) Risk posed to honeybees (Apis mellifera L. Hymenoptera) by an imidacloprid seed dressing of sunflowers. Pest Manage. Sci. 57: 225–238. Cerca con Google

Schnier H, Wenig G, Laubert F, Simon V, Schmuck R (2003) Honey bee safety of imidacloprid corn seed treatment. Bull. Insectol. 56: 73-75. Cerca con Google

Sgolastra F, Renzi T, Draghetti S, Medrzycki P, Lodesani M, Maini S, Porrini C (2012) Effects of neonicotinoid dust from maize seed-dressing on honey bees. Bull. Insectol. 65 (2): 273-280. Cerca con Google

Shimanuki H, Calderone NW, Knox DA (1994) Parasitic mite syndrome: the symptoms. Am. Bee J. 134: 827-828. Cerca con Google

Spivak M, Mader E, Vaughan M, Euliss NH (2011) The plight of the bees. Environ. Sci. Technol. 45: 34-38. Cerca con Google

Stamm DE, Mayo ZB, Campbell JB, Witkowski JF, Anderson LW, Kozub R (1985) Western corn roootworm (Coleoptera: Chrysomelidae) beetle counts as a means of making control recommendations in Nebraska. J. Econ. Entomol. 78: 794-98. Cerca con Google

Steffan-Dewenter I, Klein AM, Alfert T, Gaebele V, Tscharntke T (2006) Bee diversity and plant–pollinator interactions in fragmented landscapes. In Specialization and generalization in plant–pollinator interactions. Chicago, IL: Chicago Press, pp. 387–408. Cerca con Google

Steffan-Dewenter I, Potts SG, Packer L (2005) Pollinator diversity and crop pollination services are at risk. Trends Ecol. Evol. 20: 651–652. Cerca con Google

Stokstad E (2007). The case of the empty hives. Science 316: 970–972. Cerca con Google

Suchail S, Guez D, Belzunces LP (2001) Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ. Toxicol. Chem. 20: 2482–2486. Cerca con Google

Taylor AG, Harman GE (1990) Concepts and technologies of selected seed treatments. Annu. Rev. Phytopathol. 28: 321-339. Cerca con Google

Teeters BS, Johnson R M, Ellis MD, Siegfried BD (2012) Using videotracking to assess sublethal effects of pesticides on honey bees (Apis mellifera L.). Environ. Toxicol. Chem. 31 (6): 1349-1354. Cerca con Google

Thompson HM, Brown MA, Ball RF, Bew MH (2002) First report of Varroa destructor resistance to pyrethroids in the UK. Apidologie 33: 357-366. Cerca con Google

Turnblad KM (1998) US Patent 5849320, insecticidal seed coating. http://www.google.it/patents?hl=it&lr=&vid=USPAT5849320&id=jXYWAAAAEBAJ&oi=fnd&dq=Turnblad+KM,+1998.+US+Patent+5849320,+insecticidal+seed&printse=abstract#v=onepage&q& f=false [accessed 13 January 2013]. Vai! Cerca con Google

Underwood R, vanEngelsdorp D (2007) Colony Collapse Disorder: have we seen this before? Bee Cult 35: 13–18. Cerca con Google

van der Zee R, Pisa L, Andonov S, Brodschneider R, Charriere JD, Chelbo R, Coffey MF, Craislsheim K, Dahle B, Gajda A, Gray A, Drazic MM, Higes M, Kauko L, Kence A, Kence M, Kezic N, Kiprijanovska H, Kraly J, Kristiansen P, Martin-Hernandez R, Mutinelli F, Nguyen BK, Otten C, Ozkirim A, Pernal SF, Peterson M, Ramsay G, Santrac V, Soroker V, Topoloska G, Uzunov A, Vejsnaes F, Wei S, Wilkins S (2012) Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008–9 and 2009–10. J Apic Res 51: 100–114. Cerca con Google

Van Rozen K, Ester A (2010) Chemical control of Diabrotica virgifera virgifera LeConte. J. Appl. Entomol. 134: 376–384. Cerca con Google

vanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, Frazier J, Cox-Foster D, Chen Y, Underwood R, Tarpy DR, Pettis JS (2009b) Colony collapse disorder: a descriptive study. PLoS One 4: e6481. Cerca con Google

vanEngelsdorp D, Hayes J Jr, Underwood RM, Pettis J (2008) A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS ONE 3: e4071. Cerca con Google

vanEngelsdorp D, Meixner MD (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 103: S80–S95. Cerca con Google

vanEngelsdorp D, Underwood R, Caron D, Hayes J (2007) An estimate of managed colony losses in the winter of 2006-2007: A report commissioned by the apiary inspectors of America. Am. Bee J. 147: 599–603. Cerca con Google

Villa JD, Bustamante DM, Dunkley JP, Escobar LA (2008) Changes in honey bee (Hymenoptera: Apidae) colony swarming and survival pre- and postarrival of Varroa destructor (Mesostigmata: Varroidae) in Louisiana. Ann. Entomol. Soc. Am. 101 (5): 867–871. Cerca con Google

Wallner K (1999) Varroacides and their residues in bee products. Apidologie 30: 235-248. Cerca con Google

Winfree R, Cariveau D, Bartomeus I (2011) Native pollinators in anthropogenic habitats. Ann. Rev. Ecol. Evol. Syst. 42: 1–22. Cerca con Google

Yang EC, Chuang YC, Chen YL, Chang LH (2008) Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 101: 1743-1748. Cerca con Google

Zander E (1909) Tierische Parasiten als Krankenheitserreger bei der Biene. Leipziger Bienenzeitung 24: 147–150. Cerca con Google

Zhou QX, Ding YJ, Xiao JP (2006) Sensitive determination of thiamethoxam, imidacloprid and acetamiprid in environmental water samples with solid-phase extraction packed with multiwalled carbon nanotubes prior to high-performance liquid chromatography. Anal. Bioanal. Chem. 385: 1520-1525. Cerca con Google

(Helianthus annuus L.) following seed treatment. J Agric Food Chem 51:8005–8010. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record