Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Tavernini, Mattia (2013) Study and application of motion measurement methods by means of opto-electronics systems -
Studio e applicazione di metodi di misura del moto mediante sistemi opto-elettronici.
[Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (PhDThesis Mattia Tavernini) - Submitted Version
18Mb

Abstract (english)

This thesis addresses the problem of localizing a vehicle in unstructured environments through on-board instrumentation that does not require infrastructure modifications.
Two widely used opto-electronic systems which allow for non-contact measurements have been chosen: camera and laser range finder.
Particular attention is paid to the definition of a set of procedures for processing the environment information acquired with the instruments in order to provide both accuracy and robustness to measurement noise.
An important contribute of this work is the development of a robust and reliable algorithm for associating data that has been integrated in a graph based SLAM framework also taking into account uncertainty thus leading to an optimal vehicle motion estimation.
Moreover, the localization of the vehicle can be achieved in a generic environment since the developed global localization solution does not necessarily require the identification of landmarks in the environment, neither natural nor artificial.
Part of the work is dedicated to a thorough comparative analysis of the state-of-the-art scan matching methods in order to choose the best one to be employed in the solution pipeline.
In particular this investigation has highlighted that a dense scan matching approach can ensure good performances in many typical environments.
Several experiments in different environments, also with large scales, denote the effectiveness of the global localization system developed.
While the laser range data have been exploited for the global localization, a robust visual odometry has been investigated.
The results suggest that the use of camera can overcome the situations in which the solution achieved by the laser scanner has a low accuracy.
In particular the global localization framework can be applied also to the camera sensor, in order to perform a sensor fusion between two complementary instrumentations and so obtain a more reliable localization system.
The algorithms have been tested for 2D indoor environments, nevertheless it is expected that they are well suited also for 3D and outdoors.

Abstract (italian)

La tesi affronta il problema della localizzazione di veicoli in ambienti non strutturati mediante sistemi di misura che, montati a bordo del veicolo, non richiedono modifiche dell'ambiente di navigazione.
La scelta è ricaduta su due strumenti opto-elettronici largamente utilizzati, camera e Laser Range Finder (LRF), i quali consentono di effettuare misure senza contatto e quindi non intervenire sull'ambiente.
Particolare attenzione è stata posta alla definizione di una serie di procedure per l'elaborazione dei dati acquisiti da questa strumentazione al fine di ottenere delle informazioni affidabili e robuste alle sorgenti di rumore ambientali.
Un importante contributo di questo lavoro è lo sviluppo di un procedura di associazione robusta ed affidabile che consente di tener conto di tutti gli aspetti probabilistici in maniera tale da poter essere utilizzata in un algoritmo di localizzazione globale SLAM basato sulla teoria dei grafi e fornire una stima ottimale del moto del veicolo.
Inoltre, la localizzazione del veicolo può essere eseguita in un ambiente generico dato che questo metodo di localizzazione globale non richiede l'identificazione di caratteristiche particolari nell'ambiente.
Parte del lavoro è stata dedicata ad un'analisi esaustiva dei metodi di stima del moto fra scansioni laser, allo scopo di identificare il metodo con prestazioni migliori da impiegare nel metodo di localizzazione.
Questo ha consentito di evidenziare come un metodo di comparazione denso permetta di ottenere buone prestazioni in diverse tipologie di ambiente.
L'efficacia del metodo di localizzazione globale implementato è supportata da una serie di valutazioni sperimentali in diversi ambienti, anche di elevati dimensioni.
Riguardo alla camera, è stato sviluppato un metodo robusto di visual odometry, il quale ha evidenziato come tale strumento permetta di affrontare delle situazioni nelle quali le informazioni del laser non sono sufficienti per stimare la posa del veicolo.
In particolare, data la generalità del metodo di localizzazione globale, questo può essere facilmente applicato anche alla camera, al fine di ottenere la fusione di informazioni fra due strumentazioni complementari e quindi ottenere un sistema di localizzazione più affidabile.
Gli algoritmi sono stati testati in un ambiente indoor bidimensionale, ma si prevede che possano essere utilizzati anche in ambienti tridimensionali e outdoor.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:De Cecco, Mariolino
Ph.D. course:Ciclo 25 > Scuole 25 > SCIENZE TECNOLOGIE E MISURE SPAZIALI > MISURE MECCANICHE PER L'INGEGNERIA E LO SPAZIO
Data di deposito della tesi:30 January 2013
Anno di Pubblicazione:January 2013
Key Words:Robot localization, Laser Range Finders, Features Matching, Dense Scan Matching, Robust Iterative Closest Point, Graph SLAM, visual odometry
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/12 Misure meccaniche e termiche
Struttura di riferimento:Centri > Centro Interdipartimentale di ricerca di Studi e attività  spaziali "G. Colombo" (CISAS)
Codice ID:5431
Depositato il:14 Oct 2013 11:02
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] EUROP European Robotics Technology Platform. The strategic research agenda for robotics in europe, july 2009. Cerca con Google

[2] Statistical Department International Federation of Robotics. World robotics 2012, august 2012. Cerca con Google

[3] S. Singh and J. West. Cyclone: A laser scanner for mobile robot navigation. Technical Report CMU-RI-TR-91-18, Robotics Institute, Pittsburgh, PA, September 1991. Cerca con Google

[4] I. J. Cox. Blanche-an experiment in guidance and navigation of an autonomous robot vehicle. Robotics and Automation, IEEE Transactions on, 7(2):193–204, April 1991. Cerca con Google

[5] J. Gonzalez, A. Stentz, and A. Ollero. An iconic position estimator for a 2d laser rangefinder. In Robotics and Automation, 1992. Proceedings., 1992 IEEE International Conference on, pages 2646 –2651 vol.3, may 1992. Cerca con Google

[6] G.K. Shaffer, A. Stentz, W.L. Whittaker, and K.W. Fitzpatrick. Position estimator for underground mine equipment. Industry Applications, IEEE Transactions on, 28(5):1131 –1140, sep/oct 1992. Cerca con Google

[7] G. Shaffer, J. Gonzalez, and A. Stentz. A comparison of two rangebased pose estimators for a mobile robot. In Proceedings of SPIE Symposium on Mobile Robots, 1992. Cerca con Google

[8] K.O. Arras and R. Siegwart. Feature extraction and scene interpretation for map-based navigation and map building. In Proceedings of SPIE, Mobile Robotics XII, volume 3210, pages 42–53. Citeseer, 1997. Cerca con Google

[9] T. Einsele and G. Farber. Real-time self-localization in unknown indoor environments using a panorama laser range finder. In In IEEE/RSJ International Workshop on Robots ans Systems, IROS 97, pages 697–703. IEEE Press, 1997. Cerca con Google

[10] F. Lu and E. Milios. Robot pose estimation in unknown environments by matching 2d range scans. Journal of Intelligent and Robotic Systems, 18(3):249–275, 1997. Cerca con Google

[11] J.-S. Gutmann and C. Schlegel. Amos: comparison of scan matching approaches for self-localization in indoor environments. In Advanced Mobile Robot, 1996., Proceedings of the First Euromicro Workshop on, pages 61 –67, oct 1996. Cerca con Google

[12] J.-S. Gutmann, W. Burgard, D. Fox, and K. Konolige. An experimental comparison of localization methods. In Intelligent Robots and Systems, 1998. Proceedings., 1998 IEEE/RSJ International Conference on, volume 2, pages 736 –743 vol.2, oct 1998. Cerca con Google

[13] P.J. Besl and N.D. McKay. A method for registration of 3-d shapes IEEE Trans. Pattern Anal. Mach. Intell., 14(2):239–256, February 1992. Cerca con Google

[14] Z. Zhang. Iterative point matching for registration of free-form curves and surfaces. Technical report, Institut National de Recherche en Informatique et en Automatique, 1994. Cerca con Google

[15] L. Montesano, J. Minguez, and L. Montano. Probabilistic scan matching for motion estimation in unstructured environments. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. (IROS 2005), pages 3499 – 3504, August 2005. Cerca con Google

[16] P. Jensfelt. Approaches to mobile robot localization in indoor environments. Technical report, PhD thesis, Signal, Sensors and Systems (S3), Royal Institute of Technology, SE-100 44, 2001. Cerca con Google

[17] A. Censi. An accurate closed-form estimate of ICP’s covariance. In 2007 IEEE International Conference on Robotics and Automation, pages 3167 –3172, April 2007. Cerca con Google

[18] A. Censi. On achievable accuracy for range-finder localization. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages 4170–4175, Rome, Italy, April 2007. Cerca con Google

[19] A. Diosi and L. Kleeman. Uncertainty of line segments extracted from static sick pls laser scans. In Proceedings of the Australasian conference on robotics and automation. Citeseer, 2003. Cerca con Google

[20] V. Nguyen, A. Martinelli, N. Tomatis, and R. Siegwart. A comparison of line extraction algorithms using 2d laser rangefinder for indoor mobile robotics. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on, pages 1929–1934. IEEE, 2005. Cerca con Google

[21] R. Martinez-Cantin, J.A. Castellanos, J.D. Tardos, and J.M.M. Montiel. Adaptive scale robust segmentation for 2d laser scanner. In Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pages 796 –801, oct. 2006. Cerca con Google

[22] A. Censi. An ICP variant using a point-to-line metric. In IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pages 19 –25, May 2008. Cerca con Google

[23] A. Diosi and L. Kleeman. Scan matching in polar coordinates with application to slam. Technical report, Department of Electrical and Computer Systems Engineering Monash University, Clayton, 2005. Cerca con Google

[24] D. Scaramuzza and F. Fraundorfer. Visual odometry [tutorial]. Robotics Automation Magazine, IEEE, 18(4):80 –92, dec. 2011. Cerca con Google

[25] F. Fraundorfer and D. Scaramuzza. Visual odometry : Part ii: Matching, robustness, optimization, and applications. Robotics Automation Magazine, IEEE, 19(2):78 –90, june 2012. Cerca con Google

[26] A.J. Davison. Real-time simultaneous localisation and mapping with a single camera. In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pages 1403–1410. Ieee, 2003. Cerca con Google

[27] M. Chli. Applying Information Theory to Efficient SLAM. PhD thesis, Imperial College London, 2009. Cerca con Google

[28] A. Bartoli and P. Sturm. Structure-from-motion using lines: Representation, triangulation, and bundle adjustment. Computer Vision and Image Understanding, 100(3):416–441, 2005. Cerca con Google

[29] D. Nister. An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell., 26(6):756–777, June 2004. Cerca con Google

[30] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd. Monocular vision based slam for mobile robots. In 18th International Conference on Pattern Recognition, 2006. Cerca con Google

[31] K. Konolige and M. Agrawal. Frameslam: From bundle adjustment to real-time visual mapping. IEEE Transactions on Robotics, 24(5):1066–1077, 2008. Cerca con Google

[32] J.M.M. Montiel D. Ortin. Indoor robot motion based on monocular images. Robotica, Vol. 19:pp. 331 – 342, 2001. Cerca con Google

[33] D. Scaramuzza. 1-point-ransac structure from motion for vehicle-mounted cameras by exploiting non-holonomic constraints. Int. J. Comput. Vision, 95(1):74–85, October 2011. Cerca con Google

[34] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, New York, NY, USA, 2 edition, 2003. Cerca con Google

[35] N. Naikal, J. Kua, G. Chen, and A. Zakhor. Image augmented laser scan matching for indoor dead reckoning. In Proceedings of the 2009 IEEE/RSJ international conference on Intelligent robots and systems, IROS’09, pages 4134–4141, Piscataway, NJ, USA, 2009. IEEE Press. Cerca con Google

[36] K.O. Arras and N. Tomatis. Improving robustness and precision in mobile robot localization by using laser range finding and monocular vision. In Advanced Mobile Robots, 1999.(Eurobot’99) 1999 Third European Workshop on, pages 177–185. IEEE, 1999. Cerca con Google

[37] J.C. Andersen, N.A. Andersen, and 0. Ravn. Vision assisted laser scanner navigation for autonomous robots. In ISER, pages 111–120, 2006. Cerca con Google

[38] X. Wang, Y. Cheng, R.T. Collins, and A.R. Hanson. Determining correspondences and rigid motion of 3-d point sets with missing data. In IEEE Computer Vision and Pattern Recognition, pages 252–257. IEEE computer society press, 1996. Cerca con Google

[39] E. Trucco, A. Fusiello, and V. Roberto. Robust motion and correspondence of noisy 3-d point sets with missing data. Pattern recognition letters, 20(9):889–898, 1999. Cerca con Google

[40] A.W. Fitzgibbon. Robust registration of 2d and 3d point sets. Image Vision Comput., 21(13-14):1145–1153, 2003. Cerca con Google

[41] L. Zhang, S. Choi, and S. Park. Robust icp registration using biunique correspondence. In Proceedings of the 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, 3DIMPVT 2011, pages 80–85, Washington, DC, USA, 2011. IEEE Computer Society. Cerca con Google

[42] A. F. Siegel. Robust regression using repeated medians. Biometrika, 69(1):242–244, April 1982. Cerca con Google

[43] P.J. Rousseeuw. Least median of squares regression. Journal of the American Statistical Association, 79(388):871–880, December 1984. Cerca con Google

[44] P. C. Mahalanobis. On the generalised distance in statistics. In Proceedings National Institute of Science, India, volume 2, pages 49–55, April 1936. Cerca con Google

[45] B. Reiser. Confidence intervals for the mahalanobis distance. Communications in Statistics-Simulation and Computation, 30(1):37–45, 2001. Cerca con Google

[46] JMM Montiel and L. Montano. Efficient validation of matching hypotheses using mahalanobis distance. Engineering Applications of Artificial Intelligence, 11(3):439–448, 1998. Cerca con Google

[47] M. Irani and P. Anandan. Factorization with uncertainty. In In European Conference on Computer Vision, pages 539–553, 2000. Cerca con Google

[48] Neira, J. and Tardos, J.D. Data Association in Stochastic Mapping Using the Joint Compatibility Test. IEEE Transactions on Robotics and Automation, 17(6):890–897, dec 2001. Cerca con Google

[49] R. Siegwart and I.R. Nourbakhsh. Introduction to Autonomous Mobile Robots. MIT Press, April 2004. Cerca con Google

[50] T. Einsele. Localization in Indoor Environments Using a Panoramic Laser Range Finder. PhD thesis, TU Munchen, Lehrstuhl fur Realzeit-Computersysteme, 2002. Cerca con Google

[51] R. Chatila and J. Laumond. Position referencing and consistent world modeling for mobile robots. In 1985 IEEE International Conference on Robotics and Automation. Proceedings, volume 2, pages 138 – 145, March 1985. Cerca con Google

[52] R. Smith, M. Self, and P. Cheeseman. A stochastic map for uncertain spatial relationships. In on The fourth international symposium, pages 467–474, Univ. of California, Santa Clara, California, United States, 1988. MIT Press. Cerca con Google

[53] H. Durrant-Whyte and T. Bailey. Simultaneous localisation and mapping (SLAM): part i the essential algorithms. IEEE Robotics and Automation Magazine, 2:2006, 2006. Cerca con Google

[54] T. Duckett, S. Marsland, and J. Shapiro. Learning globally consistent maps by relaxation. In ICRA’00, pages 3841–3846, 2000. Cerca con Google

[55] T. Duckett, S. Marsland, and J. Shapiro. Fast, on-line learning of globally consistent maps. Auton. Robots, 12(3):287–300, May 2002. Cerca con Google

[56] K. Konolige. Large-scale map-making. In Proceedings of the 19th national conference on Artifical intelligence, AAAI’04, pages 457–463. AAAI Press, 2004. Cerca con Google

[57] K. Konolige. SLAM via variable reduction from constraint maps. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005, pages 667 – 672, April 2005. Cerca con Google

[58] S. Thrun and M. Montemerlo. The graphslam algorithm with applications to large-scale mapping of urban structures. International Journal on Robotics Research, 25(5):403–430, 2006. Cerca con Google

[59] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press, 2005. Cerca con Google

[60] Bill Triggs, Philip Mclauchlan, Richard Hartley, and Andrew Fitzgibbon. Bundle adjustment - a modern synthesis. In Vision Algorithms: Theory and Practice, LNCS, pages 298–375. Springer Verlag, 2000. Cerca con Google

[61] A. Bartoli and P. Sturm. Three New Algorithms for Projective Bundle Adjustment with Minimum Parameters. Research Report RR-4236, INRIA, 2001. Cerca con Google

[62] F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping. Auton. Robots, 4(4):333–349, October 1997. Cerca con Google

[63] J.S. Gutmann and K. Konolige. Incremental mapping of large cyclic environments. In 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation, 1999. CIRA ’99. Proceedings, pages 318 –325, 1999. Cerca con Google

[64] H. Strasdat, J.M.M. Montiel, and A.J. Davison. Real-time monocular SLAM: why filter? In 2010 IEEE International Conference on Robotics and Automation (ICRA), pages 2657 –2664, May 2010. Cerca con Google

[65] H.S.M. Coxeter. Regular Polytopes. Courier Dover Publications, June 1973. Cerca con Google

[66] T. Harju. Graph theory. Technical report, University of Turku, Department of Mathematics, 01 2011. Cerca con Google

[67] J.S. Gutmann and B. Nebel. Navigation mobiler roboter mit laserscans. In Autonome Mobile Systeme 1997, 13. Fachgesprach, pages 36–47, London, UK, UK, 1997. Springer-Verlag. Cerca con Google

[68] M. Golfarelli, D. Maio, and S. Rizzi. Elastic correction of dead-reckoning errors in map building. In Intelligent Robots and Systems, 1998. Proceedings., 1998 IEEE/RSJ International Conference on, volume 2, pages 905 –911 vol.2, oct 1998. Cerca con Google

[69] U. Frese and G. Hirzinger. Simultaneous localization and mapping - a discussion. Technical report, Deutsches Zentrum fur Luft- und Raumfahrt (DLR), Institut fur Robotik und Mechatronik, 2001. Cerca con Google

[70] J. Folkesson and H. Christensen. Graphical slam - a self-correcting map. In In IEEE Intl. Conf. on Robotics and Automation (ICRA, pages 383–390, 2004. Cerca con Google

[71] J.L. Martinez, J. Morales, A. Mandow, and A. Garcia-Cerezo. Incre-mental closed-form solution to globally consistent 2D range scan mapping with two-step pose estimation. In 2010 11th IEEE International Workshop on Advanced Motion Control, pages 252 –257, March 2010. Cerca con Google

[72] Universidade Tecnica de Lisboa Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico. Iter remote handling, december 2012. Cerca con Google

[73] D. W. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3-d rigid body transformations: a comparison of four major algorithms. Machine Vision and Applications, 9(5):272–290, March 1997. Cerca con Google

[74] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry for ground vehicle applications. Journal of Field Robotics, 23:2006, 2006. Cerca con Google

[75] R. Hartley. Cheirality. Cerca con Google

[76] T. Tuytelaars and K. Mikolajczyk. Local Invariant Feature Detectors: A Survey. Now Publishers Inc., Hanover, MA, USA, 2008. Cerca con Google

[77] D.G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision, 60(2):91–110, November 2004. Cerca con Google

[78] A. Vale and I. Ribeiro. Mobile robot navigation for remote handling operations in iter. In III Workshop de Robotica: Robotica Experimental, 2011. Cerca con Google

[79] T.B. Schon and F. LindSten. Manipulating the multivariate gaussian density. Technical report, Linkoping University, Division of Automatic Control, 01 2011. Cerca con Google

[80] J.L. Blanco. The mobile robot programming toolkit, MRPT, 2012. Cerca con Google

[81] A. Kassir and T. Peynot. Reliable automatic camera-laser calibration. In Proceedings of the 2010 Australasian Conference on Robotics & Automation, Dec, 2010. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record