Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Lucchini, P (2013) Phytostabilization of heavy metals: role of plant roots and
organic amendments.
[Tesi di dottorato]

Questa è la versione più aggiornata di questo documento.

Full text disponibile come:

[img]
Anteprima
Documento PDF
9Mb

Abstract (inglese)

Phytomanagement refers to a group of techniques which use plants to reduce content or toxicity of heavy metals in soils. This thesis focuses on metal phytostabilization, which aims at reducing metal bioavailability in soil. Phytostabilization can occur either in roots or in soils. The first requires the uptake of pollutants and their stable accumulation in root tissues (in-planta phytostabilization), the second insolubilization of metals in soil to prevent plant uptake (ex-planta phytostabilization). For this thesis both these aspects were explored.
In-planta phytostabilization experiments aimed at evaluating the potential accumulation of heavy metals in rapeseed (Brassica napus L. var. oleifera) and the time span within metals are retained in degrading taproots before being released into the soil. The effect of increasing sowing density (22, 44, 63 plant m-2) and genotype selection (CHH normal-sized hybrids, semi-dwarf hybrid, and free-impollination variety) on the dynamics of taproot degradation were evaluated (first year) along with the effect of level of soil metal pollution (second year). The results indicated that degradation of root biomass was relatively fast (-83% within 12 months), but after 18 months still 10% of organic matter was available for metal retention. This indicates that the annual supply of root biomass by cultivation can improve metal retention. Metals are mainly retained in the inner cortex, which also owns a higher rate of cellulose and is more recalcitrant to degradation, thus allowing a greater concentration of pollutants to be observable over time in degrading tissues. Nevertheless, after 18 months metal contents was reduced compared with the initial stock, with concentrations depending on the specific metal. The dynamics of root degradation was independent on genotype choice and plant density, but more vigorous cultivars (CHH hybrids) and elevated plant densities should be preferred if the taproots are meant to stabilize metals, because of the higher biomass production (up to 1700 kg ha-1 in Taurus at 63 plant m-2). High level of soil pollution (Cd, Co, Cu, Zn) slowed down root degradation due to a reduction in the microbial activity. In addition, the consequent high metal bioavailability was associated to significant increases in root metal contents (and concentrations) despite the degradation process progressed. Overall, despite the degradation of roots cannot be stopped, metal stabilization in taproots is feasible in the long-term and it would be more effective in polluted soils where it is of paramount importance to reduce metal mobility and accumulation along the food chain.
Ex-planta phytostabilization trials aimed at evaluating the possible risks of soil metal pollution and plant uptake with waste-derived organic amendments. The effects of organic amendments on soil and plants was greatly affected by chemical characteristics of the amendment and its maturation degree. When the amount of organic carbon added to the soil was the same, better productivity and root growth of forage sorghum were obtained with matured compost which is richer in both N and humic substances. None of the tested amendments, i.e., compost from organic urban wastes, anaerobic digestate from plant biomasses, and pig slurry (separated solid fraction) had hazardous contents of heavy metals. Therefore, when the amendments do not derive from polluted feedstock they do not increase the content of heavy metals in the soil or their concentration in plants. However attention should be paid to metal bioavailability, in the middle term some metals (e.g., Ni, Zn) increased significantly increased their mobility, irrespective of the amendment, although generally higher values were found for the animal-derived amendment (pig slurry) which is richer in dissolved organic matter (DOM). Metal mobility in the amended soils therefore may depend on the presence of soluble species in the amendments themselves and probably on the interaction soil-amendment. Compost appeared as the best amendment among those tested for meeting both the agronomic (productivity) and environmental (carbon stock restoration, metal total and bioavailable contents) demands.
Biochar is also an organic stabilized amendment, but it was not found to have relevant effects in the middle term on plant productivity of barley and bean . The effect of biochar on soil properties (pH increases) was also short lived, while the effects on soil physical properties (aeration and bulk density) and metal partitioning in different soil phases appeared longer-lived. Biochar increased Cu and Zn retention, but also the water-soluble Pb, with differences depending on biochar age and application rate. In fact, the oxidation of biochar aromatic rings changes its chemical properties and the interaction with metals. However, when it is produced from unpolluted feedstock, biochar does not increase soil metal contents or plant uptake, probably because soluble metals are distributed to deeper soil horizons, limiting the accumulation in the rhizosphere. Overall, the real value of biochar lies in the addition of carbon to the soil, rather than in its effect on plants productivity.
On the contrary, when soil amendments are produced from contaminated feedstock, there is a real potential for soil and food-chain contamination. Amendments like biochar and liming agent (e.g. wood ash) concentrate the heavy metals contained in the feedstock material during pyrolysis and incineration respectively. The biochar and wood ash produced from Cu-treated wood in fact were rich in Cu which was available for uptake by plants. The concentration of Cu in sunflower leaves and taproot grown in soil amended with such biochar were greater than those in unpolluted reference soil, while polluted wood-ash severely compromised plant growth (dead of plants) due to the high Cu bioavailability. The increase in soil pH after the addition of amendments was too weak to limit Cu bioavailability when Cu itself was highly concentrated, and this may happen for other metals (e.g., As, Cr) if concentrated in the waste-wood. Above-ground biomass of sunflower was reduced (-40%) in polluted-biochar amended soil, despite plant height was unaffected. Overall, polluted biochar and ash should not be used in agriculture, and alternative uses should be found for polluted wastes.

Abstract (italiano)

L’argomento di questa tesi si colloca nell’ambito del “phytomanagement”, cioè di quell’insieme di tecniche che vengono utilizzate per ridurre il contenuto o la mobilità dei metalli pesanti nei terreni grazie a processi mediati da piante superiori. Il “phytomanagement” comprende numerose tecniche che sono classificate in base al tipo di processo utilizzato e all’obbiettivo perseguito. In questo lavoro sono state approfondite le tecniche di fitostabilizzazione dei metalli pesanti, prendendone in considerazione entrambi gli aspetti di fitostabilizzazione in-planta, attraverso l’accumulo degli inquinanti nei tessuti radicali di specie da biomassa, e fitostabilizzazione ex-planta, attraverso l’impiego di ammendanti organici. Entrambe le tecniche hanno come obiettivo la riduzione della mobilità dei metalli tramite insolubilizzazione allo scopo di ridurne la disponibilità per gli organismi viventi, ma si distinguono per la localizzazione dei processi, rispettivamente nei tessuti della radice e nel suolo.
La sperimentazione sulla fitostabilizzazione in-planta è stata condotta con l’obiettivo di valutare la capacità di accumulo di metalli pesanti nelle radici fittonanti di una pianta modello (colza) e di definirne la dinamica di rilascio attraverso il processo di degradazione radicale. Sono stati valutati anche l’effetto di investimenti crescenti (22, 44 e 63 piante m-2), del tipo varietale (due ibridi CHH a taglia convenzionale, un ibrido seminano e una varietà a impollinazione libera) (primo anno) e di un diverso livello di inquinamento da metalli nel terreno (secondo anno) sulla dinamica degradativa dei fittoni. I risultati indicano che, in un terreno non inquinato, la degradazione della biomassa radicale avviene abbastanza velocemente (-83% in un anno), anche se ~10% di materiale vegetale rimane indegradato dopo 18 mesi e in grado quindi di mantenere immobilizzati i metalli al suo interno; a questa sostanza organica recalcitrante, può tuttavia essere aggiunta annualmente o con il ciclo di coltivazione successivo nuova biomassa incrementando il pool organico per la ritenzione degli inquinanti. È stato evidenziato che i metalli vengono accumulati maggiormente nei tessuti radicali fibrosi (cortex interno) e il loro rilascio può risultare, in funzione dello specifico metallo, più lento della degradazione delle sostanza organica, con concentrazioni finali che variano a seconda dell’elemento. Il ritmo degradativo dei fittoni è risultato indipendente dal genotipo e dalla densità di semina, ma sarebbero comunque da preferire cultivar più vigorose (ibridi CHH) e semine fitte in quanto garantirebbero una maggiore biomassa in campo (e.g., 1200 kg ha-1per Taurus, che aumenta a 1700 kg ha-1 per investimenti di 63 piante m-2) e un maggiore accumulo di metalli. L’inquinamento da metalli pesanti ha rallentato notevolmente la dinamica degradativa, a causa della minore attività microbica proteolitica (fasi iniziali) e cellulosolitica (fasi successive). La presenza di alte concentrazioni di metalli nel suolo ed elevati livelli di biodisponibilità (Cd, Co, Cu, Zn) può significativamente favorire l’adsorbimento degli stessi sul materiale organico in degradazione, determinando una dinamica temporale di accumulo nei fittoni in via di degradazione. Complessivamente, nonostante la degradazione della sostanza organica sia inevitabile, le radici fittonanti di una pianta annuale effettivamente consentono di stabilizzare i metalli nel lungo periodo, con livelli di efficienza maggiori nei terreni inquinati ai quali si rivolge questo tipo di tecnica.
Le prove di fitostabilizzazione ex-planta avevano come obbiettivo la valutazione del potenziale apporto di metalli pesanti ai suoli e sulla loro biodisponibilità in seguito a fertilizzazione con ammendanti organici derivati da materiali di scarto. È stato valutato anche il potenziale trasferimento di inquinanti alle piante coltivate. Sono stati confrontate diverse tipologie di ammendanti, evidenziando importanti effetti sul suolo e su sorgo da foraggio in funzione dalle caratteristiche dell’ammendante stesso, e in particolare dal suo grado di maturazione. A parità di C organico apportato, infatti, ammendanti che hanno subito processi di stabilizzazione (compostaggio) e che sono quindi più ricchi di nutrienti, e di azoto in particolare, ma anche di sostanze umiche, hanno fornito risultati produttivi migliori, favorendo nello stesso tempo l’accrescimento radicale. Nella sperimentazione sono stati confrontati compost da RSU, frazione solida di digestato da scarti vegetali e separato solido di liquame suino, ma in tutti i casi l’apporto di metalli pesanti al suolo è stato trascurabile così come l’accumulo nel foraggio del sorgo, indicando che per ammendanti prodotti a partire da materiali di qualità il rischio nella catena alimentare sembra limitato. Tuttavia, nel medio periodo, l’apporto di ammendanti organici può aumentare la biodisponibilità di alcuni elementi come Ni e Zn, indipendentemente dalla qualità della sostanza organica, anche se generalmente i rischi maggiori sono stati riscontrati per ammendanti di origine animale (liquame suino). La mobilità dei metalli pesanti deve quindi dipendere dalla presenza di metalli in forme solubili negli ammendanti stessi, ma potrebbe anche essere influenzata dall’interazione specifica con il suolo. In generale, il compost è risultato l’alternativa migliore sia dal punto di vista strettamente agronomico (performance produttiva) che ambientale (apporto di metalli e biodisponibilità, stabilità della sostanza organica). Ammendanti stabilizzati come il biochar, che sono più inerti dal punto di vista biologico, nel medio periodo hanno invece esercitato scarsi effetti sulla produttività delle colture in sperimentazione (orzo, fagiolo). Anche gli effetti sul pH (aumento) sono risultati transitori, mentre sembrano più stabili gli effetti sulle proprietà fisiche del terreno (aerazione, densità) e sulla ripartizione dei metalli tra le diverse fasi del suolo. Il biochar infatti, ha favorito la ritenzione di Cu e Zn, mentre potrebbe aumentare la solubilità del Pb, con effetti che possono variare in funzione oltre che della dose anche dell’età del biochar. Infatti, l’ossidazione a carico dei gruppi aromatici del biochar ne modifica le caratteristiche chimiche e quindi le interazioni con i metalli e gli altri componenti del suolo. Anche il biochar comunque, se prodotto a partire da materiali non inquinati, non determina significativi aumenti delle concentrazioni di metalli totali nel suolo e nelle colture, e può quindi essere utilizzato, anche su una scala temporale relativamente ampia, per aumentare lo stock di carbonio dei suoli più che per aumentare la resa produttiva delle colture. I rischi di contaminazione del suolo sembrano scarsi dal momento che gli elementi, che divengono più solubili, sarebbero ridistribuiti verso orizzonti del suolo più profondi e quindi verrebbero diluiti.
Quando invece negli ecosistemi agrari vengono introdotti ammendanti derivati da materiale inquinato, il rischio di contaminazione del suolo e della catena alimentare è concreto. Ammendanti come il biochar o correttivi come la cenere, infatti, a seguito dei processi rispettivamente di pirolisi e incenerimento si arricchiscono di metalli pesanti rispetto al materiale di partenza. In particolare, biochar e cenere prodotti a partire da legno trattato con conservanti a base di rame sono molto ricchi di questo elemento e hanno determinano un forte aumento delle concentrazioni di rame fogliare e nelle radici di girasole. L’aumento di pH conseguente all’aggiunta di biochar e cenere non è quindi in grado di limitare la biodisponibilità e l’accumulo del Cu nella pianta quando questo metallo è presente nell’ammendante in alte concentrazioni. È possibile inoltre che effetti simili siano riscontrabili anche in altre specie e per altri elementi (Cr, As), in caso questi fossero presenti nel biochar o nella cenere in concentrazioni anomale. La presenza di rame nei tessuti vegetali ha fortemente compromesso la crescita vegetale soprattutto nel caso della cenere derivante dallo stesso legno di partenza, probabilmente perché il Cu era più prontamente solubile, mentre per il biochar la biomassa epigea si è ridotta significativamente (-40%) senza causare moria di plantule. L’utilizzo di biochar e cenere contenenti alte concentrazioni di metalli è quindi da evitare in agricoltura, mentre sarebbe opportuno individuare impieghi alternativi che ne consentano l’utilizzo senza però determinare rischi per l’ambiente o la salute.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Vamerali, T
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > SCIENZE DELLE PRODUZIONI VEGETALI > AGRONOMIA AMBIENTALE
Data di deposito della tesi:23 Gennaio 2013
Anno di Pubblicazione:31 Gennaio 2013
Parole chiave (italiano / inglese):phytostabilization, heavy metals, organic amendments, biochar, dynamics of taproot degradation
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/02 Agronomia e coltivazioni erbacee
Struttura di riferimento:Dipartimenti > Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente
Codice ID:5449
Depositato il:14 Ott 2013 10:11
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Adam G. and Duncan H., 2001. Development of a sensitive and rapid method for the measurement of total microbial activity using Fluorescein diacetate (FDA) in a range of soils. Soil Biology & Biochemistry 33, 943-951. Cerca con Google

Aerts R., 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79, 439-449. Cerca con Google

Alvarenga P., Gonçalves A.P., Fernandes R.M., de Varennes A., Vallini G., Duarte E., Cunha-Queda A.C., 2009. Organic residues as immobilizing agents in aided phytostabilization: (I) Effects on soil chemical characteristics. Chemosphere 74, 1292-1300. Cerca con Google

Asseng S., Ritchie J.T., Smucker A.J.M., Robertson M.J., 1998. Root growth and water uptake during water deficit and recovering in wheat. Plant and Soil 201, 265-273. Cerca con Google

Atkinson C.J., Fitzgerald J.D., Hipps N.A., 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil 337, 1-18. Cerca con Google

Audus L.J., 1972. Plant Growth Substances Chemistry and Physiology; Leonard Hill: London, U.K. Vol. 1, 24-65. Cerca con Google

Baker A.J.M., McGrath S.P., Sidoli C.M.D., Reeves R.D., 1994. The possibility of in situ heavy metal decontamination of polluted soil using crops of metal-accumulating plants. Resources, Conservation and Recycling 11, 41-49. Cerca con Google

Bandiera M., Mosca G., Vamerali T., 2009. Humic acids affect root characteristics of fodder radish (Raphanus sativus L. var. oleiformis Pers.) in metal-polluted wastes. Desalination 247, 79-92. Cerca con Google

Bañuelos G.S., 2000. Phytoextraction of selenium from soils irrigated with selenium-laden effluent. Plant and Soil 224 (no. 2), 251-258. Cerca con Google

Bañuelos G.S., 2006. Phyto-products may be essential for sustainability and implementation of phytoremediation. Environmental Pollution 144, 19-23. Cerca con Google

Barrelet T., Ulrich A., Rennenberg H., Krähenbuhl U., 2006. Seasonal profiles of sulphur, phosphorus, and potassium in Norway spruce wood. Plant Biology 8, 462-469. Cerca con Google

Beesley L., Moreno-Jiménez E., Clemente R., Lepp N., Dickinson N., 2010. Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction. Environmental pollution (Barking, Essex : (1987) 158, 155-160. Cerca con Google

Beesley L., Marmiroli M., 2011. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution 159, 474-80. Cerca con Google

Beesley L., Moreno-Jiménez E., Gomez-Eyles J.L., 2010. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution 158, 2282–2287. Cerca con Google

Belsky A.J., Amundson R.J., Duxbury J.M., Riha S.J., Ali A.R., Mwonga S.M., 1989. The effects of trees on their physical, chemical and biological environments in a semi-arid savanna in Kenya. Journal of Applied Ecology 26, 1005-1024. Cerca con Google

Berg B., Johansson M.B., Meentemeyer V., 2000. Litter decomposition in a transect of Norway spruce forests: substrate quality and climate control. Canadian Journal of Forest Research 30, 1136-1147. Cerca con Google

Blum A. and Arkin G.F., 1984. Sorghum root growth and water-use as affected by water supply and growth duration. Field Crops Research 9, 131-142. Cerca con Google

Bona S., Vamerali T., Mosca G., 1995. Response of the root system of maize (Zea mays L.) to reduction of inputs. Rivista di Agronomia 29, 339-347. Cerca con Google

Bradl H.B., 2004. Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science 277, 1-18. Cerca con Google

Branca F. and Ferrari M., 2002. Impact of Micronutrient Deficiencies on Growth: The Stunting Syndrome. Annals of Nutrition and Metabolism 46, 8-17. Cerca con Google

Brooks R.R. and Robinson B.H., 1998. The potential of use of hyperaccumulators and other plants for phytomining. In: Plants that Hyperaccumulate Heavy Metals. Ed. R.R. Brooks. pp. 327-356. CAB International, Wallingford, Oxon, UK. Cerca con Google

Brooks R.R., 1998. Geobotany and hyperaccumulators. In: Zerbi G. and Marchiol L., 2004. Fitoestrazione di Metalli Pesanti: Contenimento del Rischio Ambientale e Relazioni Suolo-Microrganismi-Pianta. Editrice Universitaria Udinese, Udine 2004, pp. 25-26. Cerca con Google

Brown R.A., Kercher A.K., Nguyen T.H., Nagle D.C., Ball W.P., 2006. Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Organic Geochemistry 37, 321-333. Cerca con Google

BSI, 2011. PAS100:2011. Specification for composted materials. British Standards Institution, London, UK. Cerca con Google

Burns P.E., Hyun S., Lee L.S., Murarka I., 2006. Characterizing As (III, V) adsorption by soils surrounding ash disposal facilities. Chemosphere 63, 1879-1891. Cerca con Google

Buschmann J., Kappeler A., Lindauer U., Kistler D., Berg M., et al. 2006. Arsenite and arsenate binding to dissolved humic acids: influence of pH, type of humic acid, and aluminum. Environmental Science & Technology 40: 6015–6020. Cerca con Google

Campbell A.G., 1990. Recycling and disposing of wood ash. TAPPI Journal 73, 141-146.1-6. Cerca con Google

Cao X., Ma L., Gao B., Harris W., 2009. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science Technology 43, 3285-3291. Cerca con Google

Cao X., Ma L.Q., Rhue D.R., Appel C.S., 2004. Mechanisms of lead, copper and zinc retention by phosphate rock. Environmental Pollution 131, 435-444. Cerca con Google

Carletti P., Vendramin E., Pizzeghello D., Concheri G., Zanella A., Nardi S., Squartini A., 2009. Soil humic compounds and microbial communities in six spruce forests as function of parent material, slope aspect and stand age. Plant and Soil 315, no 1-2, 47-65. Cerca con Google

Carlon C., 2007. Derivation methods of soil screening values in Europe: A review and evaluation of national procedures towards harmonisation. Report No. EUR 22805-EN. European Commission Joint Research Centre, Ispra, Italy. Cerca con Google

Carter D.C., Hendricks J.J., Mitchell R.J., Pecot S.D., 2004. Fine root carbon allocation and fates in longleaf pine forests. Forest Science 50, 177–187. Cerca con Google

Carter M.R., 2002. Soil quality for sustainable land management: organic matter and aggregation. Interactions that maintain soil functions. Agronomy Journal 94, 38-47. Cerca con Google

Chaney R.L., 1983. Plant uptake of inorganic waste constituents. In: Land Treatment of Hazardous Wastes, Eds. Parr. J.F., Marsh P.B. and Kla J.M., Noyes Data Corp., Park Ridge, NJ, 50-76. Cerca con Google

Cheah C.B. and Ramli M., 2012. Mechanical strength, durability and drying shrinkage of structural mortar containing HCWA as partial replacement of cement. Construction and Building Materials 30, 320-329. Cerca con Google

Chen X., Chen G., Chen L., Chen Y., Lehmann J., et al., 2011. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology 102, 8877-8884. Cerca con Google

Cherqueira B., Covelo E.F., Andrade L., Vega F.A., 2011. The influence of soil properties on the individual and competitive sorption and desorption of Cu and Cd. Geoderma 162, 20-26. Cerca con Google

Chesson A., 1997. Plant degradation by ruminants: parallels with litter decomposition in soil. In: Henriksen T.M., Breland T.A., 1999. Evaluation of criteria for describing crop residue degradability in a model of carbon and nitrogen turnover in soil. Soil Biology and Biochemistry 31, 1135-1149. Cerca con Google

Chirenje T. and Ma L.Q., 1999. Effects of acidification on metal mobility in a papermill-ash amended soil. Journal of Environmental Quality 28, 760-767. Cerca con Google

Chirenje T., Ma L.Q., Lu L., 2006. Retention of Cd, Cu, Pb and Zn by wood ash, lime and fume dust. Water, Air, & Soil Pollution 171, 301-314. Cerca con Google

Clark G.J., Dodgshun N., Sale P.W.G., Tang C., 2007. Changes in chemical and biological properties of a sodic clay subsoil with addition of organic amendments. Soil Biology and Biochemistry 39, 2806-2817. Cerca con Google

Clemens S., 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88 (no. 11), 1707-1719. Cerca con Google

Clemente R., Escolar Á., Bernal M.P., 2006. Heavy metal fractionation and organic matter mineralisation in contaminated calcareous soil amended with organic materials. Bioresource Technology 97, 1894-1901. Cerca con Google

Cornelissen J.H.C., 1996. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. Journal of Ecology 84, 573-582. Cerca con Google

Corre M.D., Schnabel R.R., Shaffer J.A., 1999. Evaluation of soil organic carbon under forests, cool-season and warm-season grasses in the northeastern US. Soil Biology and. Biochemistry 31, 1531-1539. Cerca con Google

Cui L, Li L, Zhang A, Pan G, Bao D, et al., 2011. Biochar amendment greatly reduces rice Cd uptake in a contaminated paddy soil: a two-year field experiment. Environment 6, 2605–2618. Cerca con Google

Cunningham S.D., Anderson T.A., Schwab A.P., Hsu F.C., 1996. Phytoremediation of soils contaminated with organic pollutants. Advances in Agronomy 56, 55-114. Cerca con Google

Cunningham S.D., Berti W.R., Huang J.W.W., 1995. Phytoremediation of contaminated soils. Trends in Biotechnology 13, 393-397. Cerca con Google

Curnoe W.E., Irving D.C., Dow C.B., Velema G., Unc A., 2006. Effect of spring application of a paper mill soil conditioner on corn yield. Agronomy Journal 98, 423-429. Cerca con Google

Curry J.P. and Byrne D., 1997. Role of earthworms in straw decomposition in a winter cereal field. Soil Biology and Biochemistry 29, 555-558. Cerca con Google

Dary M., Chamber-Pérez M.A., Palomares A.J., Pajuelo E., 2010. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Journal of Hazardous Materials 177, 323-330. Cerca con Google

de Zarruk K.K., Scholer G., Dudal Y., 2007. Fluorescence fingerprints of Cu2+ -complexing ability of individual molecular size fractions in soil- and waste-borne DOM. Chemosphere 69, 540-548. Cerca con Google

Debela F. Thring R.W., Arocena J.M., 2011. Immobilization of Heavy Metals by Co-pyrolysis of Contaminated Soil with Woody Biomass. Water, Air, & Soil Pollution 223, 1161-1170. Cerca con Google

Del Borghi A., Gallo M., Del Borghi M., 2009. A survey of life cycle approaches in waste management. The International Journal of Life Cycle Assessment 14, 597-610. Cerca con Google

Demeyer A., Voundi-Nkana J.C., Verloo M.G., 2001. Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresource Technology 77, 287-295. Cerca con Google

Ebbs S.D. and Kochian L.V., 1997. Toxicity of zinc and copper to Brassica species: implications for phytoremediation. Journal of Environmental Quality 26, 776-781. Cerca con Google

Edmonds R.L., 1980. Litter decomposition and nutrient release in Douglas-fir, red alder, western hemlock, and Pacific silver fir ecosystems in western Washington. Canadian Journal of Forest Research 10:327-337. Cerca con Google

Ertani A., Francioso O., Tugnoli V., Righi V., Nardi S., 2011. Effect of Commercial Lignosulfonate-Humate on Zea mays L. Metabolism. Journal of Agricultural and Food Chemistry 59, 11940-11948. Cerca con Google

Etiégni L. and Campbell A.G., 1991. Physical and chemical characteristics of wood ash. Bioresource Technology 37, 173-178. Cerca con Google

Farrell M., and Jones D.L., 2010. Use of composts in the remediation of heavy metal contaminated soil. Journal of Hazardous Materials 175, 575-582. Cerca con Google

Farrell M., Hill P.W., Farrar J., Bardgett R.D., Jones D.L., 2011. Seasonal variation in soluble soil carbon and nitrogen across a grassland productivity gradient. Soil Biology & Biochemistry 43, 835-844. Cerca con Google

Farrell M., Perkins W.T., Hobbs P.J., Griffith G.W., Jones D.L., 2010. Migration of heavy metals in soil as influenced by composts amendments. Environmental Pollution 158, 55-64. Cerca con Google

Fellet G, Marchiol L, Delle Vedove G, Peressotti (2011) Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere 83, 1262-1267. Cerca con Google

Fellet G., Marchiol L., Delle Vedove G., Peressotti A., 2011. Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere 83, 1262-1267. Cerca con Google

Francioso, O., Sanchez-Cortes, S., Casarini, D., Garcia-Ramos, J.V., Ciavatta, C., Gessa, C., 2002. Spectroscopic study of humic acids fractionated by means of tangential ultrafiltration. Journal of Molecular Structure 609, 137-147. Cerca con Google

Francioso, O., Sanchez-Cortes, S., Tugnoli, V., Ciavatta, C., Sitti, L., Gessa, C., 1996. Infrared, Raman, and nuclear magnetic resonance (H-1, C-13, and P-31) spectroscopy in the study of fractions of peat humic acids. Applied Spectroscopy 50, 1165-1174. Cerca con Google

Freitas H., Prasad M.N.V., Pratas J., 2004. Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal environmental implications. Environmental International 30, 65-72. Cerca con Google

Gaskin J.W., Steiner C., Harris K., Das K.C., Bibens B., 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE 51, 2061-2069. Cerca con Google

Gaskin J.W., Steiner C., Harris K., Das K.C., Bibens B., 2008. Effects of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions Of The Asabe 51, 2061–2069. Cerca con Google

Gholz H.L., Fisher R.F., Prichett W.L., 1985. Nutrient dynamics in slash pine plantation ecosystems. Ecology 66, 647-659. Cerca con Google

Giardini L., 2008. Agronomia Generale. Patron Editore, Bologna. Cerca con Google

Gondar D. and Bernal M.P., 2009. Copper binding by olive mill solid waste and its organic matter fractions. Geoderma 149, 272-279. Cerca con Google

Gosh M. and Singh S.P., 2005. A review on phytoremediation of heavy metals and utilization of it’s by products. Asian Journal on Energy and Environment 6 (no. 4), 214-231. Cerca con Google

Gray D. B., Watts F., Overcamp T.J., 2001. Volatility of arsenic in contaminated clay at high temperatures. Environmental Engineering Science 18, 1-7. Cerca con Google

Grěman H., Velikonja-Bolta Š., Vodnik D., Kos B., Leštan D., 2001. EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant and Soil 235, 105-114. Cerca con Google

Guo D.L., Mithcell R.J., Hendricks J.J., 2004. Fine root branch orders respond differently to carbon source-sink manipulations in longleaf pine forest. Oecologia 140, 450-457. Cerca con Google

Hale S.E., Lehmann J., Rutherford D., Zimmerman A.R., Bachmann R.T., Shitumbanuma V., O’Toole A., Sundqvist K.L., Arp H.P.H., Cornelissen G., 2012. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environmental Science & Technology 46, 2830-2838. Cerca con Google

Hamblin A.P. and Davies D.B., 1977. Influence of organic matter on the physical properties of some East Anglia soils of high silt content. Journal of Soil Sciences 28, 11-22. Cerca con Google

Harden J.D., 2011. Retardance of rainwater-leached metals from CCA-treated (Chromated Copper Arsenate) wood ash in soil. Department of Civil, Construction, and Environmental Engineering. University of Alabama, USA. Cerca con Google

Hargreaves J.C., Adl M.S., Warman P.R., 2008. A review of the use of composted municipal solid waste in agriculture. Agriculture, Ecosystems & Environment 123, 1-14. Cerca con Google

Heal O.W., Anderson J.M., Swift M.J., 1997. Plant litter quality and decomposition: an historical overview. In: Cadish G., Giller K.S. (Eds.), Driven by Nature: Plant Litter Quality and Decomposition. CAB International, Wallingford, 3-30. Cerca con Google

Helmke P.A. and Sparks D.L., 1996. Lithium, sodium, potassium, rubidium, and cesium. In: Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabai M.A., Johnston C.T., Sumner M.E. (Eds.), Methods of Soil Analysis. Part 3: Chemical Methods. Soil Science Society of America Inc, Madison, WA, pp 551-574. Cerca con Google

Henriksen T.M., 1998. PhD thesis, Agricultural University of Norway. In: Henriksen T.M. and Breland T.A., 1999. Decomposition of crop residues in the field. Evaluation of a simulation model developed from microcosm studies. Soil Biology and Biochemistry 31, 1423-1434. Cerca con Google

Henriksen T.M. and Breland T.A., 1999a. Decomposition of crop residues in the field. Evaluation of a simulation model developed from microcosm studies. Soil Biology and Biochemistry 31, 1423-1434. Cerca con Google

Henriksen T.M. and Breland T.A., 1999b. Evaluation of criteria for describing crop residue degradability in a model of carbon and nitrogen turnover in soil. Soil Biology and Biochemistry 31, 1135-1149. Cerca con Google

Hingston J.A., Moore J., Bacon A., Lester J.N., Murphy R.J., Collins C.D., 2002. The importance of the short-term leaching dynamics of wood preservatives. Chemosphere 47, 517-523. Cerca con Google

Horne A.J., 2000. Phytoremediation by constructed wetlands. In: Phytoremediation of contaminated soil and water. Norman Terry and Gary Bañuelos Editors. Ed. CRC Press LLC Corporate Blvd., N.W., Boca Raton, Florida. Cerca con Google

Hossain M.K., Strezov V., Chan K.Y., Nelson P.F., 2010. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78, 1167-1171. Cerca con Google

Houba V.J.G., Temminghoff E.J.M., Gaikhorst G.A., van Vark W., 2000. Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Communications in Soil Science and Plant Analysis 31, 1299-1396. Cerca con Google

Hsu J.H. and Lo S.L., 2000. Characterisation and extractability of copper, manganese and zinc in swine manure composts. Journal of Environmental Quality 29, 447-453. Cerca con Google

Hua L., Wu W., Liu Y., McBride M.B., Chen Y., 2009. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environmental Science & Pollution Research 16, 1-9. Cerca con Google

Huang H., Campbell A.G., Folk R., Mahler R.L., 1992. Wood ash as a soil additive and liming agent for wheat: field studies. Communications in Soil Science and Plant Analysis 23, 25-33. Cerca con Google

Illera V., Walter I., Souza P., Cala V., 2000. Short-term effects of biosolid and municipal solid waste applications on heavy metals distribution in a degraded soil under a semi-arid environment. The Science of the Total Environment 255, 29-44. Cerca con Google

Jackson R. B., Mooney H.A., Schulze E.D., 1997. A global budget for fine root biomass, surface area, and nutrient contents. Proceeding of National Academy of Sciences, USA94: 7362-7366. In: Guo D., Li H., Mitchell R.J., Han W., Hendricks J.J., Fahey T.J., Hendrick R., 2008. Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytologist, 177, 443-455. Cerca con Google

Jing J., and Logan T.J., 1992. Effects of sewage sludge cadmium concentration on chemical extractability and plant uptake. Journal of Environmental Quality 21, 73-81. Cerca con Google

Jones D.L. and Healey J.R., 2010. Organic amendments for remediation: putting waste to good use. Elements 6, 369-374. Cerca con Google

Jones D.L., Murphy D.V., Khalid M., Ahmand W., Edwards-Jones G., DeLuca T.H., 2011. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biology & Biochemistry 43, 1723-1731. Cerca con Google

Jones D.L., Rousk J., Edwards-Jones G., DeLuca T.H., Murphy D.V., 2012. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biology & Biochemistry 45, 113-124. Cerca con Google

Jones D.L., Edwards-Jones G., Murphy D.V., 2011. Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biology and Biochemistry 43, 804-813. Cerca con Google

Jones D.L., Murphy D.V., Khalid M., Ahmad W., Edwards-Jones G., et al., 2011.Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biology and Biochemistry 43, 1723-1731. Cerca con Google

Joslin J.D., Gaudinski J.B., Torn M.S., Riley, W.J., Hanson P.J., 2006. Fine-root turnover patterns and their relationship to root diameter and soil depth in a 14C-labeled hardwood forest. New Phytologist 17, 523–535. Cerca con Google

Kemmitt S.J., Wright D., Goulding K.W.T., Jones D.L., 2006. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology & Biochemistry 38, 898-911. Cerca con Google

Kim J.Y., Kim T.S., Eom I.Y., Kang S.M., Cho T.S., Choi I.G., Choi J.W., 2012. Characterization of pyrolytic products obtained from fast pyrolysis of chromated copper arsenate (CCA)- and alkaline copper quaternary compounds (ACQ)-treated wood biomasses. Journal of Hazardous Materials 227, 445-452. Cerca con Google

Kookana R.S., Sarmah A.K., Van Zwieten L., Krull, E., Singh B., 2011. Biochar application to soil: agronomic and environmental benefits and unintended consequences. Advances in Agronomy 112, 103-143. Cerca con Google

Kumpiene J., Lagerkvist A., Maurice C., 2008. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments- A review. Waste Management (New York, NY) 28. 215-225. Cerca con Google

Lake D.L., Kirk P.W.W., Lester J.N., 1984. Fractionation, characterization, and speciation of heavy metals in sewage sludge and sludge-amended soils: A review. Journal of Environmental Quality 13, 175-183. Cerca con Google

Lambrechts T., Couder E., Bernal M.P., Faz Á., Iserentant A, Lutts S., 2010. Assessment of heavy metal bioavailability in contaminated soils from a former mining area (La Union, Spain) using a rhizospheric Test. Water, Air & Soil Pollution 217, 333-346. Cerca con Google

Lauenroth W.K., 2000. Methods of estimating belowground net primary production. Methods in Ecosystem Science, Eds Sala O.E., Jackson R.B., Mooney H.A., Howarth R.W., pp. 58–71. Springer-Verlag, New York. Cerca con Google

Lehmann J., 2007. Bio-energy in the black. Frontiers in Ecology and the Environment. Cerca con Google

Lehmann J., Gaunt J., Rondon M., 2006. Bio-char sequestration in terrestrial ecosystems – a review. Mitigation and adaptation strategies for global change 11, 395-419. Cerca con Google

Li Y.M., Chaney R., Brewer E., Roseberg R., Angle J.S., Baker A.J.M., Reeves R., Nelkin J., 2003. Development of a technology for commercial phytoextraction of Nickel: economic and technical consideration. Plant and Soil 249, 107-115. Cerca con Google

Li Z., Ryan J.A., Chen S.R, 2001. Al-albed adsorption of cadmium on biosolids-amended soils. Journal of Environmental Quality 30, 903-911. Cerca con Google

Li ZJ, Chen RJL, Al-Abed SR (2000) Adsorption of cadmium on biosolids-amended soils. Journal of Environmental Quality 30, 903-911. Cerca con Google

Lievens C., Carleer R., Cornelissen T., Yperman J., 2009. Fast pyrolysis of heavy metal contaminated willow: Influence of the plant part. Fuel 88, 1417-1425. Cerca con Google

Linden D.R., Larson W.E., Dowdy R.H., Clapp C.E., 1995. Agricultural Utilization of Sewage Sludge: A Twenty Year Study at the Rosemount Agricultural Experiment Station. Station Bulletin 606-1995, Minnesota Agricultural Experiment Station, University of Minnesota, St. Paul, MN. Cerca con Google

Lindsay W.L., 2001. Chemical Equilibria in Soils. 2nd Edition, John Wiley and Sons Ltd, Chichester Sussex, UK. Cerca con Google

Lindsay W.L. and Norvell W.A., 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42, 421-428. Cerca con Google

Lopareva-Pohu A., Verdin A., Garçon G., Sahraoui L.H., Pourrut B., Debiane D., Waterlot C., Laurelle F., Bidar G., Douay F., Shirali P., 2011. Influence of fly ash aided phytostabilisation of Pb, Cd and Zn highly contaminated soils on Lolium perenne and Trifolium repens metal transfer and physiological stress. Environmental Pollution 159, 1721-1729. Cerca con Google

Luo C., Shen Z., Li X., 2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59, 1-11. Cerca con Google

Madrid F., López R., Cabrera F., 2007. Metal accumulation in soil after application of municipal solid waste compost under intensive farming conditions. Agriculture, Ecosystems & Environment 119, 249-256. Cerca con Google

Manara A., 2012. Plant responses to heavy metal toxicity. In: Plants and heavy metals, Furini A. (Ed), SpringerBrief in Molecular Science (Netherlands), pp 27-53. Cerca con Google

Manlay R.J., Feller C., Swift M.J., 2007. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agriculture, Ecosystems & Environment 119, 217-233. Cerca con Google

Martin I., De Burca R., Morgan H., 2009. Soil guideline values for inorganic arsenic in soil. Science Report SC050021/SR3 arsenic SGV. Environment Agency, Bristol, UK. Cerca con Google

Matsuura H., Matsumoto T., Tsukihashi F., 2009. Behavior of heavy metals during incineration of CCA treated wood waste. Journal of Iron and Steel Research International 16, 437-439. Cerca con Google

McGrath S.P., 1998. Phytoextraction for soil remediation, In: Plants that hyperaccumulate heavy metals: Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining; Brooks R.R. CAB International, Cambridge (UK): 261-287. Cerca con Google

McGrath S.P., Zhao F.J., Lombi E., 2001. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant and Soil 232, 207-214. Cerca con Google

McGrath S.P., Zhao F.J., Lombi E., 2002. Phytoremediation of metals, metalloids and radionuclides. Advances in Agronomy 75, 1-56. Cerca con Google

McLaughlin M.J., 2002. Heavy Metals. In: Lal R. (Ed), Encyclopedia of Soil Science, Marcel Dekker Inc., New York, pp. 650-653. Cerca con Google

Meers E., Laing G.D., Unamuno V., Ruttens A., Vangronsveld J., Tack F.M.G., Verloo M.G., 2007. Comparison of cadmium extractability from soils by commonly used single extraction protocols. Geoderma 141, 247-259. Cerca con Google

Melamed R., Cao X., Chen M., Ma L.Q., 2003. Field assessment of lead immobilization in a contaminated soil after phosphate application. The Science of the Total Environment 305, 117-127. Cerca con Google

Mench M., Vangronsveld J., Clijsters H., Lepp N.W., Edwards R., 1999. In Situ Metal Immobilization and Phytostabilization of Contaminated Soils. In: Phytoremediation of contaminated soil and water. Norman Terry and Gary Bañuelos Editors. Ed. CRC Press LLC Corporate Blvd., N.W., Boca Raton, Florida, pp 323-362. Cerca con Google

Mendez M.O. and Maier M.R., 2008. Phytostabilization of Mine Tailings in Arid and Semiarid Environments - An Emerging Remediation Technology. Environmental Health Perspectives 116 (no. 3), 278-283. Cerca con Google

Merrington G., Oliver I., Smernik R.J., McLaughlin M.J., 2003. The influence of sewage sludge properties on sludge-borne metal availability. Advances in Environmental Research 8, 21-36. Cerca con Google

Milchunas D.G. and Lauenroth W.K., 1992. Carbon dynamics and estimates of primary production by harvest, 14C dilution and 14C turnover. Ecology 73, 593-607. Cerca con Google

Milchunas D.G., Lauenroth W.K., Singh J.S., Cole C.V., Hunt H.W., 1985. Root turnover and production by 14C dilution: implications of carbon partitioning in plants. In: Cheng W., Coleman D. C., Box J. E. Jr. (1991), Measuring root turnover using the minirhizotron technique. Agriculture, Ecosystems and Environment 34, 261-267. Cerca con Google

Milchunas D.G., Morgan J.A., Mosier A.R., Lecain D.R., 2005. Root dynamics and demography in shortgrass steppe under elevated CO2, and comments on minirhizotron methodology. Global Change Biology 11, 1837-1855. Cerca con Google

Minguzzi C. and Vergnano O., 1948. Il contenuto di nickel nelle ceneri di Alyssum bertolonii Desv. Memorie Società Toscana di Scienze Naturali, Serie A 55, 49-74. Cerca con Google

Miranda K.M., Espey M.G., Wink D.A., 2001. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide: Biology and Chemistry 5, 62-71. Cerca con Google

Mohan D., Pittman C.U., Bricka M., Smith F., Yancey B., et al., 2007. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid and Interface Science 310, 57-73. Cerca con Google

Mulvaney R.L., 1996. Nitrogen – inorganic forms. In “Methods of Soil Analysis. Part 3.” Chemicak Methods, DL Sparks Ed, 1996: 1123-1184, SSSA, Madison, WI, USA. Cerca con Google

Muscolo A., Sidari M., Francioso O., Tugnoli V., Nardi, S., 2007. The auxin-like activity of humic substances is related to membrane interactions in carrot cell cultures. Journal of Chemical Ecology 33, 115-129. Cerca con Google

Namgay T., Singh B., Singh B.P., 2010. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Australian Journal of Soil Research 48, 638-647. Cerca con Google

Nardi S., Carletti P., Pizzeghello D., Muscolo A., 2009. Biological Activities of Humic Substances. In: Senesi, N., Xing, B., Huang, P.M. (Eds.), Biophysico- Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems, pp. 305-339. Cerca con Google

Narwal R.P. and Singh B.R., 1998. Effect of organic materials on partitioning, extractability and plant uptake of metals in an alum shale soil. Water, Air, and Soil Pollution 103, 405-421. Cerca con Google

Nguyen C., 2003. Rhizodeposition of organic C by plants: mechanism and controls. Agronomie 23, 375-396. Cerca con Google

Nicks L.J. and Chambers M.F., 1995. Farming for metals. Mining Environment Management. 15-18 September. In: Robinson B.H., Bañuelos G., Conesa H.M., Evangelu M.V.H., Schulin R., 2009. The phytomanagement of trace elements in soil, critical reviews in Plant Sciences 28 (no. 4), 240-286. Cerca con Google

Nieminen M., Piirainen S., Moilanen M., 2005. Release of mineral nutrients and heavy metals from wood and peat ash fertilizers: field studies in finnish forest soils. Scandinavian Journal of Forest Research 20, 146-153. Cerca con Google

Oliveira M. do R.G., van Noordwijk M., Gaze S.R., Brouwer G., Bona S., Mosca G., Hairiah K., 2000. Auger sampling, ingrowth cores and pinboard methods. In Root Methods - A Handbook. Eds A.L. Smith, A.G., Benghoug, C. Engels, M. van Noordwijk, S. Pellerin, S.C., van de Geijn. pp 175-210. Springer Berlin Germany. Cerca con Google

Omil B., Piñeiro V., Merino A., 2007. Trace elements in soils and plants in temperate forest plantations subjected to single and multiple applications of mixed wood ash. Science of the Total Environment 381, 157-168. Cerca con Google

Park J.H., Choppala G.K., Bolan N.S., Chung J.W., Chuasavathi T., 2011a. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil 348, 439-451. Cerca con Google

Park J.H., Lamb D., Paneerselvam P., Choppala G., Bolan, N., Chung J.W., 2011b. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials 185, 549-574. Cerca con Google

Park J.H., Choppala G.K., Bolan N.S., Chung J.W., Chuasavathi T., 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil 348, 439-451. Cerca con Google

Patterson S.J., Acharya S.N., Thomas J.E., Bertschi A.B., Rothwell R.L., 2004. Barley Biomass and grain yield and Canola seed yield response to land application of wood ash. Agronomy Journal 96, 971-977. Cerca con Google

Paustian K., Agren G.I., Bosatta E., 1997. Modelling litter quality effects on decomposition and soil organic matter dynamics. In: Cadish G., Giller K.E., (Eds.), Driven by nature: plant litter quality and decomposition. CAB International Wallingford, 313-335. Cerca con Google

Pérez-de-Mora A, Madejón E, Burgos P, Cabrera F (2006) Trace element availability and plant growth in a mine-spill contaminated soil under assisted natural remediation I. Soils. Science of the total environment 363: 28–37. Available:http://www.ncbi.nlm.nih.gov/pubmed/16581109. Accessed 15 June 2012. Vai! Cerca con Google

Pitman R.M., 2006. Wood ash use in forestry - a review of the environmental impacts. Forestry 79, 563-588. Cerca con Google

Pizzeghello D., Zanella A., Carletti P., Nardi S., 2006. Chemical and biological characterization of dissolved organic matter from silver fir and beech forest soils. Chemosphere 65, 190-200. Cerca con Google

Praharaj T., Powell M.A., Hart B.R., Tripathy S., 2002. Leachability of elements from sub-bituminous coal fly ash from India. Environment International 27, 609-615. Cerca con Google

Prasad M.N.V. and Freitas, H., 2000. Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex L. (holly oak). Environmental Pollution 110, 277-283. Cerca con Google

Quartacci M.F., Argilla A., Baker A.J.M., Navari-Izzo F., 2005. Nitrilotriacetate and citric acid-assisted phytoextraction of cadmium by Indian Mustard (Brassica Juncea (L.) Czernj, Brassicaceae). Chemosphere 59, 1249-1255. Cerca con Google

Quartacci M.F., Argilla A., Baker A.J.M., Navari-Izzo F., 2006. Phytoextraction of metals from multiply contaminated soil by Indian Mustard. Chemosphere 63, 918-925. Cerca con Google

Quartacci M.F., Irtelli B., Baker A.J.M., Navari-Izzo F., 2007. The use of NTA and EDDS for enhanced phytoextraction of metals from multiply contaminated soil by Brassica carinata. Chemosphere 68, 1920-1928. Cerca con Google

Quilliam R.S., Marsden K.A., Gertler C., Rousk J., DeLuca T.H., Jones D.L., 2012a. Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate. Agriculture, Ecosystems and Environment 158, 192–199. Cerca con Google

Quilliam R.S., Rangecroft S., Emmett B.A., DeLuca T.H., Jones D.L., 2012b. Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils? Global Change Biology, Bioenergy: In press. Cerca con Google

Quilliam R.S., Rangecroft S., Emmett B.A., DeLuca T.H., Jones D.L., 2012c. Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils? Global Change Biology, Bioenergy: In Press Cerca con Google

Ramos M.C. and López-Acevedo M., 2004. Zinc levels in vineyard soils from the Alt Penedès-Anoia region (NE Spain) after compost application. Advances in Environmental Research 8, 687-696. Cerca con Google

Redman A.D., Macalady D.L., Ahmann D., 2002. Natural organic matter affects arsenic speciation and sorption onto hematite. Environmental Science & Technology 36, 2889-2896. Cerca con Google

Reeves R.D. and Brooks R.R., 1983. Hyperaccumulation of lead and zinc by two metallophytes from mining areas of central Europe. Environmental Pollution 31, 277-285. Cerca con Google

Reeves R.D., Baker A.J.M., Brooks R.R., 1995. Abnormal accumulation of trace metals by plants. Mining Environmental Management 18, 4-8. Cerca con Google

Reijnders L., 2005. Disposal, uses and treatments of combustion ashes: a review. Resources, Conservation and Recycling 43, 313-336. Cerca con Google

Reimer K.J. and Cullen W.R., 2009. Arsenic concentrations in wood, soil and plant tissue collected around trees treated with monosodium methanearsonate (MSMA) for bark beetle control. British Columbia Ministry of Forests and Range, Vancouver, BC. Cerca con Google

Risse L.M., Morris L., Harris G.H., Gaskin J.W., 2009. Recommended practices for using wood ash as an agricultural soil amendment. Bulletin 1147. University of Georgia, College of Agricultural and Environmental Sciences. Athens, Georgia, USA. Cerca con Google

Rizzi L., Petruzzelli G., Poggio G., Vigna Guidi G., 2004. Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere 57, 1039-1046. Cerca con Google

Robinson B.H., Bañuelos G., Conesa H.M., Evangelou M.W.H., Schulin R., 2009. The phytomanagement of trace elements in soils. Critical Reviews in Plant Sciences 28, 240-266. Cerca con Google

Robinson B.H., Brooks R.R., Howes A.W., Kirkman J.H., Gregg P.E.H., 1997. The potential of the high-biomass nicke1 hyperaccumulator Berkheya coddii for phytoremediation and phytomining. Journal of Geochemical Exploration 60, 115-126. Cerca con Google

Rodgers C.S. and Anderson R.C. 1995. Plant growth inhibition by soluble salts in sewage sludge-amended mine spoils. Journal of Environmental Quality 24, 627-630. Cerca con Google

Ross S.M., 1994. Retention, transformation and mobility of toxic metals in soils. In: Ross, S.M. (Ed.), Toxic Metals in Soil – Plant Systems. John Wiley and Sons Ltd, Chichester, 63-152. Cerca con Google

Rule J.H., 1999. Trace metal cation adsorption in soils: selective chemical extractions and biological availability. In Dabrowski, A. (Ed.), “Adsorption and its Applications in Industry and Environmental Protection.” Elsevier, Amsterdam, 319– 349. Cerca con Google

Ryu C., Sharifi V.N., Swithenbank J., 2007. Waste pyrolysis and generation of storable char. International Journal of Energy Research 31, 177-191. Cerca con Google

Sajwan K.S., Paramasivam S., Alva A.K., Adriano D.C., Hooda P.S., 2003. Assesnig the feasbility of land application of fly ash, sewage sludges and their mixture. Advances in Environmental Reseasch 8, 77-91. Cerca con Google

Salt D.E., Smith R.D., Raskin I., 1998. Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology 49, 643-668. Cerca con Google

Salt D.E., Smith R.D., Raskin I., 1998. Phytoremediation. Annual Review of Plant Physiology, Plant Molecular Biology 49, 643-668. Cerca con Google

Sanders J.R., Adams T.M., Christensen B.T., 1986. Extractability and bioavailability of zinc, nickel, cadmium and copper in three Danish soils sampled 5 years after application of sewage sludge. Journal of the science of food and agriculture 37, 1155-1164. Cerca con Google

Schneider I.A.H., Smith, R.W., Rubio J., 1999. Effect of some mining chemicals on biosorption of Cu(II) by the non living biomass of the freshwater macrophyte potamogeton lucens. Minerals Engineering 12, 255–260. Cerca con Google

Schneider I.A.H., Rubio J., Smith R.W., 2001. Biosorption of metals onto plant biomass: exchange adsorption or surface precipitation? International Journal of Mineral Processing 62, 111-120. Cerca con Google

Schoenau, J.J. and Davis J.G., 2006. Optimizing soil and plant responses to land-applied manure nutrients in the Great Plains of North America. Canadian Journal of Soil Science 86 (no. 4), 587-595. Cerca con Google

Shaff J.E., Schultz B.A., Craft E.J., Clark R.T., Kochian L.V., 2010. GEOCHEM-EZ: a chemical speciation program with greater power and flexibility. Plant and Soil 330, 207–214. Cerca con Google

Shiowatana J., Mclaren R.G., Chanmekha N., Samphao A., 2001. Heavy Metals in the Environment. Fractionation of Arsenic in Soil by a Continuous-Flow Sequential Extraction Method. Journal of Environmental Quality 30, 1940–1949. Cerca con Google

Singh B., Singh B.P., Cowie A.L., 2010. Characterisation and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research 48, 516. Cerca con Google

Singh J.S., and Gupta S.R., 1977. Plant decomposition and soil respiration in terrestrial ecosystems. The Botanical Review 43, 450-528. Cerca con Google

Singh O.V., Labana S., Pandey G., Budhiraja R., Jain R.K., 2003. Phytoremediation: an overview of metallic ion decontamination from soil. Applied Microbiology and Biotechnology 61, 405-412. Cerca con Google

Smith S.R., 2009. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludege. Environment International 35, 142-156. Cerca con Google

Sohi S.P., Krull E., Lopez-Capel E., Bol R., 2010. A review of biochar and its functions in soil. Advances in Agronomy 105, 47-82. Cerca con Google

Sohi S.P., Krull E., Lopez-Capel E., Bol. R., 2010. A review of biochar and its functions in soil. Advances in Agronomy 105, 47-82. Cerca con Google

Sohi S.P., Krull E., Bol R., 2010, A review of biochar and its use and function in soil. Advances in Agronomy 105, 47-82. Cerca con Google

Solo-Gabriele H.M., Townsend T.G., Messick B., Calitu V., 2002. Characteristics of chromated copper arsenate-treated wood ash. Journal of Hazardous Materials 89, 213-232. Cerca con Google

Someshwar A.V., 1996. Wood and combination wood-fired boiler ash characterization. Journal of Environmental Quality 25, 962-972. Cerca con Google

Squartini A., Concheri G., Tiozzo. Method for the comparative evaluation of soil fertility or the ability of degrading sludge and sewage and Device for performing such measure. International Patent PCT/IB 2012 001157 13.06.2012 Cerca con Google

Stevenson F.J., 1994. Humus Chemistry: Genesis, Composition, Reactions, Wiley- Interscience, New York. Cerca con Google

Streubel J.D., Collins H.P., Garcia-Perez M., Tarara J., Granatstein D., et al., 2011. Influence of contrasting biochar types on five soils at increasing rates of application. Soil Science Society of America Journal 75, 1402-1413. Cerca con Google

Su D.C., Wong J.W.C., 2004. Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge. Environment International 29, 895-900. Cerca con Google

Swift M.J., Heal O.W., Anderson J.M., 1979. Decomposition in Terrestrial Ecosystems. Blackwell, Oxford Cerca con Google

Swift M.J., Heal O.W., Anderson J.M., 1979. Decomposition in terrestrial ecosystems. Blackwell, Oxford. Cerca con Google

Swinnen J., Van Veen J.A., Merckx R., 1995. Carbon fluxes in the rhizosphere of winter wheat and spring barley with conventional vs integrated farming. Soil Biology and Biochemistry 27, (no. 6) 811-820. Cerca con Google

Tandy S., Healey J.R., Nason M., Williamson J.C., Jones D.L., 2009. Remediation of metal polluted mine soil with compost: co-composting versus incorporation. Environmental Pollution (Barking, Essex : 1987) 157, 690-697. Cerca con Google

Teaf C.M., Covert D.J., Teaf P.A., Page E., Starks M.J., 2010. Arsenic cleanup criteria for soils in the US and abroad: Comparing guidelines and understanding inconsistencies. In: Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, 15, Article 10. Cerca con Google

Tejada M., Dobao M.M., Benitez C., Gonzalez J.L., 2001. Study of composting of cotton residues. Bioresource Technology 79, 199-202. Cerca con Google

Tessier A., Campbell P.G.C., Bisson M., 1979. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical Chemistry 51, 844-851. Cerca con Google

Tiedemann A.R. and Klemmedson J.O., 1973. Nutrient availability in desert grassland soils under mesquite (Prosopis juliflora) trees and adjacent open areas. Proceedings of Soil Science Society of America Journal 37, 107-111. Cerca con Google

Tiedemann A.R. and Klemmedson J.O., 2004. Responses of desert grasslands vegetation to mesquite removal and regrowth. Rangeland Ecology & Management 57, 455-465. Cerca con Google

Tierney G. L. and Fahey T. J., 2002. Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotron methods. Canadian Journal of Forest Resources 32, 1692–1697. Cerca con Google

Tierney G.L. and Fahey T.J., 2001. Evaluating minirhizotron estimates of fine root longevity and production in the forest floor of a temperate broadleaf forest. Plant and Soil 229, 167-176. Cerca con Google

Tordoff G.M., Baker A.J.M., Willis A.J., 2000. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41, 219-228. Cerca con Google

Townsend T., Dubey B., Tolaymat T., Solo-Gabriele H., 2005. Preservative leaching from weathered CCA-treated wood. Journal of Environmental Management 75, 105-113. Cerca con Google

Uchimiya M., Bannon D.I., Wartelle L.H., 2012. Retention of Heavy Metals by Carboxyl Functional Groups of biochar in small arms range soil. Journal of Agricultural and Food Chemistry 60: 1798-1809. Cerca con Google

Uchimiya M., Lima I.M., Klasson K.T., Wartelle L.H., 2010a. Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80, 935-940. Cerca con Google

Uchimiya M., Lima I.M., Klasson K.T., Wartelle L.H., 2010c. Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80, 935-940. Cerca con Google

Uchimiya M., Lima I.M., Thomas Klasson K., Chang S., Wartelle L.H., et al., 2010b. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry 58, 5538-5544. Cerca con Google

US-EPA, 1993. Clean Water Act, sec. 503, vol. 58, no. 32. U.S. Environmental Protection Agency Washington, DC. Cerca con Google

US-EPA, 1994. A plain English guide to the EPA Part 503 biosolids rule. EPA/832/R-93/003. Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC. p 176. Cerca con Google

US-EPA, 1995a. EPA method 3051, Microwave assisted acid digestion of sediments, sludges, soils, and oils. In: Test Methods for Evaluating Solid Waste, 3rd Edition. Washington, DC. Cerca con Google

USEPA, 1995b. EPA method 3052, microwave assisted acid digestion of siliceous and organically based matrices. In: Test Methods for Evaluating Solid Waste, third ed. Washington, DC. Cerca con Google

Vamerali T., Ganis A., Bona S., Mosca G., 2003. Fibrous root turnover and growth in sugar beet (Beta vulgaris var. saccharifera) as affected by nitrogen shortage. Plant and Soil 255, 169-177. Cerca con Google

Vamerali T., Bandiera M., Coletto L., Zanetti F., Dickinson M.N., Mosca Cerca con Google

G., 2009. Phytoremediation trials on metal- and arsenic-contaminated Cerca con Google

pyrite wastes (Torviscosa, Italy). Environmental Pollution, 157, Cerca con Google

884-891. Cerca con Google

Vamerali T. Marchiol L., Bandiera M., Fellet G., Dickinson N.M., Lucchini P., Mosca G., Zerbi G., 2012. Advances in agronomic management of phytoremediation: methods and results from a 10-year study of metal-polluted soils. Italian Journal of Agronomy 7, e42: 323-330. Cerca con Google

Vamerali T., Bandiera M., Mosca G., 2010. Field crops for phytoremediation of metal-contaminated lands. A review. Environmental Chemistry Letters 8, 1-17. Cerca con Google

Vamerali T., Bandiera M., Mosca G., 2011. In situ phytoremediation of arsenic- and metal-polluted pyrite waste with field crops: Effect of soil management. Chemosphere 83, 1241-1248. Cerca con Google

Vamerali T., Saccomani M., Bona S., Mosca G., Guarise M., Ganis A., 2003b. A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids. Plant and Soil 255, 157-167. Cerca con Google

Vamerali, T., Guarise, M., Ganis, A., Bona, S., Mosca, G., 2003a. Analysis of root images from auger sampling with a fast procedure: a case of application to sugar beet. Plant and Soil 255, 387-397. Cerca con Google

Van Der Krift T.A.J. and Berendse F., 2002. Root life spans of four grass species from habitats differing in nutrient availability. Functional Ecology 16, 198-203. Cerca con Google

van Herwijnen R., Hutchings T.R., Al-Tabbaa A., Moffat A.J., Johns M.L., Ouki S.K., 2007. Remediation of metal contaminated soil with mineral-amended composts. Environmental Pollution 150, 347-354. Cerca con Google

Van Soest P.J., 1987. Nutritional ecology of the ruminants. Ruminant metabolism. Nutritional strategy, the cellulytic fermentation and the chemistry of forages and plant fibers. Cornell University Press, Ithaca, London. Cerca con Google

Vangronsveld J., Assche F.V., Clijsters H., 1995. Reclamation of a bare industrial area contaminated by non-ferrous metals: in situ metal immobilization and revegetation. Environmental Pollution 87, 51-59. Cerca con Google

Varun M., D’Souza R., Pratas J., Paul M.S., 2012. Metal contamination of soils and plants associated with the glass industry in North Central India: prospects of phytoremediation. Environmental Science and Pollution Research International 19, 269-281. Cerca con Google

Vázquez S., Moreno E., Carpena R.O., 2008. Bioavailability of metals and As from acidified multicontaminated soils: use of white lupin to validate several extraction methods. Environmental Geochemistry and Health 30, 193-198. Cerca con Google

Vehlow J., Bergfeldt B., Visser R., Wilen C., 2007. European Union waste management strategy and the importance of biogenic waste. Journal of Material Cycles and Waste Management 9, 130-139. Cerca con Google

Vergara I., and Schalscha E.B., 1992. Cadmium-copper competitive sorption in soils. Agrochimica 36, 88-92. Cerca con Google

Verma B. and Shukla N.P., 2000. Removal of nickel(II) from electroplating industry by agrowaste carbons. Indian Journal of Environmental Health 42, no. 4, 145-150. Cerca con Google

Vibhawari and Pandey N.D., 2010. Single and competitive sorption of heavy metal ions (Cd2+ Cu2+) on a clayey soil. E-Journal of Chemistry 7, S27-S34 . Cerca con Google

Wang G.X., 1995. Biosorption of Heavy Metal Ions from Aqueous Solution by Non-Living Water Hyacinth Roots, PhD thesis, University of Nevada, Reno, Reno, NV. Processing Congress, vol. V, pp. 615–628. Cerca con Google

Wang G.X., Fuerstenau, M.C., Smith, R.W., 1998. Sorption of heavy metals onto nonliving water hyacinth root. Mineral Processing and Extractive Metallurgy Review: An International Journal 19, 309-322. Cerca con Google

Watson C.A, Ross J.M., Bagnaresi U., Minotta G.F., Roffi F., Atkinson D., Balck K.E., Hooker J.E., 2000. Environment-induced modifications to root longevity in Lolium perenne and Trifolium repens. Annals of Botany 85, 397-401. Cerca con Google

Walker D.J., Clemente R., Roig A., Bernal M.P., 2003. The effects of soil amendments on heavy metal bioavailability in two contaminated soils. Environmental Pollution 122, 303-312. Cerca con Google

Walkley A., Black I.A., 1934. An examination of the Degtjareff method for determining soil organic matter and proposed modification or the chromic acid tritation method. Soil Science 37, 29-38. Cerca con Google

Wei S.H., Li Y.M., Zhou Q.X., Srivastavac M., Chiu S.W., Zhan J., Wu Z.J., Sun T.H., 2010. Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L. Journal of Hazardous Material 176, 269-273. Cerca con Google

Williams D.J. and Currey N.A., 2002. Engineering closure of an open pit gold operation in a semi-arid climate. International Journal of Mining Reclamation Environment 16, 270-288. Cerca con Google

Williams P.T., 2005. Waste Treatment and Disposal. John Wiley & Sons, Chichester, UK. Cerca con Google

Wong M.H., 2003. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50, 775-780. Cerca con Google

Yavitt J.B., Fahey T.J., 1986. Litter decay and leaching from the forest floor in Pinus contorta (lodgepole pine) ecosystems. Journal of Ecology 74, 525-545. Cerca con Google

Yobouet Y.A., Adouby K., Trokourey A., Yao B., 2010. Cadmium copper lead and zinc speciation in contaminated soils. International Journal of Engineering Science and Technology 2, 802-812. Cerca con Google

Yoo M.S., James B.R. 2002. Zinc extractability as a function of pH in organic waste-amended soils. Soil Science 167, 246-259. Cerca con Google

Zerbi G. and Marchiol L., 2004. Fitoestrazione di Metalli Pesanti: Contenimento del Rischio Ambientale e Relazioni Suolo-Microrganismi-Pianta. Editrice Universitaria Udinese, Udine 2004. Cerca con Google

Zhou D.M., Chen H.F., Cang L., Wang Y.J., 2007. Ryegrass uptake of soil Cu/Zn induced by EDTA/EDDS together with a vertical direct-current electrical field. Chemosphere 67, 1671-1676. Cerca con Google

Versioni disponibili di questo documento

  • Phytostabilization of heavy metals: role of plant roots and
    organic amendments. (deposited 14 Ott 2013 10:11)
    [Attualmente visualizzato]

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record