Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Salviato, Marco (2013) Experimental analysis and multi-scale analytical and numerical modelling of nanomodified composite mechanical properties. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi di dottorato) - Versione sottomessa
16Mb

Abstract (inglese)

Nanocomposites represent a new class of materials which, thanks to the outstanding functional and mechanical properties are endowed with, is earning more and more interest from the scientific community and the industry. As a matter of facts, results available in the literature indicate the possibility to obtain exceptional performance increments even at low nanofiller volume fraction.
To effectively exploit the huge potential of nanocomposites it is of primary concern that with the experimental analysis, abundantly developed in the literature among the rest, comes an adequate modeling activity. Of course, the creation of models, either analytical or numerical, is a milestone for the comprehension and prediction of the mechanical behavior of this kind of materials and their successive application in engineering design.
One of the most critical issues in modeling macro-mechanical properties of nanostructured materials is their hierarachical structure which spans from nano to macro length-scales. A good model should take into account the characteristic phenomena of each length-scale and bridge their effects from the “smaller” scale to the macroscale. As a consequence, a different way of thinking from traditional approaches is needed and a completely new class of models is required.
In this work an extensive review on the main approaches available in the literature for mechanical properties modeling of polymeric-based nanocomposites is proposed. The importance of a multiscale approach either hierarchical or concurrent is discussed and a classification of the models based on the scale level used to address the model (micro-, nano and molecular) is introduced as well.
Then, a comprehensive study on interfacial effects on nanoparticle debonding is presented. The analysis is developed within the frame of Finite Fracture Mechanics and Surface Elasticity. It accounts, contemporaneously, for the emergence of an interphase zone around the nanoparticle and for surface stresses on the nanoparticle periphery.
Afterwards, a unique multiscale analytical procedure useful to evaluate the overall fracture toughness of a polymer/nanoparticle nanocomposite is proposed. The models developed for each damaging mechanism are introduced, highlighting the most important parameters. All models are finally integrated and comparison is carried out between the predicted nanocomposite fracture toughness and some experimental data taken from the literature.
In the second part of the work, the experimental investigations carried out by the author are described and discussed. The effects of nanomodification by nanoclays on polymers and composite laminates in terms of quasi-static and cyclic fracture properties are investigated. In case of nanomodified polymers, it is found that nanomodification significantly enhances the fracture behaviour of the system either in quasi-static or cyclic regime and for different loading modes. In the case of nanomodified laminates, due to the nanofiller morphology, the behaviour of clay-modified laminates is still almost comparable to that of the base laminates.

Abstract (italiano)

I nanocompositi, ottenuti mediante modificazione di resine polimeriche con cariche di dimensioni nanometriche, rappresentano una classe di materiali che sta riscuotendo un notevole interesse da parte della comunità scientifica e del mondo industriale.
Combinando infatti, in maniera opportuna, rinforzi su scala nanometrica con polimeri tradizionali è possibile ottenere dei nuovi materiali dalle eccezionali proprietà fisiche e di resistenza.
I risultati finora disponibili in letteratura indicano la possibilità di ottenere incrementi prestazionali molto elevati già con frazioni di nanocarica limitate, dell’ordine di qualche percento.
Al fine di poter sfruttare l’enorme potenziale di questo tipo di materiali è necessario che l’attività sperimentale sia accompagnata da un’adeguata attività di modellazione, così da mettere a punto dei modelli comportamentali capaci di prevedere le proprietà meccaniche del nanocomposito, includendo la struttura gerarchica e la peculiarità dei meccanismi di rinforzo.
In questo lavoro viene proposta una panoramica e un’analisi critica delle principali metodologie di modellazione finora disponibili in letteratura, con riferimento alle proprietà meccaniche e in particolare alla tenacità a frattura.
Per ciascun modello analizzato vengono descritti gli aspetti maggiormente significativi, le ipotesi di base e le conseguenze che tali ipotesi hanno sul risultato finale. Viene delineata l'importanza di un approccio multi-scala, gerarchico o concorrente, alla modellazione e viene introdotta una classificazione dei principali approcci basata sulla scala di lunghezza investigata per affrontare il problema (micro-, nano- e molecolare).
Successivamente, viene presentato uno studio approfondito degli effetti interfacciali sul meccanismo di debonding di nanoparticelle. L'analisi è stata condotta nell'ambito della teoria della Finite Fracture Mechanics e della Surface Elasticity. Vengono tenuti in considerazione, contemporaneamente, gli effetti di un'interfase che circonda la nanoparticella e di tensioni superficiali agenti all'interfaccia con la matrice.
L'analisi del meccanismo di debonding rappresenta la base di una procedura multiscala per il calcolo della tenacità a frattura di nanocompositi particellari. L'approccio proposto in questo lavoro unisce i modelli di danneggiamento sviluppati dall'autore. Vengono discussi il funzionamento del modello e l'influenza dei principali parametri e le previsioni sono confrontate con risultati sperimentali provenienti da letteratura.
Nella seconda parte del lavoro vengono presentati e discussi i risultati delle campagne sperimentali condotte dall'autore con particolare enfasi agli effetti della nanomodificazione sul comportamento a frattura, quasi-statico e ciclico, sia di polimeri nanomodificati che di laminati nanomodificati con nanoclay. Nel caso di polimeri nanomodificati, viene mostrato come l'aggiunta di nanorinforzi comporti un miglioramento significativo del comportamento a frattura del sistema sia in regime quasi-statico che ciclico e per diversi modi di sollecitazione. Nel caso di laminati nanomodificati, a causa della morfologia del nanofiller, il comportamento a frattura è risultato ancora confrontabile a quello dei laminati base.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Quaresimin, Marino
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > INGEGNERIA INDUSTRIALE > MECCATRONICA E SISTEMI INDUSTRIALI
Data di deposito della tesi:24 Gennaio 2013
Anno di Pubblicazione:Gennaio 2013
Parole chiave (italiano / inglese):Nanoparticle, Fracture Toughness, nanocomposites, multiscale modelling, Molecular Dynamics, Interphase, Surface Elasticity, Debonding, Plastic Yielding, Shear Banding
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/14 Progettazione meccanica e costruzione di macchine
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/22 Scienza e tecnologia dei materiali
Struttura di riferimento:Dipartimenti > Dipartimento di Tecnica e Gestione dei Sistemi Industriali
Codice ID:5455
Depositato il:10 Ott 2013 16:03
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Adebahr T, Roscher C., Adam J., “Reinforcing nanoparticles in reactive resin”. European Coatings Journal, 4, 144-149, 2001. Cerca con Google

Ahmadzadeh-Bakhshayesh, H., Gutkin, M.Yu. , Shodja, H.M. "Surface/interface effects on elastic behavior of a screw dislocation in an eccentric core–shell nanowire". Int. J. Solids Struct. 49, 1665–75, 2012. Cerca con Google

Ajayan P.M., Schadler L.S., Braun P.V., “Nanocomposite Science and Technology”, Wiley-VCH, 2004. Cerca con Google

Alexandre M., Dubois P., “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials”, Materials Science and Engineering 28, 1-63, 2000. Cerca con Google

Arai M., Noro Y., Sugimoto K., Endo M. "Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer". Compos Sci Technol, 68:516–525, 2008. Cerca con Google

ASTM D 5045. Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials (1999). Cerca con Google

Ayatollahi MR, Shadlou S, Shokrieh MM. "Mixed mode brittle fracture in epoxy/multi-walled carbon nanotube nanocomposites". Eng Fract Mech, 78: 2620–2632, 2011. Cerca con Google

Battistella M., Cascione M., Fiedler B., Wichmann M.H.G., Quaresimin M., Schulte K.. "Fracture behaviour of fumed silica/epoxy nanocomposites". Compos: Part A, 39: 1851–1858, 2008. Cerca con Google

Becker O, Varley R, Simon G. "Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins". Polymer, 43: 4365–4373, 2002. Cerca con Google

Becker O., Cheng Y.B., Varley R., Simon G., “Layered Silicate Nanocomposites Based on Various High-Functionality Epoxy Resins: The Influence of Cure Temperature on Morphology, Mechanical Properties and Free Volume”, Macromolecules, 36, 1616-1625, 2003. Cerca con Google

Bharadwaj RK, Mehrabi AR, C Hamilton, Trujillo C, Murgaa M, Fan R, Chavira A, Thompson AK. "Structure-property relationships in cross-linked polyester–clay nanocomposites". Polymer, 43 :3699–705, 2002. Cerca con Google

Boo W.J., Liu J., Sue H.J. Fracture behaviour of nanoplatelet reinforced polymer nanocomposites. Mat Sci Tech, 22: 829–834, 2006. Cerca con Google

Boutaleb, S., Zaıri, F., Mesbah, A.N., Abdelaziz, M., Gloaguen, J.M., Boukharouba. T. "Micromechanics-based modelling of stiffness and yield stress for silica/ polymer nanocomposites". Int. J. Solids Struct. 46, 1716–26, 2009. Cerca con Google

Brougthon JQ, Abraham FF, Bernstein N, Kaxiras E. "Concurrent coupling of length scales: Methodology and application". Physical Review B volume 60, number 4 15 July 1999-II. Cerca con Google

Carati A., Gagliardi F., Rizzo C., “ Nanocompositi: non è fantascienza”, Materiali innovativi, pp. 8-12, TPoint 4/2002. Cerca con Google

Chan C.M., Wu J., Li J-X, Chenung Y-K. “Polypropylene/calcium carbonate nanocomposites”, Polymer 43, 2981-2992, 2002. Cerca con Google

Chan Mo-lin, Lau Kin-tak, Wonga Tsun-tat, Ho Mei-po, Hui D. "Mechanism of reinforcement in a nanoclay/polymer composite". Comp Part B, 42:1708–12, 2011. Cerca con Google

Chen JK, Huang ZP, Zhu J. "Size effect of particles on the damage dissipation in nanocomposites". Compos Sci Technol, 14:2990–96, 2007. Cerca con Google

Chen Q, Chasiotis I, Chen C, Roy A. "Nanoscale and effective mechanical behavior and fracture of silica nanocomposites". Compos Sci Technol, 68:3137–44, 2008. Cerca con Google

Chia J, Hbaieb K, Wang QX. "Finite element modelling epoxy/clay nanocomposites". Key Eng Mat, 334:785-88, 2007. Cerca con Google

Cho JW, Paul DR. "Nylon 6 nanocomposites by melt compounding". Polymer, 42: 1083–94, 2001. Cerca con Google

Cohen M.L. “Nanotubes, Nanoscience and Nanotechnology”. Materials Science and Engineering C 15 , 1-11, 2001. Cerca con Google

Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L. "Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress". J. Mech. Phys. Solids 53, 1574–96, 2005. Cerca con Google

Dunn, M. and Ledbetter, H., "Elastic constants of composites reinforced by multiphase particles". J. Appl. Mech., 62, 1023–1028, 1995. Cerca con Google

Erdogan F, Sih GC. "On the crack extension in plates under plane loading and transverse shear". Trans ASME, J Basic Eng, 85: 519–27, 1963. Cerca con Google

Evans AG. "The strength of brittle materials containing second phase dispersions". Philos Mag, 26:1327–44, 1972. Cerca con Google

Fermeglia M, Pricl S. "Multiscale modeling for polymer systems of industrial interest". Progress Org Coat, 58:187-99, 2007. Cerca con Google

Fermeglia M, Pricl S. Multiscale molecular modeling in nanostructured material design and process. Comput Chem Eng, 33:1701–10, 2009. Cerca con Google

Feynmann R.P., “There’s plenty of room at the bottom”,Eng. Sci. 23 (1960) 22–36, and www.zyvex.com/nanotech/feynman.html (1959). Vai! Cerca con Google

Fiedler B., Gojny F.H., Wichmann M.H.G., Nolte M.C.M., Schulte K., “Fundamental aspects of nano-reinforced composites”, Composites Science and Technology, 66, 3115–31, 2006. Cerca con Google

Fischer H. "Polymer nanocomposites: from fundamental research to specific applications". Mater Sci Eng C, 23: 763–72, 2003. Cerca con Google

Fornes T.D., Paul D.R., “Modeling properties of nylon 6/claynanocomposites using composite theories”, Polymer, 44, 4993–5013, 2003. Cerca con Google

Frankland SJV, Harik VM, Odegard GM, Brenner DW, Gates TS. The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation. Compos Sci Technol, 63:1655–61, 2003. Cerca con Google

Freund LB, Hutchinson JW. "High-strain-rate crack growth in rate dependent plastic solids". J Mech Phys Solids, 33:169-91, 1985. Cerca con Google

Gent, A.N. "Detachment of an elastic matrix from a rigid spherical inclusion". J. Mater. Sci. 15, 2884-88, 1980. Cerca con Google

Giannopoulos G.I, Georgantzinos S.K., Anifantis N.K., "A semi-continuum finite element approach to evaluate the Young’s modulus of single-walled carbon nanotube reinforced composites". Comp Part B, 41:594–601, 2010. Cerca con Google

Gill, S.P.A. "The effect of surface-stress on the concentration of stress at nanoscale surface flaws". Int. J. Solids Struct. 44, 7500–09, 2007. Cerca con Google

Gilman J.W., “Flammability and thermal stability studies of polymer-layered silicate (clay) nanocomposites”. Appl Clay Sci, 15:31–49, 1999. Cerca con Google

Gilman J.W., Kashiwagi T., Lichtenhan J.D. “Flammability studies of polymer-layered silicate nanocomposites”. SAMPE J, 33:40–5, 1997. Cerca con Google

Gilman JW, Jackson CL, Morgan AB, Harris Jr R, Manias E, Giannelis EP, Wuthenow M, Hilton D, Phillips SH., “Flammability properties of polymer-layered silicate nanocomposites. Propylene and polystyrene nanocomposites”. Chem Mater, 12:1866–73, 2000. Cerca con Google

Gojny F.H., Wichmann M.H.G., Fiedler B., Schulte K., “Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study” Composites Science and Technology 65, 2300-2313, 2005. Cerca con Google

Gojny F.H., Wichmann M.H.G., Koepke U., Fiedler B., Schulte K., “Carbon nanotube-reinforced epoxy composite: enhanced stiffness and fracture toughness at low nanotube content”, Composite Science and Technology 64, 2363-2371, 2004. Cerca con Google

Gou JH, Liang ZY, Zhang C, Wang B. Computational analysis of effect of single-walled carbon nanotube rope on molecular interaction and load transfer of nanocomposites. Comp Part B, 36:524–33, 2005. Cerca con Google

Gou JH, Minaie B, Wang B, Liang ZY, Zhang C. "Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites". Comp Mater Sci, 31:225–36, 2004. Cerca con Google

Green DJ, Nicholson PS, Embury JD. "Fracture of a brittle particulate composite – part 2. Theoretical aspects". J Mater Sci, 14:1657–61, 1979. Cerca con Google

Gurtin, M.E., Murdoch, A.I. "A continuum theory of elastic material surfaces". Arch. Ration. Mech. An. 57, 291-323, 1975. Cerca con Google

Gurtin, M.E., Murdoch, A.I. "Surface stress in solids". Int. J. Solids Struct. 14, 431–40, 1978. Cerca con Google

Guzmàn de Villoria R, Miravete A. "Mechanical model to evaluate the effect of the dispersion in nanocomposites". Acta Mater, 55:3025-31, 2007. Cerca con Google

Ha Sung-Rok, Rhee Kyong-Yop, Park Soo-Jin, Lee Joong Hee. "Temperature effects on the fracture behavior and tensile properties of silane-treated clay/epoxy nanocomposites". Comp Part B, 41:602–607, 2010. Cerca con Google

He, L.H., Li, Z.R. "Impact of surface stress on stress concentration". Int. J. Solids Struct. 43, 6208–6219, 2006. Cerca con Google

Holister P., Harper T.E., Roman Vas C., “Nanotubes”, White Paper, CMP scientifica, 2003. Cerca con Google

Hsieh TH, Kinloch A.J, Masania K, Sohn Lee J, Taylor AC, Sprenger S. "The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles". J Mater Sci, 45:1193–1210, 2011. Cerca con Google

Hsieh TH, Kinloch AJ, Masania K, Taylor AC, Sprenger S. "The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles". Polymer, 51:6284-6294, 2010. Cerca con Google

Huang Y, Kinloch AJ. "Modelling of the toughening mechanisms in rubber-modified epoxy polymers. Part II A quantitative description of the microstructure-fracture property relationships". J Mater Sci, 27:2763-69, 1992. Cerca con Google

Hui, T., Chen, Y.-H. "Surface Effect and Size Dependence on the Energy Release due to a Nano InAs Inclusion Expansion in a GaAs Matrix Material". Adv. Studies Theor. Phys. 4, 369 – 81, 2010. Cerca con Google

Hussain MA, Pu SL, Underwood J. "Strain energy release rate for a crack under combined mode I and Mode II". Fracture Analysis, ASTM STP 560 American Society for Testing and Materials, Philadelphia 2-28 (1974). Cerca con Google

Iijima S., “Helical microtubules of graphitic carbon”. Nature, 354:56–8, 1991. Cerca con Google

Johnsen BB, Kinloch AJ, Mohammaed RD, Taylor AC, Sprenger S. "Toughening mechanisms of nanoparticle-modified epoxy polymers". Polymer, 48:530-41, 2007. Cerca con Google

Kornmann X, Lindberg H, Berglund LA. "Synthesis of epoxy-clay nanocomposites: influence of the nature of the curing agent on structure". Polymer, 42:4493–9, 2001. Cerca con Google

Kornmann X, Thomann R, Mulhaupt R, Finter J, Berglund LA. "High performance epoxy-layered silicate nanocomposites". Polym Eng Sci, 42(9):1815–26, 2002. Cerca con Google

Kushch, V.I., Mogilevskaya, S. G., Stolarski, H.K., Crouch, S. "Elastic interaction of spherical nanoinhomogeneities with Gurtin–Murdoch type interfaces". J. Mech. Phys. Solids 59, 1702–16, 2011. Cerca con Google

Lange FF. "The interaction of a crack front with a second-phase dispersion". Philos Mag, 22:983–92, 1970. Cerca con Google

Lau K.-T., Hiu D. “The revolutionary creation of new advance material- carbon nanotube composites”. Composites: Part B 33, 263-277, 2002. Cerca con Google

Lau Kin-Tak, Chipara Mircea, Ling Hang-Yin, Hui D. "On the effective elastic moduli of carbon nanotubes for nanocomposite structures". Comp Part B, 35:95-101, 2004. Cerca con Google

Lauke B. "On the effect of particle size on fracture toughness of polymer composites". Compos Sci Technol, 68, pp. 3365–72, 2008. Cerca con Google

Lauke, B. "Determination of adhesion strength between a coated particle and polymer matrix". Compos. Sci. Technol. 66, 3153-60, 2006. Cerca con Google

Lauke, B., Schüller, T. "Calculation of stress concentration caused by a coated particle in polymer matrix to determine adhesion strength at the interface". Compos. Sci. Technol. 62, 1965–78, 2002. Cerca con Google

Lauke, B., Schüller, T., Beckert, W. "Calculation of adhesion strength at the interface of a coated particle embedded within matrix under multiaxial load". Comput. Mater. Sci. 18, 362–380, 2000. Cerca con Google

Lazzarin P, Zambardi R. "A finite-volume-energy based approach to predict the static and fatigue behaviour of components with sharp V-shaped notches". Int J Fract, 112: 275-298, 2001. Cerca con Google

Lee DC, Jang LW. "Preparation and characterization of PMMA-clay hybrid composite by emulsion polymerization". J Appl Polym Sci, 61: 1117–22, 1996. Cerca con Google

Lee J.D., Wang X.Q., Chen Y.P. "Multiscale material modeling and its application to a dynamic crack propagation problem". Theor Appl Fract Mec, 51:33-40, 2009. Cerca con Google

Leguillon, D. "Strength or toughness? A criterion for crack onset at a notch". Eur. J. Mech. A-Solid. 21, 61-72, 2002. Cerca con Google

Li C, Chou T-W. "A structural mechanics approach for the analysis of carbon nanotubes". Int J Solids Struct, 40:2487–99, 2003. Cerca con Google

Li, Y., Waas, A. M., Arruda, E.M. "The effects of the interphase and strain gradients on the elasticity of layer by layer (LBL) polymer/clay nanocomposites". Int. J. Solids Struct. 48, 1044–53, 2011. Cerca con Google

Liao K, Li S. Interfacial characteristics of a carbon nanotube-polystyrene composite system. Appl Phys Lett, 79:4225–7, 2001. Cerca con Google

Liu TX, Liu ZH, Ma KX, Shen L, Zeng KY, He CB. "Morphology, thermal and mechanical behavior of polyamide 6/layered-silicate nanocomposites". Compos Sci Technol, 63: 331–337, 2003. Cerca con Google

Liu W, Hoa SV, Pugh M. "Fracture toughness and water uptake of high-performance epoxy/nanoclay nanocomposites". Compos Sci Technol, 65: 2364–2373, 2005. Cerca con Google

Liu W.K., Karpov E.G., Park H.S., “Nano Mechanics and Materials”, Wiley, 2006 Cerca con Google

Lordi V., Yao N. “Molecular mechanics of binding in carbon-nanotube–polymer composites”. Journal of Material Research, 15, 2770–9, 2000. Cerca con Google

Luo J.J., Daniel I.M. “Characterization and modeling of mechanical behavior of polymer/clay nanocomposites”, Composite Science Technology, 63, 1607–16, 2003. Cerca con Google

Marzari N., Ferrari M., “Textural and micromorphological effects on the overall elastic response of macroscopically anisotropic composites”. Journal of Applied Mechanics, 59:269–75, 1992. Cerca con Google

Müller, P., Saúl, A. "Elastic effects on surface physics". Surf. Sci. Rep. 54, 157-258, 2004. Cerca con Google

Nam PH, Maiti P, Okamaoto M, Kotaka T., “Foam processing and cellular structure of polypropylene/clay nanocomposites”. Proceeding Nanocomposites, June 25–27, Chicago, Illinois, USA: ECM Publication; 2001. Cerca con Google

Ng CB, Ash BJ, Schadler LS, RW Siegel. "A Study of the Mechanical and Permeability Properties of Nano- and Micron-TiO2 Filled Epoxy Composites". Adv Compos Lett, 10:101-11, 2001. Cerca con Google

Nicholson, D.W "On the detachment of a rigid inclusion from an elastic matrix". J. Adhesion 10, 255-60, 1979. Cerca con Google

Odegard GM, Clancy TC, Gates TS. "Modeling of mechanical properties of nanoparticle/polymer composites". Polymer, 46, 553-62, 2005. Cerca con Google

Odegard GM, Gates TS, Nicholson LM, Wised KE. "Equivalent-continuum modeling of nano-structured materials". Compos Sci Technol, 62:1869–80, 2002. Cerca con Google

Odegard GM, Gates TS, Wise KE, Park C, Siochi EJ. "Constitutive modeling of nanotube-reinforced polymer composites". Compos Sci Technol, 63:1671–87, 2003. Cerca con Google

Park S.J., Yeong H.J., Nah C., “A study of oxyfluorination of multiwalled-carbon nanotubes on mechanical interfacial properties of epoxy matrix nanocomposites”, Materials Science and Engineering A385, 13-16, 2004. Cerca con Google

Pipes RB, Hubert P, "Helical carbon nanotube arrays: mechanical properties". Compos Sci Technol, 62:419–28, 2002. Cerca con Google

Popov V.N. “Carbon nanotube: properties and application”. Materials Science and Engineering R 64, 61-102, 2004. Cerca con Google

Qian D, Liu WK, Ruoff RS. Load transfer mechanism in carbon nanotube ropes. Compos Sci Technol, 63 :1561–9, 2003. Cerca con Google

Quaresimin M, Salviato M, Zappalorto M. "Fracture and interlaminar properties of clay-modified epoxies and their glass reinforced laminates". Eng Fract Mech, 81: 80-93, 2012a. Cerca con Google

Quaresimin M, Salviato M, Zappalorto M. "Strategies for the assessment of nanocomposite mechanical properties". Compos part B-Eng., 43, pp. 2290–2297 2012. Cerca con Google

Quaresimin M. Varley R.J., “Understanding the effect of nanomodifier addition upon the properties of fibre reinforced laminates”, Composites Science and Technology vol.68 No. 3-4,718-726, 2008. Cerca con Google

Quaresimin M., Salviato M., Zappalorto M. “Fracture and interlaminar properties of clay-modified epoxies and their glass reinforced laminates. Engineering Fracture Mechanics, 81:80-93, 2012b. Cerca con Google

Quaresimin M., Salviato M., Zappalorto M. Strategies for the assessment of nanocomposite mechanical properties. Composites part B: Engineering, 43, 2290-2297, 2012a. Cerca con Google

Quaresimin M., Varley R.J. "Understanding the effect of nanomodifier addition upon the properties of fibre reinforced laminates", Comp Sci Tech, 68: 718-726, 2008. Cerca con Google

Ray S.S., Okamoto M., “Polymer layered silicate nanocomposites: a review from preparation to processing”, Progress in Polymer Science, 28, 1539-1641, 2003. Cerca con Google

Rice B.P., Chen C., Cloos L., Curliss D. "Carbon fibre composites: Organoclay-aerospace epoxy nanocomposites", Part I. SAMPE J, 37: 7–9, 2001. Cerca con Google

Richard HA, Fulland M, Sander M. "Theoretical crack path prediction". Fatigue Fract Eng Mater Struct, 28: 3–12, 2005. Cerca con Google

Salviato M, Zappalorto M, Quaresimin M. "Plastic shear bands and fracture toughness improvements of nanoparticle filled polymers: a multiscale analytical model". In press. Cerca con Google

Salviato M, Zappalorto M, Quaresimin M. "The effect of surface stresses on the critical debonding stress around nanoparticles". Int J Fract, 172:97-103, 2011. Cerca con Google

Salviato M, Zappalorto M, Quaresimin M., "Plastic shear bands and fracture toughness improvements of nanoparticle filled polymers: a multiscale analytical model". In press. Cerca con Google

Salviato M., Zappalorto M., Quaresimin M. "Plastic Yielding Around Nanovoids". Procedia Engineering, 10:3325–3330, 2011b. Cerca con Google

Salviato M., Zappalorto M., Quaresimin M. "The effect of surface stresses on the critical debonding stress around nanoparticles". International Journal of Fracture, 172:97-103, 2011a. Cerca con Google

Salviato, M., Zappalorto, M., Quaresimin, M. "A multiscale analytical model to assess fracture toughness improvements due to plastic shear bands". Proceedings of the 15th European Conference on Composite Materials, ECCM 15, Venice, Italy, 24-28 June 2012. Cerca con Google

Salviato, M., Zappalorto, M., Quaresimin, M. "The effect of surface stresses on the critical debonding stress around nanoparticles". Int. J. Fract. 172, 97-103, 2011b. Cerca con Google

Scocchi G., Posocco P., Handgraaf J-H, Fraaije J., Fermeglia M., Pricl S., "A Complete Multiscale Modelling Approach for Polymer–Clay Nanocomposites". Chem-Eur J, 15: 7586-7592, 2009. Cerca con Google

Sevostianov I, Kachanov M. "Effect of interphase layers on the overall elastic and conductive properties of matrix composites. Applications to nanosize inclusion". Int J Solids Struct, 44:1304–15, 2007. Cerca con Google

Sharma, P., Ganti, S. "Interfacial elasticity corrections to size-dependent strain-state of embedded quantum dots". Phys. Status Solidi 234, R10–R12, 2002. Cerca con Google

Sharma, P., Ganti, S., Bhate, N. "Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities". Appl. Phys. Lett. 82, 535–537, 2003. Cerca con Google

Sih GC. "Strain-energy-density factor applied to mixed mode crack problems". Int J Fract, 10: 305-21, 1974. Cerca con Google

Spencer PE, Sweeney J. "Modelling of polymer Clay Nanocomposites for a Multiscale appoach". arXiv:0809.0888v1 [cond-mat.mtrl-sci], 2006. Cerca con Google

Strawhecker K.E., Manias E., “Structure and properties of poly(vinyl alcohol)/Na+-montmorillonite nanocomposites”. Chem Mater,12:2943–9, 2000. Cerca con Google

Stroscio J.A., Feenstra R.M., In: Stroscio J.A., Keiser W.J., editors, “Scanning tunnelling microscopy ”. New York: Accademic Press., 95-141, 1993 Cerca con Google

Subramaniyan AK, Sun CT. "Toughening polymeric composites using nanoclay: Crack tip scale effects on fracture toughness". Compos Part A-Appl S, 38: 34–43, 2007. Cerca con Google

Term Thesis of Manuela Cascione, “Manufacturing and testing of nano-modified and conventional Glass-Fibre Reinforced Composites”. Università di Padova- Technische Universitaet Hamburg-Harburg, 2005. Cerca con Google

Thostenson E.T., Li C., Chou T.W. “Nanocomposites in context” Composites Science and Technology, 65, 491–516, 2005. Cerca con Google

Thostenson E.T., Ren Z., Chou T.-W. “Advances in the science and technology of carbon nanotubes and their composites: a review”, Composites Science and Technology 61, 1899-1912, 2001. Cerca con Google

Thostenson ET, Chou TW. "On the elastic properties of carbon nanotube-based composites: modeling and characterization". J Phys D, 36;573–82, 2003. Cerca con Google

Thostenson, E.T., Li, C., Chou, T.W. "Nanocomposites in context". Compos. Sci. Technol. 65, 491–516, 2005. Cerca con Google

Tian, L., Rajapakse, R.K.N.D. "Analytical solution for size-dependent elastic field of a nanoscale circular inhomogeneity". J. Appl. Mech. 74, 568-574, 2008. Cerca con Google

Timmerman J.F., Hayes B.S., Seferis J.C. "Nanoclay reinforcement effects on the cryogenic microcracking of carbon fibre/epoxy composites". Comp Sci Tech, 62: 1249–1258, 2002. Cerca con Google

Timoshenko SP, Goodier JN.. "Theory of Elasticity", third ed., McGraw-Hill, New York, 1970. Cerca con Google

Tsai Jia-Lin, Tzeng Shi-Hua, Chiu Yu-Tsung. "Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation". Comp Part B, 41:106–115, 2010. Cerca con Google

Vaia R.A. “Polymer Nanocomposite open a new dimension for Plastic and Composites”, The AMPTIAC newsletter, vol. 6, n. 1, 17-24, 2002. Cerca con Google

Vaia R.A., Giannelis E.P. "Polymer melt intercalation in organicallymodified layered silicates: Model predictions and experiment". Macromolecules, 30: 8000–8009, 1997. Cerca con Google

VanderHart, D.L., Asano, A., Gilman, J.W. "Solid State NMR. Investigation of Paramagnetic Nylon-6 Clay Nanocomposites. 1. Crystallinity, Morphology, and the Direct Influence of Fe3+ on Nuclear Spins". Chem. Mater. 131, 3796–809, 2001. Cerca con Google

W. Araki , K. Nemoto, T. Adachi, A. Yamaji. Fracture toughness for mixed mode I/II of epoxy resin. Acta Materialia 53, 869–875, 2005. Cerca con Google

Wagner H.D. and Vaia R.A. “Nanocomposites: issues at the interface”. Materials Today, 38-42, 2004. Cerca con Google

Wang K, Chen L, Wu J, Toh ML, He C, Yee AF. "Epoxy Nanocomposites with Highly Exfoliated Clay: Mechanical Properties and Fracture Mechanisms". Macromolecules, 38: 788-800, 2005. Cerca con Google

Wang L, Wang K, Chen L, Zhang Y, He C. "Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite". Compos Part A-Appl S, 37: 1890–1896, 2006. Cerca con Google

Weon JI, Sue HJ. "Effects of clay orientation and aspect ratio on mechanical behaviour of nylon-6 nanocomposite". Polymer, 46: 6325–6334, 2005. Cerca con Google

Wetzel B, Rosso P, Haupert F, Friedrich K. Epoxy nanocomposites – fracture and toughening mechanisms. Eng Fract Mech, 73:2375–98, 2006. Cerca con Google

Wetzel B., Haupert F., Zhang M.Q., “Epoxy nanocomposites with high mechanical and tribological performance”, Composite Science and Technology 63, 2055-2067, 2003. Cerca con Google

Wichmann M.H.G., Cascione M., Fiedler B., Quaresimin M., Schulte K., “Influence of surface treatment on mechanical behaviour of fumed silica/epoxy resin nano-composites”, Composite Interfaces, vol. 13 No. 8-9, 699-715, 2006b. Cerca con Google

Wichmann M.H.G., Sumfleth J., Gojny F. H., Quaresimin M., Fiedler B. and Schulte K., “Glass fibre-reinforced composites with enhanced mechanical and electrical properties – benefits and limitations of a nanoparticle-modified matrix”, Engineering Fracture Mechanics, 73, 2346–2359, 2006a. Cerca con Google

Wichmann, M.H.G., Schulte, K., Wagner, H.D., “On nanocomposite toughness”, Composites Science and Technology, 68, 329-331, 2008. Cerca con Google

Williams JG. "Particle toughening of polymers by plastic void growth". Compos Sci Technol, 70:885–91, 2010. Cerca con Google

Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K. Physical interactions at carbon nanotube–polymer interface. Polymer, 44:7757–64, 2003. Cerca con Google

Wood J., “Facilitating nanoscale research”, Materials Today, 56-61, 2004. Cerca con Google

Y.L. Liang, R.A. Pearson. "Toughening mechanisms in epoxy–silica nanocomposites (ESNs)", Polymer 50, 4895–4905, 2009. Cerca con Google

Yokozeki T., Iwahori Y., Ishibashi M., Yanagisawa T., Imai K., Arai M., Takahashi T., Enomoto K. "Fracture toughness improvement of CFRP laminates by dispersion of cup-stacked carbon nanotubes". Compos Sci Technol, 69: 2268-2273, 2009. Cerca con Google

Yosibash Z, Priel E, Leguillon D. "A failure criterion for brittle elastic materials under mixed-mode loading". Int J Fract, 141: 291–312, 2006. Cerca con Google

Yu, S., Yang, S., Cho, M. "Multi-scale modeling of cross-linked epoxy nanocomposites". Polymer 50, 945-52, 2009. Cerca con Google

Yudasaka M., Komatsu T., Ichihashi T., Iijima S. “Single wall carbon nanotube formation by laser ablation using double targets of carbon and metal”, Chem. Phys. Lett. 278, 102–106, 1997. Cerca con Google

Zamanian M., Mortezaei M, Salehnia B., Jam J.E., "Fracture toughness of epoxy polymer modified with nanosilica particles: particle size effect". Engineering Fracture Mechanics, doi: http://dx.doi.org/10.1016/j.engfracmech.2012.10.027, 2012 Vai! Cerca con Google

Zammarano M., Maupin PH, Sung LP, Gilman JW, McCarthy ED, Kim YS, Fox DM. "Revealing the Interface in Polymer Nanocomposites". ACS NANO, 5: 3391-3399, 2011. Cerca con Google

Zappalorto M, Salviato M, Quaresimin M. "A multiscale model to describe nanocomposite fracture toughness enhancement by the plastic yielding of nanovoids". Compos Sci Technol, 72; 1683-1691, 2012a. Cerca con Google

Zappalorto M, Salviato M, Quaresimin M. "Assessment of Debonding-Induced Toughening in Nanocomposites". Procedia Engineering, 10, pp. 2982–87, 2011b. Cerca con Google

Zappalorto M, Salviato M, Quaresimin M. "Influence of the interphase zone on the nanoparticle debonding stress". Compos Sci Technol, 72:48-55, 2011a. Cerca con Google

Zappalorto M, Salviato M, Quaresimin M. "Stress distributions around rigid nanoparticles". Int J Fract, 176:105–112, 2012b. Cerca con Google

Zappalorto, M., Salviato, M., Quaresimin, M. "A multiscale model to describe nanocomposite fracture toughness enhancement by the plastic yielding of nanovoids". Compos. Sci. Technol. 72, 1683-1691, 2012a. Cerca con Google

Zax, D.B., Yang, D.K., Santos, R.A., Hegemann, H., Giannelis, E.P., Manias, E. "Dynamical heterogeneity in nanoconfined polystyrene chains". J. Chem. Phys. 112, 2945–51, 2000. Cerca con Google

Zeng QH, Yu AB, Lu GQ. "Multiscale modeling and simulation of polymer nanocomposites". Progr Polym Sci, 33:191–269, 2008. Cerca con Google

Zerda AS, Lesser AJ. "Intercalated Clay Nanocomposites: Morphology, Mechanics, and Fracture Behavior". J Polym Sci Pol Phys, 39: 1137–1146, 2001. Cerca con Google

Zhang M., Singh R.P. “Mechanical reinforcement of unsatured polyester by Al2O3 nanoparticles”. Materials Letters 58, 408-412, 2004. Cerca con Google

Zhao S, Schadler LS, Duncan R, Hillborg H, Auletta T. "Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy". Compos Sci Technol, 68:2965–75, 2008. Cerca con Google

Zhu J, Morgan AB, Lamelas FJ, Wilkie CA. “Fire properties of polystyrene–clay nanocomposites”. Chem Mater,13: 3774–80, 2001. Cerca con Google

Zilg C., Mulhaupt R., Finter J. "Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates". Macromolecules Chemistry and Physics, 70: 661–670, 1999. Cerca con Google

Zunjarrao S.C., Sriraman R., Singh R.P. "Effect of processing parameters and clay volume fraction on the mechanical properties of epoxy-clay nanocompoistes". J Mater Sci, 41: 2219-2228, 2006. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record