Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Brustolon, Francesca (2008) Proteinchinasi di sopravvivenza: CK2, Akt, PRPK. Connessioni regolatorie. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

In this work I focused on functional correlations between some important protein kinases, tightly involved in cell viability. The project was divided in the following major parts:
a) CK2 indirectly modulates phosphorylation state of Akt pThr308.
Protein kinase CK2 is a Ser/Thr protein kinase composed of two catalytic (? and/or ?') and two regulatory (?) subunits. It is ubiquitous, constitutively active, and pleiotropic, with more than 300 protein substrates known so far. CK2 plays an antiapoptotic role, coordinating a network of signaling pathways essential for cell survival. One of these is rapresented by Akt, a kinase whose mechanism of activation is based on the phosphorylation of two key residues: Thr308 (by the PDK1 kinase) and Ser473 (by the mTOR/Rictor complex). On the other side, the dephosphorylation of Thr308 and Ser473 is accounted for by PP2A phosphatase and PHLPP, respectively.
CK2 acts directly on Akt, phosphorylating its Ser129 residue, both in vitro and in vivo, thus enhancing its catalytic activity.
Here we also show that downregulation of CK2 activity by inhibitors, or mutation of the CK2-dependent site in Akt (Ser129Ala), induce a lower phosphorylation of Thr308, which is not a direct target for CK2. This finding can be explained assuming that phosphorylation of Akt at Ser129 by CK2 facilitates the recognition of Thr308 by the kinase PDK1 or, alternatively, makes Akt less accessible to the phosphatase PP2A. We found that PDK1 does not discriminate between the two different forms of Akt, phosphorylated or not at the CK2 site; on the contrary, our data show that, in case of Ser129 phosphorylation, a lower degree of T308 dephosphorylation occurs. In fact, when we treat cells with the PP2A inhibitor okadaic acid, any difference at Thr308 phosphorylation is abrogated between wt Akt (phosphorylated at Ser129 by CK2) and Ser129Ala Akt mutant. We also found that Hsp90, involved in preserving the Thr308 phosphorylation state, is less tightly associated to Akt in case of the Ser129Ala mutation. This indicates that the regulation operated by CK2 on Akt can be ascribed, at least in part, to a protection from the pThr308-dephosphorylation process, possibly involving other protein partners, such as the Cdc37/Hsp90 complex.
b) Drug resistance and pro-survival protein kinases.
Given the pro-survival and anti-apoptotic function of CK2 and Akt, we also investigated their possible involvement in the multidrug resistance phenotype, a condition where a high proliferation rate and a reduced cell death degree result in the failure of cancer therapy.
We analysed the expression level of these two kinases and their role in some cell lines, available in the two variants normally sensitive (S) or resistant (R) to chemical apoptosis. Most of the work was focused on T-lymphoblastoid cells (CEM-S and CEM-R), but we also extended our analyses to other cell models, particullary to an osteosarcoma cell line (U2OS-S and U2OS-R) and to ovarian carcinoma cells (2008-S and 2008-R). We found that CK2 and Akt are differently expressed throughout our cellular models, causing different panels of endogenous substrates phosphorylation, whose identification can be useful to understand the drug resistance phenomenon.
We also compared CK2 activity of sensitive and resistant cells, and we evaluated the effect of CK2 specific inhibitors on cell viability, showing that CK2 blockade is effective in inducing cell death of resistant lines tested so far. We therefore conclude that inhibition of CK2, also considering the connections of this kinase with other survival pathways, such as Akt, can be considered as a promising tool to sensitize resistant cells to drug-induced apoptosis.
c) Regulation of PRPK by Akt.
Finally we analysed the functional correlation between Akt and PRPK (p53-related protein kinase), the human homologue of yeast Bud32. PRPK and Bud32 belong to a small subfamily of atypical protein kinases, called piD261. Despite Bud32, which is a kinase essential for yeast survival and morphology, the role of PRPK in the cell is still unclear. It is inactive unless it is previously incubated with cell lysates. We have seen that such an activation of PRPK is mediated by Akt, which phosphorylates PRPK at Ser250. Recombinant PRPK was shown to be phosphorylated in vitro by Akt and its phospho-form is recognized by a Ser250-phospho-specific antibody. Here we demonstrate that this phosphorylation takes place also in vivo: in fact cell co-transfection with Akt along with wild-type PRPK, but not with its Ser250Ala mutant, results in increased PRPK phosphorylation; moreover, the phosphorylation of p53 at Ser15, the only known substrate of PRPK, is markedly increased by co-transfection of Akt with wild-type PRPK and is abrogated by cell treatment with the Akt pathway inhibitor LY294002. Our data disclose an unanticipated mechanism by which PRPK can be activated and provide a functional link between this enigmatic kinase and the Akt signalling pathway.
The general conclusion from this work is that different survival kinases are connected and cooperate to the final purpose of ensuring a high degree of cell survival. It is therefore conceivable that even a small dis-regulation of one of them can in turn produce dramatic and pathological efforts. Thus, whenever therapeutic strategies are based on targeting one of these enzymes, this complex network of cross-talk should be always taken into account.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Pinna, Lorenzo Alberto
Supervisor:Ruzzene, Maria
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > BIOCHIMICA E BIOTECNOLOGIE > BIOCHIMICA E BIOFISICA
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Key Words:apoptosi, fosforilazione proteica, proteinchinasi, CK2, PKB/Akt, Akt mutante Ser129Ala, PRPK, Bud32, piD261, MDR, farmacoresistenza, cellule CEM, cellule U2OS, cellule 2008, inibitori,
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Struttura di riferimento:Dipartimenti > pre 2012 Dipartimento di Chimica Biologica
Codice ID:546
Depositato il:19 Sep 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Abe Y., Matsumoto S., Wei S., Nezu K., Miyoshi A., Kito K., Ueda N., Shigemoto K., Hitsumoto Y., Nikawa J., Enomoto Y. (2001). Cloning and characterization of a p53 related protein kinase expressed in interleukin 2 activated cytotoxic T cells, epithelial tumor cell lines and the testes. J. Biol. Chem. 276, 44003 44011. Cerca con Google

2. Abe Y., Takeuchi T., Imai Y., Murase R., Kamei Y., Fujibuchi T., Matsumoto S., Ueda N., Ogasawara M., Shigemoto K., Kito K. A. (2006). Small Ras like protein Ray/Rab1c modulates the p53 regulating activity of PRPK. Biochem Biophys Res Commun. 344: 377 385. Cerca con Google

3. Abe, Y., Matsumoto, S., Wei, S., Nezu, K., Myoshi, A., Kito, K., Ueda, N., Shigemoto, K., Hitsumoto, Y., Nikawa, J. and Enomoto, Y. (2001). Cloning and characterization of a p53 Cerca con Google

4. Ahmed, K., Gerber, D.A. and Cochet, C. (2002). Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol. 12, 226 230. Cerca con Google

5. Ahmad, K.A., Harris, N.H., Johnson, A.D., Lindvall, H.C., Wang, G., Ahmed, K. (2007). Protein kinase CK2 modulates apoptosis induced by resveratrol and epigallocatechin 3 gallate in prostate cancer cells. Mol Cancer Ther.; 6: 1006 12. Cerca con Google

6. Alessi, D.R., Andjelkovic, M., Caudwell, B., Cron, P., Morrice, N., Cohen, P., and Hemmings, B.A. (1996a). Mechanism of activation of protein kinase B by insulin and IGF 1. EMBO J.; 15: 6541–6551. Cerca con Google

7. Alessi, D.R., Caudwell, F.B., Andjelkovic, M., Hemmings, B.A. and Cohen, P. (1996b). Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase 1 and p70 S6 kinase. FEBS Lett.; 399: 333–338. Cerca con Google

8. Allende Vega, N., Dias, S., Milne, D. and Meek, D.(2005). Phosphorylation of the acidic domain of Mdm2 by protein kinase CK2 Mol. Cell. Biochem. 274, 85–90. Cerca con Google

9. Andjelkovic, M., Jakubowicz, T., Cron, P., Ming, X.F., Han, J.W. and Hemmings, B.A. (1996). Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC PK/PKB) promoted by serum and protein phosphatise inhibitors. Proc. Natl. Acad. Sci. USA; 93: 5699–5704. Cerca con Google

10. Banin,S. et al. (1998). Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science, 281: 1674–1677. Cerca con Google

11. Barancík M, Bohácová V, Sedlák J, Sulová Z, Breier A. (2006). LY294,002, a specific inhibitor of PI3K/Akt kinase pathway, antagonizes P glycoprotein mediated multidrug resistance. Eur J Pharm Sci; 29: 426 34. Cerca con Google

12. Barone, M. V., Crozat, A., Tabaee, A., Philipson, L., and Ron, D. (1994). CHOP (GADD153) and its oncogenic variant, TLS CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev.; 8: 453–464. Cerca con Google

13. Barroga, C.F., Stevenson, J.K., Schwarz, E.M., Verma, I.M. (1995). Constitutive phosphorylation of I kappa B alpha by casein kinase II. Proc Natl Acad Sci U S A.; 92: 7637 41. Cerca con Google

14. Basso, A.D., Solit, D.B., Chiosis, G., Giri, B., Tsichlis, P., Rosen, N. (2002). Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem.; 277: 39858 66. Cerca con Google

15. Basu, S., Totty, N.F., Irwin, M.S., Sudol, M., Downward, J. (2003). Akt phosphorylates the Yes associated protein, YAP, to induce interaction with 14 3 3 and attenuation of p73 mediated apoptosis. Mol Cell.; 11: 11 23. Cerca con Google

16. Belenguer, P., Baldin, V., Mathieu, C., Prats, H., Bensaid, M., Bouche, G. and Amalric, F., (1989). Protein kinase NII and the regulation of rDNA transcription in mammalian cells. Nucleic Acids Res.; 17: 6625 6636. Cerca con Google

17. Bialojan, C., Takai, A. (1988). Inhibitory effect of a marine sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J.; 256: 283 90. Cerca con Google

18. Bianchi, A. and Shore, D. (2006). the keoPs complex: A Rosetta stone for telomere Regulation? Cell 124: 1125 1128. Cerca con Google

19. Bidwai, A.P., Reed, J.C. and Glover, C.V. (1995). Cloning and disruption of CKB1, the gene encoding the 38 kDa ?- Cerca con Google

20. subunit of Saccharomyces cerevisiae casein kinase II (CKII). Deletion of CKII regulatory subunits elicits a saltsensitive Cerca con Google

21. phenotype. J Biol Chem; 270: 10395 10404. Cerca con Google

22. Biggs III, W.H., Meisenhelder, J., Hunter, T., Cavenee, W.K., Arden, K.C. (1999). Protein kinase B/Akt mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A.; 96: 7421 6. Cerca con Google

23. Blaydes, J.P. and Hupp, T.R. (1998). DNA damage triggers DRB resistant phosphorylation of human p53 at the CK2 site. Oncogene; 17: 1045–1052. Cerca con Google

24. Block, K., Boyer, T. G. and Yew, P. R. (2001). Phosphorylation of the human ubiquitin conjugating enzyme, CDC34, by casein kinase 2. J. Biol. Chem.; 276: 41049 41058. Cerca con Google

25. Bodenbach, L., Fauss, J., Robitzki, A., Krehan, A., Lorenz, P., Lozeman, F.J. and Pyerin, W. (1994). Recombinant human casein kinase II. A study with the complete set of subunits (alpha, alpha' and beta), site directed autophosphorylation mutants and a bicistronically expressed holoenzyme. Eur. J. Biochem.; 220: 263 273. Cerca con Google

26. Boldyreff, B., James, P., Staudenmann, W. and Issinger, O.G. (1993). Ser2 is the autophosphorylation site in the beta subunit from bicistronically expressed human casein kinase 2 and from native rat liver casein kinase 2 beta. Eur. J. Biochem.; 218: 515 521. Cerca con Google

27. Borst, P., Evers, R., Kool, M. and Wijnholds, J. (2000) A family of drug transporters: the multidrug resistance associated proteins. J Natl Cancer Inst. 92: 1295 1302. Cerca con Google

28. Bottomley, M.J., Salim, K., Panayotou, G., (1998). Phospholipid binding protein domains. Biochem. Biophys. Acta, 1436: 165 183. Cerca con Google

29. Bradshaw, D.M. and Arceri, R.J. (1998) Clinical relevance of transmembrane drug efflux as a mechanism of multidrug resistance. J Clin Oncol. 16: 3674 3690. Cerca con Google

30. Bren, G.D., Pennington, K.N., Paya, C.V. (2000). PKC zeta associated CK2 participates in the turnover of free IkappaBalpha. J Mol Biol.; 297: 1245 58. Cerca con Google

31. Brognard, J., Sierecki, E., Gao, T., Newton, A.C. (2007). PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell.; 25: 917 31. Cerca con Google

32. Brunet, A., Bonni, A., Zigmond, M.J., Lin, M.Z., Juo, P., Hu, L.S., Anderson, M.J., Arden, K.C., Blenis, J. and Greenberg, M,E.. (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell; 96: 857–868. Cerca con Google

33. Buchou, T. and Cochet, C. (2003). La protéine kinase CK2, une enzyme qui cultive la différence MEDECINE/SCIENCES; 19: 709 716. Cerca con Google

34. Burger, H., Nooter, K., Zaman, G.J., Sonneveld, P., van Wingerden, K.E., Oostrum, R.G. and Stoter, G. (1994) Expression of the multidrug resistanceassociated protein (MRP) in acute and chronic leukemias. Leukemia. 8: 990 997. Cerca con Google

35. Canman, C.E., Lim, D.S., Cimprich, K.A., Taya, Y., Tamai, K., Sakaguchi, K., Appella, E., Kastan, M.B. and Siliciano, J.D. (1998) Activation of the ATM kinase by ionising radiation and phosphorylation of p53. Science, 281: 1677–1679. Cerca con Google

36. Cardenas, M.E., Dang, Q., Glover, C.V., Gasser, S.M. (1992). Casein kinase II phosphorylates the eukaryote specific C terminal domain of topoisomerase II in vivo. EMBO J. ; 11: 1785 96. Cerca con Google

37. Cardone, M.H., Roy, N., Stennicke, H.R., Salvesen, G.S., Franke, T.F., Stanbridge, E., Frisch, S. and Reed J.C. (1998). Regulation of cell death protease caspase 9 by phosphorylation. Science; 282: 1318– 1321. Cerca con Google

38. Chang, H.W., Aoki, M., Fruman, D., Auger, K.R., Bellacosa, A., Tsichlis, P.N., Cantley, L.C., Roberts, T.M. and Vogt, P.K. (1997). Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3 kinase. Science; 276: 1848 1850. Cerca con Google

39. Chantalat, L., Leroy, D., Filhol, O., Nueda, A., Benitez, M.J., Chambaz, E.M., Cochet, C. and Dideberg, O. (1999). Crystal structure of the human protein kinase CK2 regulatory subunit reveals its zinc finger mediated dimerization. EMBO J; 18: 2930 2940. Cerca con Google

40. Chao, C.C., Hung, Y.T., Ma, C.M. Chou, W.Y: and Chao, S.L. (1991) Overexpression of glutathione S transferase and elevation of thiol pools in a multidrug resistant human colon cancer cell line. M. Pharmacol. 41, 69. Cerca con Google

41. Chen, S., Guttridge, D.C., You, Z., Zhang, Z., Fribley, A., Mayo, M.W., Kitajewski, J., Wang, C.Y. (2001). Wnt 1 signaling inhibits apoptosis by activating beta catenin/T cell factor mediated transcription. J Cell Biol.; 152: 87 96. Cerca con Google

42. Chen, R., Kim, O., Yang, J., Sato, K., Eisenmann, K.M., McCarthy, J., Chen, H., Qiu, Y. (2001). Regulation of Akt/PKB activation by tyrosine phosphorylation. J Biol Chem.; 276: 31858 62. Cerca con Google

43. Cole, S.P., Bhardwaj, G., Gerlach, J.H., Mackie, J.E., Grant, C.E., Almquist, K.C., Stewart, A.J., Kurz, E.U., Duncan, A.M. and Deeley, R.G. (1992) Overexpression of a transporter gene in a multidrug resistant human lung cancer cell line Science; 258: 1650 1654. Cerca con Google

44. Cole, S.P., Downes, H.F. and Slovak, M.L. (1989) Effect of calcium antagonists on the chemosensitivity of two multidrug resistant human tumour cell lines which do not overexpress P glycoprotein. Br. J. Cancer. 59: 42 46. Cerca con Google

45. Conus, N.M., Hannan, K.M., Cristiano, B.E., Hemmings, B.A., Pearson, R.B. (2002). Direct identification of tyrosine 474 as a regulatory phosphorylation site for the Akt protein kinase. J Biol Chem.; 277: 38021 8. Cerca con Google

46. Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M. and Hemmings, B.A. (1995). Inhibition of glycogen synthase kinase 3 by insulin mediated by protein kinase B. Nature 378: 785–789. Cerca con Google

47. Dal Pero, F., Di Maira, G., Marin, O., Bortoletto, G., Pinna, L.A., Alberti, A., Ruzzene, M., Gerotto, M. (2007). Heterogeneity of CK2 phosphorylation sites in the NS5A protein of different hepatitis C virus genotypes. J Hepatol.; 47: 768 76. Cerca con Google

48. Datta, S.R., Brunet, A. and Greenberg, M.E. (1999). Cellular survival: A play in three Akts. Genes Dev; 13: 2905–2927. Cerca con Google

49. Datta, S.R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y. and Greenberg, M.E. (1997). Akt phosphorylation of BAD couples survival signals to the cell intrinsic death machinery. Cell;91: 231– 241. Cerca con Google

50. Davis, R.J. (2000). Signal transduction by the JNK group of MAP kinases. Cell; 103: 239–252. Cerca con Google

51. Davis, R.J. (2000). Signal transduction by the JNK group of MAP kinases. Cell; 103: 239–252. Cerca con Google

52. del Peso, L., Gonzalez,G. M., Page, C., Herrera, R. and Nunez, G.(1997). Interleukin 3 induced phosphorylation of BAD through the protein kinase Akt. Science; 278: 687– 689. Cerca con Google

53. Delcommenne, M.., Tan, C., Gray, V., Rue, L., Woodgett, J. and Dedhar, S., (1998). Phosphoinositide 3 OH kinase dependent regulation of glycogen synthase kinase 3 and Akt/PKB by the integrin linked kinase, Proc. Natl. Acad. Sci. USA.; 95: 11211 11216. Cerca con Google

54. Desagher, S., Osen Sand, A., Montessuit, S., Magnenat, E., Vilbois, F., Hochmann, A., Journot, L., Antonsson, B. and Martinou, J.C. (2001). Phosphorylation of Bid by casein kinases I and II regulates its cleavage by caspase 8. Mol Cell ; 8: 601 11. Cerca con Google

55. Di Maira, G., Brustolon, F., Bertacchini, J., Tosoni, K., Marmiroli, S., Pinna, L.A., Ruzzene, M. (2007). Pharmacological inhibition of protein kinase CK2 reverts the multidrug resistance phenotype of a CEM cell line characterized by high CK2 level. Oncogene; 26: 6915–6926 Cerca con Google

56. Di Maira, G., Salvi, M., Arrigoni, G., Marin, O., Sarno, S., Brustolon, F., Pinna, L.A. and Ruzzene, M. (2005). Protein kinase CK2 phosphorylates and upregulates Akt/PKB. Cell Death Differ.; 12: 668 677. Cerca con Google

57. Dijkers, P.F., Medema, R.H., Lammers, J.W., Koenderman, L. and Coffer, P.J.(2000). Expression of the pro apoptotic Bcl 2 family member Bim is regulated by the forkhead transcription factor FKHR L1. Curr Biol, 10: 1201–1204. Cerca con Google

58. Dobrowolska, G., Meggio, F., Szczegielniak, J., Muszynska, G., Pinna, L.A. (1992). Purification and characterization of maize seedling casein kinase IIB, a monomeric enzyme immunologically related to the alpha subunit of animal casein kinase 2. Eur J Biochem.; 204: 299 303. Cerca con Google

59. Downey, M., Houlsworth, Maringele, L., Rollie, A., Brehme, M., Galicia, S., Guillard, S., Partington, M., Zubko, M.K., Krogan, N.J., Emili, A., Greenblatt, J.F., Harrington, L., Lydall, D., Durocher, D. (2006). A Genome Wide Screen Identifies the Evolutionary Conserved KEOPS Complex as a Telomere Regulator. Cell 124: 1155 1168. Cerca con Google

60. Du, K. and Montminy, M. (1998). CREB is a regulatory target for the protein kinase Akt/PKB J Biol Chem ; 273: 32377– 32379. Cerca con Google

61. Du, K., Herzig, S., Kulkarni, R.N., Montminy, M. (2003). TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science; 300: 1574 7. Cerca con Google

62. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., Nagata, S. (1998). A caspase activated DNAse that degrades DNA during apoptosis and its inhibitors ICAD. Nature; 391: 43 50. Cerca con Google

63. Escalier, D., Silvius, D., Xu, X. (2003). Spermatogenesis of mice lacking CK2alpha': failure of germ cell survival and characteristic modifications of the spermatid nucleus. Mol Reprod Dev.; 66: 190 201. Cerca con Google

64. Facchin, S., Lopreiato, R., Ruzzene, M., Marin, O., Sartori, G., Götz, C., Montenarh, M., Carignani, G., Pinna, L. A. (2003). Functional homology between yeast piD261/Bud32 and human PRPK: both phosphorilates p53 and PRPK partially complements piD261/Bud32 deficiency. FEBS Letters 549: 63 66. Cerca con Google

65. Facchin, S., Ruzzene, M., Peggion, C., Sartori, G., Carignani, G., Marin, O., Brustolon, F., Lopreiato, R. and Pinna L.A. (2007). Phosphorylation and activation of the atypical kinase p53 related protein kinase (PRPK) by Akt/PKB. Cell. Mol. Life Sci.; 64: 2680 2689. Cerca con Google

66. Facchin, S., Sarno, S., Marin, O., Lopreiato, R., Sartori,G. and Pinna, L. A. (2002). Acidophilic character of yeast PID261/BUD32, a putative ancestor of eukaryotic protein kinases. Biochem. Biophys. Res. Commun.; 296: 133 171. Cerca con Google

67. Fingar, D.C., Blenis, J. (2004). Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene; 23: 3151 71. Cerca con Google

68. Ford, K.G., Darling, D., Souberbielle, B., Farzaneh, F. (2000). Protein transduction: a new tool for the study of cellular ageing and senescence. Mech Ageing Dev.; 121: 113 21. Cerca con Google

69. Fritz, G. and Kaina, B. (1999). Phosphorylation of the DNA repair protein APE/REF 1 by CKII affects redox regulation of AP 1. Oncogene 18, 1033–1040. Cerca con Google

70. Frodin, M., Antal, T.L., Dummler, B.A., Jensen, C.J., Deak, M., Gammeltoft, S. and Biondi, R.M. (2002) A phosphoserine/threonine binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation. EMBO J.; 21: 5396 5407. Cerca con Google

71. Fujita, N., Sato, S., Ishida, A., Tsuruo, T. (2002). Involvement of Hsp90 in signaling and stability of 3 phosphoinositide dependent kinase 1. J Biol Chem.; 277: 10346 53. Cerca con Google

72. Fujiwara, H., Yamakuni, T., Ueno, M., Ishizuka, M., Shinkawa, T., Isobe, T., Ohizumi, Y. (2004). IC101 induces apoptosis by Akt dephosphorylation via an inhibition of heat shock protein 90 ATP binding activity accompanied by preventing the interaction with Akt in L1210 cells. J Pharmacol Exp Ther.; 310: 1288 95. Cerca con Google

73. Gao, T, Furnari, F, and Newton, A.C. (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell.; 18: 13 24. Cerca con Google

74. Gerber, D.A., Souquere Besse, S., Puvion, F., Dubois, M.F., Bensaude, O. and Cochet, C. (2000). Heat induced relocalization of protein kinase CK2. Implication of CK2 in the context of cellular stress. J. Biol. Chem.; 275: 23919–23926. Cerca con Google

75. Ghavidel, A. and Schultz, M.C. (2001). TATA binding protein associated CK2 transduces DNA damage signals to the RNA polymerase III transcriptional machinery. Cell 106, 575 584. Cerca con Google

76. Glavy JS, Horwitz SB, Orr GA. (1997) Identification of the in vivo phosphorylation sites for acidic directed kinases in murine mdr1b P glycoprotein. J Biol Chem. 272: 5909 5914. Cerca con Google

77. Glover III, C.V. (1998). On the physiological role of casein kinase II in Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol.; 59: 95 133. Cerca con Google

78. Gottlieb, T.M., Leal, J.F., Seger, R., Taya, Y. and Oren, M. (2002). Cross talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis, Oncogene, 21: 1299 1303. Cerca con Google

79. Guerra, B., Issinger, O.G. (1999). Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis; 20: 391 408. Cerca con Google

80. Guerra, B., Issinger, O.G., Wang, J.Y. (2003). Modulation of human checkpoint kinase Chk1 by the regulatory beta subunit of protein kinase CK2. Oncogene.; 22: 4933 42. Cerca con Google

81. Guerra, B. (2006). Protein kinase CK2 subunits are positive regulators of AKT kinase. Int J Oncol.; 28: 685 93. Cerca con Google

82. Guo, C., Yu, S, Davis, A.T. and Ahmed, K. (1999). Nuclear matrix targeting of the protein kinase CK2 signal as a commondownstream response to androgen or growth factor stimulation of prostate cancer cells. Cancer Res. 59: 1146–1151. Cerca con Google

83. Guo, C., Yu, S., Davis, A.T. and Ahmed, K. (1999). Nuclear matrix targeting of the protein kinase CK2 signal as a commondownstream response to androgen or growthfactor stimulation of prostate cancer cells. Cancer Res.; 59: 1146–1151. Cerca con Google

84. Guo, C., Yu, S., Davis, A.T., Wang, H., Green, J.E. and Ahmed K. (2001). A potential role of nuclear matrix associated protein kinase CK2 in protection against drug induced apoptosis in cancer cells. J Biol Chem.; 276:5992 5999. Cerca con Google

85. Guo, S., Rena, G., Cichy, S., He, X., Cohen, P. and Unterman, T. (1999). Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin like growth factor binding protein 1 promoter activity through a conserved insulin response sequence. J Biol Chem; 274: 17184–17192. Cerca con Google

86. Hanks, S.K, Quinn, A.M. (1991). Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol.; 200: 38 62. Cerca con Google

87. Hanks, S.K. and Hunter, T. (1995). Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J.; 9: 576–596. Cerca con Google

88. Hanna, D.E., Rethinaswamy, A., Glover, C.V. (1995). Casein kinase II is required for cell cycle progression during G1 and G2/M in Saccharomyces cerevisiae. J Biol Chem; 270: 25905 25914. Cerca con Google

89. Hengartner, M. O., 2000. The biochemistry of apoptosis. Nature; 407, insight review article. Cerca con Google

90. Hill, M.M. and Hemmings, B.A. (2002). Inhibition of protein kinase B/Akt. Implications for cancer therapy. Pharmacol Ther.; 93: 243 251. Cerca con Google

91. Hockman, D.J. and Schultz, M.C., (1996). Casein kinase II is required for efficient transcription by RNA polymerase III. Mol. Cell. Biol.; 16: 892 898. Cerca con Google

92. Hresko, R.C., Mueckler, M. (2005). mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3 L1 adipocytes. J Biol Chem.; 280: 40406 16. Cerca con Google

93. Hu, X.F., Li, J., Yang, E., Vandervalk, S., Xing, P.X. (2007). Anti Cripto Mab inhibit tumour growth and overcome MDR in a human leukaemia MDR cell line by inhibition of Akt and activation of JNK/SAPK and bad death pathways. Br J Cancer; 96(6): 918 27. Cerca con Google

94. Issinger, O.G. (1993). Casein kinases: pleiotropic mediators of cellular regulation. Pharmacol Ther, 59: 1–30. Cerca con Google

95. Izeradjene, K., Douglas, L., Delaney, A. and Houghton, J.A. (2005). Casein kinase II (CK2) enhances death inducing signaling complex (DISC) activity in TRAIL induced apoptosis in human colon carcinoma cell lines Oncogene; 24: 2050–2058. Cerca con Google

96. Jones, P.F., Jakubowicz, T.,Pitossi, F.J., Maurer, F., Hemmings, B.A. (1991). Molecular cloning and identification of a serine/threonine protein kinase of the second messenger subfamily Proc. Natl. Acad. Sci. USA; 88: 4171 4175. Cerca con Google

97. Juliano, R.L. and Ling V. (1996) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cells mutants. Biochim. Biophys. Acta. 455: 152 162. Cerca con Google

98. Kapoor, M. and Lozano, G. (1998). Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation. Proc. Natl. Acad. Sci. U.S.A. 95, 2834 2837. Cerca con Google

99. Keller, D.M., Zeng, X., Wang, Y., Zhang, Q.H., Kapoor, M., Shu, H., Goodman, R., Lozano, G., Zhao, Y. and Lu, H. (2001). A DNA damage induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol. Cell 7, 283 292. Cerca con Google

100. Kim, A.H., Khursigara G., Sun, X., Franke, T.F. and Chao M.V.(2001). Akt phosphorylates and negatively regulates apoptosis signal regulating kinase 1. Mol Cell Biol; 21: 893– 901. Cerca con Google

101. Klimecki, W.T., Futscher, B.W., Grogan, T.M. and Dalton, W.S. (1994) Pglycoprotein expression and function in circulating blood cells from normal volunteers. Blood. 83: 2451 2458. Cerca con Google

102. Kothakota, S., Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams L.T. (1997). Caspase 3 generated fragment of gelsolin: effector of morphological change in apoptosis. Science; 278: 294 298. Cerca con Google

103. Krehan, A., Ansuini, H., Bocher, O., Grein, S., Wirkner, U., Pyerin, W. (2000). Transcription factors ets1, NF - ?B, and Sp1 are major determinants of the promoter activity of the human protein kinase CK2???? gene. J Biol Chem 275, 18327-18336. Cerca con Google

104. Krippner Heidenreich, A., Talanian, R.V., Sekul, R., Kraft, R., Thole, H., Ottleben, H. and Luscher, B. (2001). Targeting of the transcription factor Max during apoptosis: phosphorylation regulated cleavage by caspase 5 at an unusual glutamic acid residue in position P1. Biochem J; 358: 705 715. Cerca con Google

105. Krogan, N.J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu, S., Datta, N., Tikuisis, A.P., Punna, T., Peregrin Alvarez, J.M., Shales, M., Zhang, X., Davey, M., Robinson, M.D., Paccanaro, A., Bray, J.E., Sheung, A., Beattie, B., Richards, D.P., Canadien, V, Lalev, A., Mena, F., Wong, P., Starostine, A., Canete, M.M., Vlasblom, J., Wu, S., Orsi, C., Collins, S.R., Chandran, S., Haw, R., Rilstone, J.J., Gandi, K., Thompson, N.J., Musso, G., St Onge, P., Ghanny, S., Lam, M.H., Butland, G., Altaf Ul, A.M., Kanaya, S., Shilatifard, A., O'Shea, E, Weissman, J.S., Ingles, C.J., Hughes, T.R., Parkinson, J., Gerstein, M., Wodak, S.J., Emili, A., Greenblatt, J.F. (2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440: 637 43. Cerca con Google

106. Kumar, C.C., Madison, V. (2005). AKT crystal structure and AKT specific inhibitors. Oncogene. 24: 7493 7501. Cerca con Google

107. Kuo, C.J., Chung, J., Fiorentino, D.F., Flanagan, W.M., Blenis, J., Crabtree, G.R.(1992). Rapamycin selectively inhibits interleukin 2 activation of p70 S6 kinase. Nature; 358: 70 3. Cerca con Google

108. Lang, A.J., Mirski, S.E., Cummings, H.J., Yu, Q., Gerlach, J.H. and Cole S.P. (1998) Structural organization of the human TOP2A and TOP2B genes. Gene. 221: 255 266. Cerca con Google

109. Lees Miller, S., Sakaguchi, K., Ullrich, S.J., Appella, E. and Anderson, C.W. (1992). Human DNA activated protein kinase phosphorylates serines 15 and 37 in the amino terminal transactivation domain of human p53. Mol. Cell. Biol., 12: 5041–5049. Cerca con Google

110. Li, H., Zhu, H., Xu, C.J. and Yuan J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell; 94: 491 501. Cerca con Google

111. Li, P., Li, J., Muller, E., Otto, A., Dietz, R. and von Harsdorf, R. (2002). Phosphorylation by protein kinase CK2. A signaling switch for the caspase inhibiting protein ARC. Mol. Cell; 10: 247 258. Cerca con Google

112. Litchfield, D.W. (2003). Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J.; 369: 1 15 Cerca con Google

113. Lopreiato, R., Facchin, S., Sartori, G., Arrigoni, G., Casonato, S., Ruzzene, M., Pinna, L. A., Carignani, G. (2004). Analysis of the interaction between piD261/Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin. Biochem. J. 377: 395 405. Cerca con Google

114. Lorenz, P., Pepperkok, R., Ansorge, W., Pyerin, W. (1993). Cell biological studies with monoclonal and polyclonal antibodies against human casein kinase II subunit ? demonstrate participation of the kinase in mitogenic signaling. J Biol Chem; 268: 2733 2739. Cerca con Google

115. Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A. and Jacks, T.(1993) p53 is required for radiation induced apoptosis in mouse thymocytes. Nature 362: 847 849. Cerca con Google

116. Maira, S.M., Galetic, I., Brazil, D.P., Kaech, S., Ingley, E., Thelen, M., Hemmings, B.A. (2001). Carboxyl terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v Akt at the plasma membrane. Science; 294: 374 80. Cerca con Google

117. Manning G., Plowman G.D., Hunter T., Sudarsanam S. (2002). Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci. 27: 514–520. Cerca con Google

118. Manning, B.D., Cantley, L.C. (2007). AKT/PKB signaling: navigating downstream. Cell.; 129: 1261 74. Cerca con Google

119. Marin, O., Meggio, F. and Pinna, L. A. (1999). Structural features underlying the unusual mode of calmodulin phosphorilation by protein kinase CK2: a study with synthetic calmodulin fragments. Biochem. Biophys. Res Commun.; 256: 442 446. Cerca con Google

120. Marin, O., Sarno, S., Boschetti, M., Pagano, M.A., Meggio, F., Ciminale, V., D'Agostino, D.M. and Pinna, L.A. (2000). Unique features of HIV 1 Rev protein phosphorylation by protein kinase CK2 ('casein kinase 2'). FEBS Lett.; 481: 63 67. Cerca con Google

121. Martel, V., Filhol, O., Nueda, A., Cochet, C. (2002). Dynamic localization/association of protein kinase CK2 subunits in living cells: a role in its cellular regulation? Ann N Y Acad Sci.; 973: 272 7. Cerca con Google

122. Matsumoto Y, Kunishio K and Nagao S. (1999) Increased phosphorylation of DNA topoisomerase II in etoposide resistant mutants of human glioma cell line. J Neurooncol. 45: 37 46. Cerca con Google

123. Mayo, L.D. and Donner, D.B. (2001). A phosphatidylinositol 3 kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus, Proc. Natl. Acad. Sci. USA. 98: 11598 11603. Cerca con Google

124. Maytin, E. V., Ubeda, M., Lin, J. C., and Habener, J. F. (2001). Stress inducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase dependent and independent mechanisms. Exp. Cell Res.; 267, 193–204. Cerca con Google

125. Meggio, F., Marin, O. and Pinna, L.A. (1994). Substrate specificity of protein kinase CK2. Cell. Mol. Biol. Res.; 40: 401–409. Cerca con Google

126. Meggio, F., Pagano, M.A., Moro, S., Zagotto, G., Ruzzene, M., Sarno, S., Cozza, G., Bain, J., Elliott, M., Donella Deana, A., Brunati, A.M., Pinna, L.A. (2004). Inhibition of protein kinase CK2 by condensed polyphenolic derivatives. An in vitro and in vivo study. Biochemistry; 43: 12931–12936. Cerca con Google

127. Meggio, F., Pinna, L.A. (2003). One thousand and one substrates of protein kinase CK2? FASEB J.; 17: 349 68. Cerca con Google

128. Meister, A. (1983) Selective modification of glutathione metabolism. Science. 220:472 477. Cerca con Google

129. Miller, S.J., Lou, D.Y., Seldin, D.C., Lane, W.S., Neel, B.G. (2002). Direct identification of PTEN phosphorylation sites. FEBS Lett.; 528: 145 53. Cerca con Google

130. Miyata Y, Yahara I. (1992). The 90 kDa heat shock protein, HSP90, binds and protects casein kinase II from self aggregation and enhances its kinase activity. J Biol Chem.; 267:7042 7. Cerca con Google

131. Miyata, Y. and Nishida, E. (2004): CK2 controls multiple protein kinases by phosphorylating a kinase targeting molecular chaperone Cdc37. Mol Cell Biol; 24: 4065–4074. Cerca con Google

132. Miyata, Y.and Nishida, E.(2005). CK2 binds, phosphorylates, and regulates its pivotal substrate Cdc37, an Hsp90 cochaperone Molecular and Cellular Biochemistry 274: 171–179. Cerca con Google

133. Miyoshi, A., Kito, K., Aramoto, T., Abe, Y., Kobayashi, N., Ueda, N. (2003). Identification of CGI 121, a novel PRPK (p53 related protein kinase) binding protein. Biochem Biophys Res Commun. 303(2): 399 405. Cerca con Google

134. Modur, V., Nagarajan, R., Evers, B.M. and Milbrandt, J. (2002). FOXO proteins regulate tumor necrosis factor related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J. Biol. Chem. 277: 47928–47937. Cerca con Google

135. Nagata, S., 2000. Apoptotic DNA fragmentation. Exp. Cell Res.; 256: 12 18. Cerca con Google

136. Niefind, K., Guerra, B., Ermakowa, I., Issinger, O.G. (2001). Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J.; 20: 5320 31. Cerca con Google

137. Niefind, K., Guerra, B., Pinna, L.A., Issinger, O.G., Schomburg, D. (1998). Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 A resolution. EMBO J.; 17: 2451 62. Cerca con Google

138. Niefind, K., Pütter, M., Guerra, B., Issinger, O.G. and Schomburg, D. (1999). GTP plus water mimics ATP in the active site of protein kinase CK2. Nature Struct. Biol.; 6: 1100–1103. Cerca con Google

139. Obata, T., Yaffe, M.B., Leparc, G.G., Piro, E.T., Maegawa, H., Kashiwagi, A., Kikkawa, R. and Cantley L.C. (2000). Peptide and protein library screening defines optimal substrate motifs for AKT/PKB J. Biol Chem; 275: 36108– 36115. Cerca con Google

140. Olsten, M.E., Litchfield, D.W. (2004). Order or chaos? An evaluation of the regulation of protein kinase CK2. Biochem Cell Biol.; 82: 681 93. Cerca con Google

141. Oren, M. (2003). Decision making by p53: life, death and cancer. Cell Death and Differentiation 10, 431–442. Cerca con Google

142. Osaki, M. and Oshimura, H. (2004). Ito PI3K Akt pathway: Its functions and alterations in human cancer Apoptosis; 9: 667–676. Cerca con Google

143. Ospina, B., Núñez, A., Fernández Renart, M. (1992). Purification of a soluble casein kinase II from Dictyostelium discoideum lacking the beta subunit: regulation during proliferation and differentiation. Mol Cell Biochem.; 118: 49 60. Cerca con Google

144. Padmanabha, R., Chen Wu, J.L., Hanna, D.E. and Glover, C.V.(1990). Isolation, sequencing, and disruption of the yeast CKA2 gene: casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol Cell Biol 10, 4089 4099. Cerca con Google

145. Pagano, M.A., Andrzejewska, M., Ruzzene, M., Sarno, S., Cesaro, L., Bain, J., Elliott, M., Meggio, F., Kazimierczuk, Z. and Pinna, L.A. (2004). Optimization of protein kinase CK2 inhibitors derived from 4,5,6,7 tetrabromobenzimidazole. J Med Chem; 47: 6239–6247. Cerca con Google

146. Pepperkok, R., Lorenz, P., Ansorge, W. and Pyerin, W. (1994). Casein kinase II is required for transition of G0/G1, early G1, and G1/S phases of the cell cycle. J Biol Chem ; 269: 6986 6991. Cerca con Google

147. Peterson, R.T., Schreiber, S.L. (1999). Kinase phosphorylation: keeping it all in the family, Curr. Biol., 9: 521 524. Cerca con Google

148. Pinna, L.A. (1990). Casein kinase 2: an 'eminence grise' in cellular regulation? Biochim Biophys Acta.; 1054: 267 284. Cerca con Google

149. Pinna, L.A. (2002). Protein kinase CK2: a challenge to canons. J Cell Sci.; 115: 3873 8. Cerca con Google

150. Pinna, LA, Meggio, F. (1997). Protein kinase CK2 ("casein kinase 2") and its implication in cell division and proliferation. Prog Cell Cycle Res.; 3: 77 97. Cerca con Google

151. Rao, L., Perez, D., White, E., 1996. Lamin proteolysis facilitates nuclear events during apoptosis. J. Cell. Biol.; 135: 1441 1455. Cerca con Google

152. Rathmell, J.C., Fox, C.J., Plas, D.R., Hammerman, P.S., Cinalli, R.M., Thompson, C.B. ( 2003). Akt directed glucose metabolism can prevent Bax conformation change and promote growth factor independent survival, Mol. Cell Biol., 23: 7315 7328. Cerca con Google

153. Reed, J. C., 1997. Double identity for proteins of the Bcl 2 family. Nature, 387: 773 776. Cerca con Google

154. Reed, J.C. (1995) Bcl 2 family proteins: regulators of chemoresistance in cancer. Toxicol Lett. 82 83: 155 158. related protein kinase expressed in interleukin 2 activated cytotoxic T cells, epithelial tumor cell lines, and the testes. J. Biol. Chem.; 276: 44003 44011. Cerca con Google

155. Rena, G., Guo, S., Cichy, S.C., Unterman, T.G., Cohen, P. (1999). Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem.; 274: 17179 83. Cerca con Google

156. Rethinaswamy, A., Birnbaum, M.J., Glover, C.V. (1998). Temperature sensitive mutations of the CKA1 gene reveal a role for casein kinase II in maintenance of cell polarity in Saccharomyces cerevisiae. J Biol Chem.; 273: 5869 77. Cerca con Google

157. Romashkova, J.A. and Makarov, S.S. (1999). NF kappaB is a target of AKT in antiapoptotic PDGF signalling. Nature 401: 86– 90. Cerca con Google

158. Russo, G.L., Vandenberg, M.T., Yu, I.J., Bae, Y.S., Franza, Jr, B.R. and Marshak, D.R. (1992). Casein kinase II phosphorylates p34cdc2 kinase in G1 phase of the HeLa cell division cycle. J. Biol. Chem. 267, 20317 20325. Cerca con Google

159. Ruzzene, M., Brunati, A.M., Sarno, S., Marin, O., Donella Deana, A. and Pinna, L.A., (2000). Ser/Thr phosphorilation of hematopoietic specific protein 1 (HS1): implication of protein kinase CK2. Eur. J. Biochem.; 267: 3065 3072. Cerca con Google

160. Ruzzene, M., Penzo, D. and Pinna, L.A. (2002). Protein kinase CK2 inhibitor 4,5,6,7 tetrabromobenzotriazole (TBB) induces apoptosis and caspase dependent degradation of haematopoietic lineage cell specific protein 1 (HS1) in Jurkat cells. Biochem. J.; 364: 41 47. Cerca con Google

161. Salvi, M., Sarno, S., Marin, O., Meggio, F., Itarte, E., Pinna, L.A. (2006). Discrimination between the activity of protein kinase CK2 holoenzyme and its catalytic subunits. FEBS Lett 580: 3948–3952. Cerca con Google

162. Sarbassov, D.D., Guertin, D.A., Ali, S.M., Sabatini, D.M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor mTOR complex. Science; 307: 1098 1101. Cerca con Google

163. Sarno, S., Vaglio, P., Meggio, F., Issinger, O. G. and Pinna, L. A. (1996). Protein kinase CK2 mutants defective in substrate recognition. Purification and kinetic analysis. J. Biol. Chem.; 271:10595 10601. Cerca con Google

164. Sarno, S., Marin, O., Boschetti, M., Pagano, M.A., Meggio, F., Pinna, L.A. (2000). Cooperative modulation of protein kinase CK2 by separate domains of its regulatory beta subunit. Biochemistry; 39: 12324 12329. Cerca con Google

165. Sarno, S. Ghisellini, P., Cesaro L., Roberto Battistutta, R. and Pinna, L.A. (2001). Generation of mutants of CK2? which are dependent on the ?- subunit for catalytic activity Mol. Cell. Biochem.; 227: 13–19. Cerca con Google

166. Sarno, S., Reddy, H., Meggio, F., Ruzzene, M., Davies, S.P., Donella Deana, A., Shugar, D., Pinna, L.A. (2001). Selectivity of 4,5,6,7 tetrabromobenzotriazole, an ATP site directed inhibitor of protein kinase CK2 ('casein kinase 2'). FEBS Lett.; 496: 44 48. Cerca con Google

167. Sarno, S., Ghisellini, P., Pinna, L.A. (2002). Unique activation mechanism of protein kinase CK2. The N terminal segment is essential for constitutive activity of the catalytic subunit but not of the holoenzyme. J Biol Chem.; 277: 22509 14. Cerca con Google

168. Sarno, S., Moro, S., Meggio, F., Zagotto, G., Dal Ben, D., Ghisellini, P., Battistutta, R., Zanotti, G., Pinna, L.A. (2002). Toward the rational design of protein kinase casein kinase 2 inhibitors. Pharmacol Ther.; 93: 159 168. Cerca con Google

169. Sarno, S., de Moliner, E., Ruzzene, M., Pagano, M.A., Battistutta, R., Bain, J., Fabbro, D., Schoepfer, J., Elliott, M., Furet, P., Meggio, F., Zanotti, G. and Pinna, L.A. (2003). Biochemical and three dimensional structural study of the specific inhibition of protein kinase CK2 by [5 oxo 5,6 dihydroindolo (1,2 a)quinazolin 7 yl]acetic acid (IQA). Biochem J.; 374: 639 646. Cerca con Google

170. Sarno, S., Ruzzene, M., Frascella, P., Pagano, M.A., Meggio, F., Zambon, A. Mazzorana, M., Di Maira, G., Lucchini, V., Pinna, L.A. (2005). Development and exploitation ofCK2 inhibitors. Mol Cell Biochem 274: 69–76. Cerca con Google

171. Sartori, G., Mazzotta, G., Stocchetto, S., Pavanello, A. and Carignani, G., (2000). Inactivation of six genes from chromosomes VII of Saccharomyces cerevisiae and basic phenotypic analysis of the mutant strains. Yeast 16: 255 265. Cerca con Google

172. Sato, S., Fujita, N. and Tsuruo, T. (2000). Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl. Acad. Sci. USA 97: 10832–10837. Cerca con Google

173. Seldin, D.C., Leder, P. (1995). Casein kinase II alpha transgene induced murine lymphoma: relation to theileriosis in cattle. Science; 267: 894 7. Cerca con Google

174. Shimizu, S., Narita, M., Tsujimoto, Y., 1999. Bcl 2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature; 399: 483 487. Cerca con Google

175. Snapka, R.M., Gao, H., Grabowski, D.R., Brill, D., Chan, K.K., Li,L., Li, G.C. and Ganapathi, R. (2001) Cytotoxic mechanism of XK469: resistance of topoisomerasi IIbeta knockout cells and inhibition of topoisomerase I. Biochem Biophys Res Commun. 280: 1155 1160. Cerca con Google

176. Song, D.H., Dominguez, I., Mizuno, J., Kaut, M., Mohr, S.C., Seldin, D.C. (2003). CK2 phosphorylation of the armadillo repeat region of beta catenin potentiates Wnt signaling. J Biol Chem.; 278: 24018 25. Cerca con Google

177. Song, G., Ouyang, G., Bao, S. (2005). The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med.; 9: 59 71. Cerca con Google

178. Stambolic, V., Suzuki, A., de la Pompa, J.L., Brothers, G.M., Mirtsos, C., Sasaki, T., Ruland, J., Penninger, J.M., Siderovski, D.P. and Mak, T.W. (1998) Negative regulation of PKB/Akt dependent cell survival by the tumor suppressor PTEN. Cell.; 95: 29 39. Cerca con Google

179. Stocchetto, S., Marin,O., Carignani,G. and Pinna, L. A. (1997). Biochemical evidence that Saccharomyces cerevisiae YGR262c gene, required for normal growth, encodes a novel Ser/Thr specific protein kinase. FEBS Lett.; 414: 171 175. Cerca con Google

180. Tan, K.B., Mattern, M.R., Eng, W.K., McCabe, F.L. and Johnson, R.K. (1989) Nonproductive rearrangement of DNA topoisomerase I and II genes: correlation with resistance to topoisomerase inhibitors. J Natl Cancer Inst. 81: 1732- 1735. Cerca con Google

181. Tapia, J.C., Torres, V.A., Rodriguez, D.A., Leyton, L., Quest, A.F. (2006). Casein kinase 2 (CK2) increases survivin expression via enhanced beta catenin T cell factor/lymphoid enhancer binding factor dependent transcription. Proc Natl Acad Sci U S A; 103: 15079 84. Cerca con Google

182. Teitz T., Eli D., Penner M., Bakhanashvili, M., Naiman, T., Timme, T.L., Wood, C.M., Moses, R.E. and Canaani, D. (1990). Expression of the cDNA for the beta subunit of human casein kinase II confers partial UV resistance on xeroterma pigmentosum cells. Mutat. Res. 236, 85–97. Cerca con Google

183. Theis Febvre, N., Filhol, O., Froment, C., Cazales, M., Cochet, C., Monsarrat, B., Ducommun, B. and Baldin, V. (2003). Protein kinase CK2 regulates CDC25B phosphatase activity. Oncogene. 22, 220 232. Cerca con Google

184. Thornberry, N.A., Rano, T.A., Peterson, E. P., Rasper, D.M., Timkey, T., Garcia Calvo, M., Houtzager, V.M., Nordstrom, P.A., Roy, S., Vaillancourt, J.P., Chapman, K.T., Nicholson, D.W. (1997). A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem.; 272: 17907 17911. Cerca con Google

185. Tibbetts, R.S., Brumbaugh, K.M., Williams, J.M., Sarkaria, J.N., Cliby, W.A., Shieh, S.Y., Taya, Y., Prives, C. and Abraham, R.T., (1999). A role for ATR in the DNA damage induced phosphorylation of p53. Genes Dev. 13: 152–157. Cerca con Google

186. Toczyski, D.P., Galgoczy, D.J. and Hartwell, L.H. (1997). CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90, 1097 1106. Cerca con Google

187. Torres, J., Rodriguez, J., Myers, M.P., Valiente, M., Graves, J.D., Tonks, N.K. and Pulido, R.. (2003). Phosphorylation regulated cleavage of the tumor suppressor PTEN by caspase 3: implications for the control of protein stability and PTEN protein interactions. J Biol Chem; 278: 30652 30660. Cerca con Google

188. Twentyman, P. and Bagnij, T. (1998) The influence of glutathione metabolism on multidrug resistance in MRP overexpressing cells. Drug. Res. Update. 1: 121 127. Cerca con Google

189. Ubeda, M. and Habener, J.F.(2003). CHOP Transcription Factor Phosphorylation by Casein Kinase 2 Inhibits Transcriptional Activation J Biol Chem; 278: 40514–40520. Cerca con Google

190. Vanhaesebroeck, B. and Waterfield, M. D., (1999). Signaling by distinct classes of phosphoinositide 3 kinase. Exp. Cell. Res.; 253: 239 254. Cerca con Google

191. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigó R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X. The sequence of the human genome. Science; 291: 1304 51. Cerca con Google

192. Vivanco, I. and Sawyers, C.L. (1999). The phosphatidylinositol 3 Kinase AKT pathway in human cancer. Nat Rev Cancer 2: 489–501. Cerca con Google

193. Voit, R., Kuhn, A., Sander, E. E., Grummt, I., (1995). Activation of mammalian ribosomal gene transcription requires phosphorylation of the nucleolar transcription factor UBF. Nucleic Acids Res.; 23: 2593 2598. Cerca con Google

194. Wang, D., Westerheide, S.D., Hanson, J.L: and Baldwin, A.S. (2000). Tumor necrosis factor alpha induced phosphorylation of RelA/p65 on Ser259 is controlled by casein kinase II. J. Biol. Chem. 275, 32592 32597. Cerca con Google

195. Wang, H., Davis, A., Yu, S. and Ahmed, K. (2001). Response of cancer cells to molecular interruption of the CK2 signal. Mol Cell Biochem; 227: 167 174. Cerca con Google

196. Wang, J.M., Chao, J.R., Chen, W., Kuo, M.L., Yen, J.J., Yang Yen, H.F. (1999). The antiapoptotic gene mcl 1 is up regulated by the phosphatidylinositol 3 kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol.; 19: 6195 206. Cerca con Google

197. Willert, K., Brink, M., Wodarz, A., Varmus, H., Nusse, R. (1997). Casein kinase 2 associates with and phosphorylates dishevelled. EMBO J.; 16: 3089 96. Cerca con Google

198. Winter, B., Kautzner, I., Issinger, O.G., Arnold, H.G., (1997). Two putative protein kinase CK2 phosphorylation sites are important for Myf 5 activity. Biol. Chem.; 378: 1445 1456. Cerca con Google

199. Xu, X., Toselli, P.A., Russell, L.D., Seldin, D.C. (1999). Globozoospermia in mice lacking the casein kinase II ?’ catalytic subunit. Nat Genet ; 23: 118 121. Cerca con Google

200. Yamane, K. and Kinsella, T.J. (2005). Casein kinase 2 regulates both apoptosis and the cell cycle following DNA damage induced by 6 thioguanine. Clin Cancer Res.;11:2355 2363. Cerca con Google

201. Yan, T.F., Tao, M. (1982). Studies on an endogenous substrate of wheat germ protein kinase. J Biol Chem.; 257: 7044 9. Cerca con Google

202. Yang, J., Cron, P., Thompson, V., Good, V.M., Hess, D., Hemmings, B.A., Barford, D. (2002). Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol. Cell.; 9: 1227 1240. Cerca con Google

203. Yao, R. and Cooper, G.M., (1995). Requirement for phosphatidylinositol 3 kinase in the prevention of apoptosis by nerve growth factor, Science; 267: 2003 2006. Cerca con Google

204. Yin, X., Gu, S. and Jiang, J.X. (2001). Regulation of lens connexin 45.6 by apoptotic protease, caspase 3. Cell Adhesion Commun.; 8: 373 376. Cerca con Google

205. Zhang, C., Vilk, G., Canton, D. A. and Litchfield, D. W. (2002). Phosphorylation regulates the stability of the regulatory CK2beta subunit. Oncogene 21; 3754 3764 Cerca con Google

206. Zheng, W.H., Kar, S., Quirion, R. (2000). Insulin like growth factor 1 induced phosphorylation of the forkhead family transcription factor FKHRL1 is mediated by Akt kinase in PC12 cells. J Biol Chem.; 275: 39152 8. Cerca con Google

207. Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R. T., Remotti, H., Stevens, J. L., and Ron, D. (1998). CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev.; 12: 982–995. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record