Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Centi, Sonia (2008) Identificazione di pattern di espressione genica della displasia renale associata ad uropatia malformativa. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
1756Kb

Abstract (inglese)

Normal kidney and urinary tract development is a complex process, regulated by a strict space-time-corrected sequential activation of a cascade of genes encoding transcription factors, growth factors, cell death/proliferation factors and adhesion molecules. An alteration disrupting this sequential gene expression may cause a defective ureteric bud-to-metanephric mesenchyme cross-talk that results in a renal and urinary tract developmental abnormality (congenital anomalies of kidney and urinary tract - CAKUT). Phenotype severity depends on the stage of nephrogenesis in which the alteration of the developmental program occurs, thus renal dysplasia is the most severe manifestation. However, little is known about CAKUT pathogenesis. The recent advent of microarray technology provided an unique tool to identify genes potentially involved in the pathogenesis of several diseases.
During the first stage of this research, we applied the microarray technique to study gene expression profiles of primary renal cell cultures, using an array composed by 21329 oligonucleotides. The aim was to identify potential biomarkers of renal dysplasia. Four genes seemed to be more interesting (UPK1B, SOX11, SPRY1, MMP2). We analysed the expression of these four genes using Real Time PCR on RNA extracted from renal tissue samples of 10 patients with a histological picture of renal dysplasia and 10 with histologically normal renal tissue.
Mutation analysis of SPRY1 gene, whose murine homologue is hugely involved in the regulation of GDNF growth factor's expression during ureteric branching, was carried out on 27 patients with renal duplicity. Mutation analysis identified 2 new genomic variants - whose frequency was analysed in a control population - that may be "genomic variants involved in splicing" (SpaGVs).
Our research results allow to hypothesize that SPRY1 gene may be involved in the pathogenesis of kidney and urinary tract developmental diseases.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Murer, Luisa
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > MEDICINA DELLO SVILUPPO E SCIENZE DELLA PROGRAMMAZIONE > MALATTIE RARE
Data di deposito della tesi:28 Gennaio 2008
Anno di Pubblicazione:28 Gennaio 2008
Parole chiave (italiano / inglese):nefrogenesi, malformazione del rene e della via urinaria, displasia, microarray, real time pcr, analisi di mutazione, SPRY1
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/14 Nefrologia
Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > Dipartimento di Pediatria
Codice ID:540
Depositato il:24 Ott 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Horster MF, Braun GS, Huber SM. Embryonic renal epithelia: induction, nephrogenesis, and cell differentiation. Physiol Rev. 1999 Oct;79(4):1157-91. Review. Cerca con Google

2. Sampogna RV, Nigam SK. Implication of gene networks for understanding resilience and vulnerability in the kidney branching program. Physiology 19:339-347, 2004. Cerca con Google

3. Schedl A, Hastie ND. Cross-talk in kidney development. Curr Opin Genet Dev. 2000 Oct;10(5):543-9. Review. Cerca con Google

4. Woolf AS, Price KL, Scambler PJ, Winyard PJ. Evolving concepts in human renal dysplasia. J Am Soc Nephrol. 2004 Apr;15(4):998-1007. Review. Cerca con Google

5. Davies JA, Fisher CE. Genes and proteins in renal development. Exp Nephrol. 2002;10(2):102-13. Review. Cerca con Google

6. Meyer TN, Schwesinger C, Bush KT, Stuart RO, Rose DW, Shah MM, Vaughn DA, Steer DL, Nigam SK. Spatiotemporal regulation of morphogenetic molecules during in vitro branching of the isolated ureteric bud: toward a model of branching through budding in the developing kidney. Dev Biol. 2004 Nov 1;275(1):44-67. Cerca con Google

7. Woolf AS, Winyard PJ. Molecular mechanisms of human embryogenesis: developmental pathogenesis of renal tract malformations. Pediatr Dev Pathol. 2002 Mar-Apr;5(2):108-29. Review. Cerca con Google

8. Rodríguez-Soriano J, Vallo A, Bilbao JR, Castaño L. Branchio-oto-renal syndrome: identification of a novel mutation in the EYA1 gene. Pediatr Nephrol. 2001 Jul;16(7):550-3. Cerca con Google

9. Buller C, Xu X, Marquis V, Schwanke R, Xu PX. Molecular effects of Eya1 domain mutations causing organ defects in BOR syndrome. Hum Mol Genet. 2001 Nov 15;10(24):2775-81. Cerca con Google

10. Pohl M, Bhatnagar V, Mendoza SA, Nigam SK. Toward an etiological classification of developmental disorders of the kidney and upper urinary tract. Kidney Int. 2002 Jan;61(1):10-9. Review. Cerca con Google

11. Fletcher J, Hu M, Berman Y, Collins F, Grigg J, McIver M, Juppner H, Alexander SI. Multicystic dysplastic kidney and variable phenotype in a family with a novel deletion mutation of PAX2. J Am Soc Nephrol. 2005 Sep;16(9):2754-61. Epub 2005 Jul 27. Review. Cerca con Google

12. Eccles MR, Wallis LJ, Fidler AE, Spurr NK, Goodfellow PJ, Reeve AE. Expression of the PAX2 gene in human fetal kidney and Wilms' tumor. Cell Growth Differ. 1992 May;3(5):279-89. Cerca con Google

13. Winyard PJ, Risdon RA, Sams VR, Dressler GR, Woolf AS. The PAX2 tanscription factor is expressed in cystic and hyperproliferative dysplastic epithelia in human kidney malformations. J Clin Invest. 1996 Jul 15;98(2):451-9. Cerca con Google

14. Bingham C, Bulman MP, Ellard S, Allen LIS, Lipkin GW, van't Hoff WG, Woolf AS, Rizzoni G, Novelli G, Nicholls AJ, Hattersley AT: Mutations in the hepatocyte nuclear factor-1ß gene are associated with familial hypoplastic glomerulocystic kidney disease. Am J Hum Genet 2001; 68: 219 -224. Cerca con Google

15. Ulinski T, Lescure S, Beaufils S, Guigonis V, Decramer S, Morin D, Clauin S, Deschenes G, Bouissou F, Bensman A, Bellanne-Chantelot C. Renal phenotypes related to hepatocyte nuclear factor-1beta (TCF2) mutations in a pediatric cohort. J Am Soc Nephrol. 2006 Feb;17(2):497-503. Epub 2005 Dec 21. Cerca con Google

16. Schwab K, Patterson LT, Aronow BJ, Luckas R, Liang HC, Potter SS. A catalogue of gene expression in the developing kidney. Kidney Int. 2003 Nov;64(5):1588-604. Cerca con Google

17. Stuart RO, Bush KT, Nigam SK. Changes in gene expression patterns in the ureteric bud and metanephric mesenchyme in models of kidney development. Kidney Int. 2003 Dec;64(6):1997-2008. Cerca con Google

18. Yano N, Endoh M, Fadden K, Yamashita H, Kane A, Sakai H, Rifai A. Comprehensive gene expression profile of the adult human renal cortex: analysis by cDNA array hybridization. Kidney Int. 2000 Apr;57(4):1452-9. Cerca con Google

19. Higgins JP, Wang L, Kambham N, Montgomery K, Mason V, Vogelmann SU, Lemley KV, Brown PO, Brooks JD, van de Rijn M. Gene expression in the normal adult human kidney assessed by complementary DNA microarray. Mol Biol Cell. 2004 Feb;15(2):649-56. Epub 2003 Dec 2. Cerca con Google

20. Price KL, Long DA, Jina N, Liapis H, Hubank M, Woolf AS, Winyard PJD. Microarray interrogation of human metanephric mesenchymal cells highlights potentially important molecules in vivo. Physiol Genomics, 2007; 28: 193-202. Cerca con Google

21. Jain S, Suarez AA, McGuire J, Liapis H. Expression profiles of congenital renal dysplasia reveal new insights into renal development and disease. Pediatr Nephrol. 2007 Jul;22(7):962-74. Epub 2007 Apr 21. Cerca con Google

22. Kanwar YS, Wada J, Lin S, Danesh FR, Chugh SS, Yang Q, Banerjee T, Lomasney JW. Update of extracellular matrix, its receptors, and cell adhesion molecules in mammalian nephrogenesis. Am J Physiol Renal Physiol. 2004 Feb;286(2):F202-15. Review. Cerca con Google

23. Lelongt B, Legallicier B, Piedagnel R, Ronco PM. Do matrix metalloproteinases MMP-2 and MMP-9 (gelatinases) play a role in renal development, physiology and glomerular diseases? Curr Opin Nephrol Hypertens. 2001 Jan;10(1):7-12. Review. Cerca con Google

24. Haas C, Gleason B, Lin S, Tramonti G, Kanwar Y. Matrix metalloproteinases in renal development. Connect Tissue Res. 2004; 45(2):73-85. Cerca con Google

25. Yu J, Lin JH, Wu XR, Sun TT. Uroplakins 1a and 1b, two major differentiation products of bladder epithelium, belong to a family of four transmembrane domain (4TM) proteins. J Cell Biol 1994; 125, 171-182. Cerca con Google

26. Deng FM, Liang FX, Tu L, Resing KA, Hu P, Supino M, Hu CC, Zhou G, Ding M, Kreibich G, Sun TT. Uroplakin IIIb, a urothelial differentiation marker, dimerizes with uroplakin1b as an early step of urothelial plaque assembly. J Cell Biol, 2002; 159, 685-694. Cerca con Google

27. Gubbay J, Collignon J, Koopman P, Capel B, Economou A., Musterberg A, Vivian N, Goodfellow P, Lovell-Badge R. A gene mapping to thesexdetermining region of the mouse Y chromosome is a member of a novelfamily of embryonically expressed genes. Nature 1990; 346, 245-250. Cerca con Google

28. Wilson M, Koopman P. Matching SOX: partner proteins and cofactors of the SOX family of transcriptional regulator. Current Opinion in Genetics & Development 2002; 12, 441-446. Cerca con Google

29. Hargrave M, Wright E, Kun J, Emery J, Cooper L, Koopman P. Expression of the Sox11 gene in mouse embryos suggests roles in neuronal maturation and epithelio-mesenchymal induction. Dev Dyn. 1997 Oct;210 (2):79-86. Cerca con Google

30. Plisov SY, Ivanov SV, Yoshino K, Dove LF, Plisova TM, Higinbotham KG, Karavanova I, Lerman M, Perantoni AO. Mesenchymal-epithelial transition in the developing metanephric kidney: gene expression study by differential display. Genesis 2000 Jul;27 (3):136. Cerca con Google

31. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000 Oct 13;103 (2):211-25. Review. Cerca con Google

32. Gross I, Bassit B, Benezra M, Licht JD. Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J Biol Chem. 2001 Dec 7;276 (49):46460-8. Epub 2001 Oct 3. Cerca con Google

33. Mason JM, Morrison DJ, Basson MA, Licht JD. Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling.Trends Cell Biol. 2006 Jan;16 (1):45-54. Epub 2005 Dec 7. Review. Cerca con Google

34. Dikic I, Giordano S. Negative receptor signalling. Current Opinion in Cell Biology 2003, 15:128-135. Cerca con Google

35. Hanafusa H, Torii S, Yasunaga T, Nishida E. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol. 2002 Nov;4 (11):850-8. Cerca con Google

36. Ozaki K, Miyazaki S, Tanimura S, Kohno M. Efficient suppression of FGF- 2-induced ERK activation by the cooperative interaction among mammalian Sprouty isoforms. J Cell Sci. 2005 Dec 15;118 (Pt 24) :5861-71. Cerca con Google

37. Miyazaki Y, Ichikawa I. Ontogeny of congenital anomalies of the kidney and urinary tract, CAKUT. Pediatr Int. 2003 Oct;45 (5):598-604. Cerca con Google

38. Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, Arumäe U, Meng X, Lindahl M, Pachnis V, Sariola H.Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development. 1997 Oct;124 (20):4077-87. Cerca con Google

39. Costantini F, Shakya R. GDNF/Ret signaling and the development of the kidney. Bioessays. 2006 Feb;28 (2):117-27. Review. Cerca con Google

40. Popsueva A, Poteryaev D, Arighi E, Meng X, Angers-Loustau A, Kaplan D, Saarma M, Sariola H. GDNF promotes tubulogenesis of GFRalpha1- expressing MDCK cells by Src-mediated phosphorylation of Met receptor tyrosine kinase. J Cell Biol. 2003 Apr 14;161 (1):119-29. Epub 2003 Apr 7. Cerca con Google

41. Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell. 2005 Feb;8 (2):229-39. Cerca con Google

42. Basson MA, Watson-Johnson J, Shakya R, Akbulut S, Hyink D, Costantini FD, Wilson PD, Mason IJ, Licht JD. Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol. 2006 Nov 15;299 (2):466-77. Epub 2006 Aug 25. Cerca con Google

43. Wang H, Wang H, Shen W, Huang H, Hu L, Ramdas L, Zhou YH, Liao WS, Fuller GN, Zhang W. Insulin-like growth factor binding protein 2 enhances glioblastoma invasion by activating invasion-enhancing genes. Cancer Res. 2003 Aug 1;63 (15):4315-21. Cerca con Google

44. Kwabi-Addo B, Wang J, Erdem H, Vaid A, Castro P, Ayala G, Ittmann M. The expression of Sprouty1, an inhibitor of fibroblast growth factor signal transduction, is decreased in human prostate cancer. Cancer Res. 2004 Jul 15;64 (14):4728-35. Cerca con Google

45. Guy GR, Wong ES, Yusoff P, Chandramouli S, Lo TL, Lim J, Fong CW. Sprouty: how does the branch manager work? J Cell Sci. 2003 Aug 1;116 (Pt 15):3061-8. Review. Cerca con Google

46. Lim J, Yusoff P, Wong ES, Chandramouli S, Lao DH, Fong CW, Guy GR. The cysteine-rich sprouty translocation domain targets mitogen-activated protein kinase inhibitory proteins to phosphatidylinositol 4,5-bisphosphate in plasma membranes. Mol Cell Biol. 2002 Nov;22 (22):7953- 66. Cerca con Google

47. Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K, Tsuneoka M, Komiya S, Baron R, Yoshimura A. Spred is a Sprouty-related suppressor of Ras signalling. Nature. 2001 Aug 9;412 (6847):647-51. Cerca con Google

48. White H, Potts G. Mutation scanning by high resolution melt analisys. Evaluation of RotorGene™ 6000 (Corbett Life Science), HR1™and 384 well LightScanner™ (Idaho Technology). National Genetics Reference Laboratory NGRL (Wessex). June 2006. Cerca con Google

49. Kerecuk L, Sajoo A, McGregor L, Berg J, Haq MR, Sebire NJ, Bingham C, Edghill EL, Ellard S, Taylor J, Rigden S, Flinter FA, Woolf AS. Autosomal dominant inheritance of non-syndromic renal hypoplasia and dysplasia: dramatic variation in clinical severity in a single kindred. Nephrol Dial Transplant. 2007 Jan;22(1):259-63. Epub 2006 Sep 23. Cerca con Google

50. Schmidt-Ott KM, Yang J, Chen X, Wang H, Paragas N, Mori K, Li JY, Lu B, Costantini F, Schiffer M, Bottinger E, Barasch J. Novel regulators of kidney development from the tips of the ureteric bud. J Am Soc Nephrol. 2005 Jul;16(7):1993-2002. Epub 2005 May 25. Cerca con Google

51. Liapis H, Doshi RH, Watson MA, Liapis A, Steinhardt GF. Reduced renin expression and altered gene transcript profiles in multicystic dysplastic kidneys. J Urol. 2002 Oct; 168 (4Pt2): 1816-20. Cerca con Google

52. Baralle D, Baralle M. Splicing in action: assessing disease causing sequence changes. J Med Genet. 2005 Oct;42(10):737-48. Review. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record