Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Stevanato, Luca (2012) Innovative techniques for non destructive analysis. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (Tesi Dottorato) - Submitted Version
18Mb

Abstract (english)

This work describes the development of a radiometric mobile inspection system called SMANDRA (the Italian acronym stands for Sistema Mobile per Analisi Non Distruttive e RAdiometriche). SMANDRA is part of a large project called SLIMPORT, financed by the Italian Ministry for the Economic Development (MISE), dedicated to the development of an integrated toolbox forming a complete security system to monitor the flow of persons and merchandise in harbors.
The system has been conceived as a flexible and transportable tool, to be used in conjunction with fixed installation such as radiation portal monitors, x-ray scanners and large detector arrays. In particular, the aims of SMANDRA are to detect and identify sources of ionizing radiation or identify dangerous and/or illegal materials inside volumes previously tagged as “suspect” by conventional X-ray scanners.
The whole detector apparatus was designed minimizing volume and weight to be easily movable, mounted over forklifts or other light vehicles for inspections. In addition, it is possible to operate the entire system with batteries, making it completely independent from external power facilities.
The system is made of two pieces having a volume less than 0.1 m3 as follows:
1) A passive unit including two gamma-ray detectors (5”x5” NaI(Tl) and 2”x2” LaBr3(Ce)) and two neutron counters (5”x2” liquid scintillator NE-213 and 3He proportional counter for fast and slow neutrons). The unit hosts batteries, power supplies, front-end electronics and CPU.
2) An active unit including a portable sealed neutron generator based on the Tagged Neutron Inspection System (TNIS) technique.
The first unit can be used in standalone mode as a high efficiency spectroscopic radiometer for the detection of ionizing radiation such as gamma-rays, fast and thermal neutrons to search and identify radioactive material as well as Special Nuclear Material (SNM). It can also be used as detector package connected to the second unit for active interrogation of voxels inside a load by tagged neutron inelastic scattering imaging.
All detector used in the SMANDRA system have been fully characterized. Initial tests were done with traditional analog NIM electronics followed by the new digital electronics based on fast digitizers.
The detection and identification of standard radioactive sources (gamma ray and neutrons) has been tested successfully showing detection probability in order or even better with the requirements of this type of instrumentation.
The detection of special nuclear material has been tested using SMANDRA as a high sensitivity passive spectroscopic system or as a complete active inspection system using tagged neutrons. The detection of plutonium samples seems to be possible with passive interrogation even in case of small samples (few grams) due to the yield of gamma ray and neutrons.
As it is well known, detection of uranium samples poses more problems because of the low neutron yield that characterizes this material. The gamma ray yield of highly enriched U samples could be easily shielded. In this case active interrogation is needed.
Results show that it is possible to provide signature for the discrimination of uranium against heavy metals (as lead) by looking to the absolute gamma and neutron yield in coincidence with tagged neutrons or to correlations between detectors. It is worth mentioning that the SMANDRA system is a mobile multi-purpose spectrometric system not specifically designed to detect SNM. However the results reported might be implemented in future portable systems specifically designed to detect SNM in active mode.

Abstract (italian)

Questo lavoro descrive lo sviluppo di un sistema mobile per ispezioni radiometriche, chiamato SMANDRA (Sistema Mobile per Analisi Non Distruttive e Radiometriche). SMANDRA fa parte di un grande progetto chiamato SLIMPORT, finanziato dal Ministero Italiano dello sviluppo Economico (MISE), rivolto allo sviluppo di un sistema di sicurezza integrato per il monitoraggio del flusso di persone e merci nei porti.
Il sistema è stato progettato come uno strumento mobile e flessibile, da usare in combinazione con postazioni fisse come portali, scanners x-ray e grandi array di rivelatori. Più in particolare, lo scopo di SMANDRA è quello di identificare sorgenti radioattive e materiali illegali e/o pericolosi nascosti dentro container e bagagli segnalati come “sospetti” dai sistemi di sicurezza tradizionali.
L’intero apparato è stato disegnato per minimizzare il volume ed il peso in modo da essere facilmente trasportabile su un muletto o su altri veicoli leggeri per ispezioni mirate. In aggiunta il sistema può essere alimentato a batterie, rendendolo completamente indipendente dall’allacciamento elettrico.
Il sistema è composto di due unità che hanno un volume totale minore di 0.1 m3:
1) Un’unità passiva composta da due rivelatori di raggi gamma (5”x5” NaI(Tl) e 2”x2” LaBr3(Ce)) e due rivelatori di neutroni (scintillatore liquido NE-213 da 5”x2” e un contatore proporzionale ad 3He). L’unità contiene le batterie, l’alimentazione, l’elettronica digitale e la CPU per l’acquisizione ed analisi dati.
2) Un’unità passiva che include un generatore portatile di neutroni per l’identificazione dei materiali illeciti e/o pericolosi tramite la tecnica TNIS (Tagged Neutron Inspection System).
La prima unità può essere usata da sola come un radiometro spettroscopico ad alta efficienza per la rivelazione di radiazioni ionizzanti come raggi-gamma, neutroni veloci e neutroni termici e per identificare materiale radioattivo come ad esempio il Materiale Speciale Nucleare (SNM). Questa unità è poi usata insieme al generatore di neutroni per interrogazioni attive di specifiche porzioni di volume all’interno di container, grazie alla tecnica TNIS.
Tutti i rivelatori di SMANDRA sono stati totalmente caratterizzati: i test iniziali sono stati fatti con elettronica analogica NIM seguiti da quelli effettuati con la nuova elettronica digitale basata su digitizer veloci.
E’ stata dimostrata la possibilità di rivelare e identificare le sorgenti radioattive standard (raggi-gamma e neutroni) con un livello di confidenza migliore di quello richiesta dallo standard per questo tipo di strumentazione.
La rivelazione di materiale speciale nucleare è stata testata sia in modalità passiva con la prima unità sia in modalità attiva usando il generatore di neutroni.
Il riconoscimento di un campione di plutonio è possibile con la sola interrogazione passiva anche in caso di campioni molto piccoli (qualche grammo) grazie all’alta emissione di raggi-gamma e neutroni.
Come è noto, invece, la rivelazione di campioni di Uranio è più difficoltosa vista la bassa emissione di neutroni e la possibilità di schermare facilmente i pochi raggi-gamma; in questo caso è necessario intervenire con un’interrogazione attiva. I risultati dimostrano la possibilità di discriminare fra campioni di Uranio rispetto a metalli pesanti (come il piombo) guardando i conteggi assoluti di raggi-gamma e neutroni in coincidenza con l’emissione di un neutrone da parte del generatore o, in alternativa, guardando alla correlazione degli eventi fra due rivelatori (NaI(Tl) e NE-213). E’ importante sottolineare che SMANDRA è un sistema spettrometrico mobile multi-funzione, non disegnato specificamente per la rivelazione di materiale speciale nucleare. Tuttavia i risultati mostrano la possibilità in futuro di poter implementare sistemi portatili disegnati specificatamente per l’identificazione di Materiale Speciale Nucleare con l’ausilio di un generatore di neutroni.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Viesti, Giuseppe
Ph.D. course:Ciclo 25 > Scuole 25 > FISICA
Data di deposito della tesi:28 January 2013
Anno di Pubblicazione:28 January 2012
Key Words:Non destructive analysis/analisi non distruttive, detector/rivelatore, neutron/neutrone, gamma-ray, digitizer, Special nuclear material/materiale speciale nucleare, TNIS
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/07 Fisica applicata (a beni culturali, ambientali, biologia e medicina)
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Codice ID:5465
Depositato il:14 Oct 2013 09:39
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] R.A. Falkernrath et al. Americas Achilles Heel. Cambridge, MA: The MIT Press, 1998. Cerca con Google

[2] Reuters. Race against time to prevent nuclear terror - IAEA. 2004. Cerca con Google

[3] T.E. Valentine. Techical Report ORNL/TM-1999/300, 1999. Cerca con Google

[4] http://www.elsagdatamat.com/PDF/EDLink34.pdf. Vai! Cerca con Google

[5] S. Pesente, G. Nebbia, M. Lunardon, G. Viesti, S. Blagus, K. Nad, D. Sudac, V. Valkovic, I. Lefesvre, and M.J. Lopez-Jimenez. Tagged neutron inspection system (TNIS) based on portable sealed generators. Nucl. Instrum. and Meth., B241:743-747, 2005. Cerca con Google

[6] R. Nicolini, F. Camera, N. Blasi, S. Brambilla, R. Bassini, C. Boiano, A. Bracco, F.C.L. Crespi, O. Wieland, G. Benzoni, S. Leoni, B. Million, D. Montanari, and A. Zalite. Investigation of the properties of a 1"x1" LaBr3:Ce scintillator. Nucl. Instrum. and Meth., A582:554-561, 2007. Cerca con Google

[7] M. Ciemala, D. Balabanski, M. Csatlos, J.M. Daugas, G. Georgiev, J. Gulys, M. Kmiecik, A. Krasznahorkay, S. Lalkovski, A. Lefebvre-Schuhl, R. Lozeva, A. Maj, and A. Vitez. Measurements of high-energy gamma-rays with LaBr3:Ce detectors. Nucl. Instrum. and Meth., A608:76-79, 2009. Cerca con Google

[8] M. Balcerzyk, M. Moszyski, and M. Kapusta. Comparison of LaCl3:Ce and NaI(Tl) scintillators in gamma-ray spectrometry. Nucl. Instrum. and Meth., A537:50-56, 2005. Cerca con Google

[9] S. Marrone, D. Cano-Ott, N. Colonna, C. Domingo, F. Gramegna, E.M. Gonzalez, F. Gunsing, M. Heil, F. Kappeler, P.F. Mastinud, P.M. Milazzog, T. Papaevangelouh, P. Pavlopoulos, R. Plag, R. Reifarth, T. Tagliente, J.L. Tain, and Wisshak. W. Pulse shape analysis of liquid scintillators for neutron studies. Nucl. Instrum. and Meth., A490:299-307, 2002. Cerca con Google

[10] R. T. Kouzes, J.H. Ely, A. Seifert, E. R. Siciliano, D. R. Weier, L. K. Wind- Cerca con Google

sor, M. L. Woodring, J. Borgardt, E. Buckley, E. Flumerfelt, A. Oliveri, and M. Salvitti. Cosmic-ray induced ship-e_ect neutron measurements and implications for cargo scanning at borders. Nucl. Instrum. and Meth., A587:90-100, 2008. Cerca con Google

[11] M.S. Gordon, P. Goldhagen, K.P. Rodbell, T.H. Zabel, H.H.K. Tang, J.M. Clem, and P. Bailey. Measurement of the ux and energy spectrum of cosmic-ray induced neutrons on the ground. IEEE Trans. Nucl. Sci., 51:3427-3434, 2004. Cerca con Google

[12] R. T. Kouzes, E. R. Siciliano, J. H. Ely, P. E. Keller, and R. J. McConn. Passive neutron detection for interdiction of nuclear material at borders. Nucl. Instrum. and Meth., A584:383-400, 2008. Cerca con Google

[13] G. Vourvopoulos and P.C. Womble. Pulsed fast/thermal neutron analysis: a technique for explosives detection. Talanta, 54:459-468, 2001. Cerca con Google

[14] T. Gozani. The role of neutron based inspection techniques in the post 9/11/2001 era. Nucl. Instrum. and Meth., B213:460-463, 2004. Cerca con Google

[15] A. Perez-Andujara and L. Pibida. Performance of CdTe, HPGe and NaI(Tl) detectors for radioactivity measurements. Applied Radiation and Isotopes, 60:41- 47, 2004. Cerca con Google

[16] J. Kockum. The response to high-energy gamma rays of a NaI(Tl) scintillation spectrometer. Nucl. Instrum. and Meth., 4:171-180, 1959. Cerca con Google

[17] J.H. Ha, J.C. Kim, Y.K. Kim, M. Youn, S.J. Chae, H.T. Chung, J.H. Choi, C.S. Lee, J.U. Kwon, C.B. Moon, J.S. Chai, Y.S. Kim, and J.D. Lee. Energy measurement of 50 Mev proton beam with a NaI(Tl) scintillator. Nucl. Instrum. and Meth., 350:411- 414, 1994. Cerca con Google

[18] Saint-Gobain Crystals. E_ciency calculations for selected scintillators. http://www.detectors.saint-gobain.com/uploadedFiles/SGdetectors/ Documents/Technical_Information_Notes/Efficiency-Calculations. Vai! Cerca con Google

pdf. Cerca con Google

[19] C.M. Rosza and et al. Performance summary: Brillance scintillators LaCl3 and Cerca con Google

LaBr3, Saint Gobain crystals. Available at www.detectors.saint-gobain.com. Vai! Cerca con Google

[20] E.V.D van Loef, P. Dorenbos, C.W.E van Eijk, K.W Krmer, and H.U Gdel. Scintillation properties of LaBr3 crystals: fast, e_cient and high-energy resolution scintillators. Nucl. Instrum. and Meth., A486:254-258, 2002. Cerca con Google

[21] A. Iltis, M.R. Mayhugh, P. Menge, C.M. Rozsa, O. Selles, and V. Solovyev. Lanthanum halide scintillators: Properties and applications. Nucl. Instrum. and Meth., A563:359-363, 2006. Cerca con Google

[22] P. Menge, G. Gautier, A. Iltis, C. Rozsa, and V. Solovyev. Performance of large lanthanum bromide scintillators. Nucl. Instrum. and Meth., A579:6-10, 2007. Cerca con Google

[23] M. Moszyski, A. Nassalski, A. Syntfeld-Kauch, T. Szczniak, W. Czarnacki, D. Wolski, G. Pausch, and J Stein. Temperature dependences of LaBr3(Ce), LaCl3(Ce) and NaI(Tl) scintillators. Nucl. Instrum. and Meth., A568:739-751,2006. Cerca con Google

[24] S.O. Flyckt and C. Marmonier. Photomultiplier Tubes - Principle and Applications. Photonis, 2002. Cerca con Google

[25] Saint-Gobain data sheet, Brilance 380. http://www.detectors.saintgobain.com/uploadedFiles/SGdetectors/Documents/Technical_ Vai! Cerca con Google

Information_Notes/BrilLanCe-Scintillators-Performance-Summary.pdf. Cerca con Google

[26] R. Casanovas, J.J. Morant, and M. Salvado. Energy and resolution calibration of NaI(Tl) and LaBr3(Ce) scintillators and validation of an EGS5 Monte Carlo user code for efficiency calculations. Nucl. Instrum. and Meth., A675:78-83, 2012. Cerca con Google

[27] F.G.A. Quarati, A. Owens, P. Dorenbos, J.T.M. De Haas, G. Benzoni, N. Blasi, C. Boiano, S. Brambilla, F. Camera, R. Alba, G. Bellia, D. Maiolino, C. and Santonocito, M. Ahmed, N. Brown, S. Stave, H.R. Weller, and Y.K. Wu. High energy gamma-ray spectroscopy with LaBr3 scintillation detectors. Nucl. Instrum. and Meth., A629:159-169, 2011. Cerca con Google

[28] R. Scaf, R. Pani, R. Pellegrini, P. Bennati, M. Nerina Cinti, G. De Vincentis, and E. Di Castro. Spectral matching factors for LaBr3:Ce crystals coupled to Hamamatsu H8500 family PMTs. Nucl. Instrum. and Meth., A643:89-94, 2011. Cerca con Google

[29] J. Nilsson. Using the LaBr3:Ce scintillation detector for mobile gamma-spectrometry. Lund University, 2010. Cerca con Google

[30] K. Alzimami, E. Abuelhia, Z. Podolyak, A. Ioannou, and N. Spyrou. Characterization of LaBr3: Ce and LaCl3: Ce scintillators for gamma-ray spectroscopy. J. of Radioanalytical and Nucl. Chem., 278:755-759, 2008. Cerca con Google

[31] B. Milbrath, R. Runkle, T. Hossbach, W. Kaye, E. Lepel, B. McDonald, and L. Smith. Characterization of alpha contamination in lanthanum trichloride scintillators using coincidence measurements. Nucl. Instrum. and Meth., A547:504-510, 2005. Cerca con Google

[32] W. Kernan. Self-activity in lanthanum halides. In 2004 IEEE Nuclear Science Symposium Conference Record, volume 2, 2004. Cerca con Google

[33] L.M. Bollinger and G.E. Thomas. Measurement of the time dependence of scintillation intensity by a delayedcoincidence method. Rev. Sci. Instrum., 32:1044,1961. Cerca con Google

[34] J.M. Adams and G. White. A versatile pulse shape discriminator for charged particle separation and its application to fast neutron time-of-flight spectroscopy. Nucl. Instrum. and Meth., 156:459-476, 1978. Cerca con Google

[35] S.D. Jastaniah and Sellin P.J. Digital techniques for n/ pulse shape discrimination and capture-gated neutron spectroscopy using liquid scintillators. Nucl. Instrum. and Meth., A517:202-210, 2004. Cerca con Google

[36] J. Sderstrm, P.A. Nyberg and R. Wolters. Digital pulse-shape discrimination of fast neutrons and gamma-rays. Nucl. Instrum. and Meth., A594:79-89, 2008. Cerca con Google

[37] R.H. Johnson, D.T. Ingersoll, B.W.Wehring, and J.J. Dorning. NE-213 neutron spectrometry system for measurements from 1.0 to 20 MeV. Nucl. Instrum. and Meth., 145:337-346, 1977. Cerca con Google

[38] A. Zimbal, M. Reginatto, H. Schuhmacher, L. Bertalot, B. Esposito, F. Poli, J. M. Adams, S. Popovichev, V. Kiptily, and A. Murari. Compact NE213 neutron spectrometer with high energy resolution for fusion applications. Review of Scientific Instruments, 45:3553-3555, 2004. Cerca con Google

[39] L.J. Perkins and M. C. Scott. The application of pulse shape discrimination in NE-213 to neutron spectrometry. Nucl. Instrum. and Meth., 166:451-464, 1979. Cerca con Google

[40] Y. Kaschuck and B. Esposito. Neutron/gamma-ray digital pulse shape discrimination with organic scintillators. Nucl. Instrum. and Meth., A551:420-428, 2005. Cerca con Google

[41] N.V. Kornilov, I. Fabry, S. Oberstedt, and F.J. Hambsch. Total characterization of neutron detectors with a 252Cf source and a new light output determination. Nucl. Instrum. and Meth., A599:226-233, 2009. Cerca con Google

[42] N.P. Hawkes, J.M. Adams, D.S. Bond, S. Croft, O.N. Jarvis, and N. Watkinsa. Measurements of the proton light output function of the organic liquid scintillator NE213 in several detectors. Nucl. Instrum. and Meth., A476:190-194, 2002. Cerca con Google

[43] C. Matei, F.J. Hambsch, and S. Oberstedt. Proton light output function and neutron e_ciency of a p-terphenyl detector using a 252Cf source. Nucl. Instrum. and Meth., A676:135-139, 2012. Cerca con Google

[44] A.A. Naqvi, F.Z. Khiari, A. Aksoy, A. Coban, and M.A. Al-Jalal. Light yield measurements of a NE-213 detector for 2.8-14.8 MeV neutrons. Nucl. Instrum. and Meth., A325:574-577, 1993. Cerca con Google

[45] D. Hermsdorf and K. Seeliger.D. Pasieka. A Monte Carlo program for calculation of efficiency of an organic scintillator for neutron detection. Nucl. Instrum. and Meth., 107:259-268, 1973. Cerca con Google

[46] B.K. Kamboj, M.G. Shahani, Phadnis U.V., and D. Sharma. A fast neutron detector with linear energy response. Nucl. Instrum. and Meth., 148:57-60, 1978. Cerca con Google

[47] R.T. Kouzes, E.R. Siciliano, J.H. Ely, P.E. Keller, and R.J. McConn. Passive neutron detection for interdiction of nuclear material at borders. Nucl. Instrum. and Meth., A584:383-400, 2008. Cerca con Google

[48] B.K. Das and A. Shyam. Development of compact size penning ion source for compact neutron generator. Review of Scienti_c Instruments, 79:123305, 2008. Cerca con Google

[49] D.L. Chichester, J. Brainard, P.R. Schwoebel, K.L. Hertz, and C. Holland. Development of a field desorption ion source for neutron generator applications. Nucl. Instrum. and Meth., B261:835-838, 2007. Cerca con Google

[50] M. Lunardon, C. Bottosso, D. Fabris, S. Moretto, G. Nebbia, S. Pesente, G. Viesti, A. Bigongiari, A. Colonna, C. Tintori, V. Valkovic, D. Sudac, P. Peerani, V. Sequeira, and M. Salvato. Front-end electronics and daq for the euritrack tagged neutron inspection system. Nucl. Instrum. and Meth., B261:391-395, 2007. Cerca con Google

[51] S. Pesente, G. Nebbia, M. Lunardon, G. Viesti, D. Sudac, K. Na, S. Blagus, and V. Valkovi. Detection of hidden explosives by using tagged neutron beams with sub-nanosecond time resolution. Nucl. Instrum. and Meth., A531:657-667, 2004. Cerca con Google

[52] M. Lunardon, G. Nebbia, S. Pesente, G.M. Romagnoli, G. Viesti, M. Barbui, M. Cinausero, E. Fioretto, G. Prete, G. D'Erasmo, M. Palomba, and A. Pantaleo. A large area scanning system using 14 mev neutron tagged beams for non-destructive assays. Nucl. Instrum. and Meth., B213:544-547, 2004. Cerca con Google

[53] V. Valkovi, D. Miljani, P. Toma, B. Antolkovi, and M. Furi. Neutron-charged particle coincidence measurements from 14.4 MeV neutron induced reactions. Nucl. Instrum. and Meth., 76:29-34, 1969. Cerca con Google

[54] S. Baccaro, K. Blaek, F. de Notaristefani, P. Maly, J.A. Mares, R. Pani, R. Pellegrini, and A. Soluri. Scintillation properties of YAP:Ce. Nucl. Instrum. and Meth., A361:209-215, 1995. Cerca con Google

[55] M. Moszyski, M. Kapusta, D.Wolski, W. Klamra, and B. Cederwall. Properties of the YAP:Ce scintillator. Nucl. Instrum. and Meth., A404:157-165, 1998. Cerca con Google

[56] H. Haken and H.C. Wolf. The Physics of Atoms and Quanta. Springer-Verlag, 1996. Cerca con Google

[57] S.A. Ghanem. Monte Carlo calculations of the response features for NaI detectors. Applied Radiation and Isotopes, 53:877-880, 2000. Cerca con Google

[58] A. Douraghy, D. L. Prout, R. W. Silverman, and A. F. Chatziioannou. Evaluation of scintillator afterglow for use in a combined optical and pet imaging tomograph. Nucl. Instrum. and Meth., A569:557-562, 2006. Cerca con Google

[59] Nation Nuclear Data Center. http://www.nndc.bnl.gov/. Vai! Cerca con Google

[60] G.F. Knoll. Radiation detection and measurement. John Wiley and Sons, 1989. Cerca con Google

[61] H. Klein and F.D. Brooks. International Workshop on Fast Neutron Detectors and Applications, 2006. Cerca con Google

[62] L. Stevanato, D. Fabris, X. Hao, M. Lunardon, S. Moretto, G. Nebbia, S. Pesente, L. Sajo-Bohus, and G. Viesti. Light output of ej228 scintillation neutron detectors. Applied Radiation and Isotopes, 69:369-372, 2011. Cerca con Google

[63] O. Klein and Y. Nishina. Z. Phys, 52:853, 1929. Cerca con Google

[64] N. Kudomi. Energy calibration of plastic scintillators for low energy electrons by using compton scatterings of gamma-rays. Nucl. Instrum. and Meth., A430:96-99,1999. Cerca con Google

[65] R. Siciliano, J.H. Ely, R.T. Kouzes, J.E. Schweppe, D.M. Strachan, and S.T. Yokuda. Energy calibration of gamma spectra in plastic scintillators using compton kinematic. Nucl. Instrum. and Meth., A594:232-243, 2008. Cerca con Google

[66] G. Dietze and H. Klein. Gamma-calibration of NE213 scintillation counters. Nucl. Instrum. and Meth., 192:549-556, 1982. Cerca con Google

[67] E.K. Mace and L.E. Smith. Automated non-destructive assay of UF6 cylinders: Detector characterization and initial measurements. Nucl. Instrum. and Meth., A652:62-65, 2011. Cerca con Google

[68] R.C. Pereira, A.M. Fernandes, A. Neto, J. Sousa, C.A.F. Varandas, J. Cardoso, C.M.B.A. Correia, M. Tardocchi, M. Nocente, G. Gorini, V. Kiptily, B. Syme, and M. Jennison. Pulse analysis for gamma-ray diagnostics atca sub-systems of jet tokamak. IEEE Transactions on Nuclear Science, 58:1531-1537, 2011. Cerca con Google

[69] A. Douraghy, D. L. Prout, R. W. Silverman, and A. F. Chatziioannou. Evaluation of scintillator afterglow for use in a combined optical and pet imaging tomograph. Nucl. Instrum. and Meth., A569:557-562, 2006. Cerca con Google

[70] Marek Moszyski. Energy resolution and non-proportionality of scintillation detectors new observations. Radiation Measurements, 45:372-376, 2010. Cerca con Google

[71] L. Stevanato, D. Fabris, X. Hao, M. Lunardon, S. Moretto, G. Nebbia, S. Pesente, L. Sajo-Bohus, and G. Viesti. A new facility for non-destructive assay with a time-tagged 252Cf source. AIP Conf. Proc., 1336:181, 2011. Cerca con Google

[72] A. Fallu-Labruyere, H. Tan, W. Hennig, and W.K. Warburton. Time resolution studies using digital constant fraction discrimination. Nucl. Instrum. and Meth., A579:247-251, 2007. Cerca con Google

[73] C. Carasco, B. Perot, S. Bernard, A. Mariani, J.-L. Szabo, G. Sannie, Th. Roll, V. Valkovic, D. Sudac, G. Viesti, M. Lunardon, C. Bottosso, D. Fabris, G. Nebbia, S. Pesente, S. Moretto, A. Zenoni, A. Donzella, M. Moszynski, M. Gierlik, T. Batsch, D. Wolski, W. Klamra, P. Le Tourneur, M. Lhuissier, A. Colonna, C. Tintori, P. Peerani, V. Sequeira, and M. Salvato. In-field tests of the euritrack tagged neutron inspection system. Nucl. Instrum. and Meth., A588:397-405, 2008. Cerca con Google

[74] International Atomic Energy Agency. Technical and Functional Specifications for Border Monitoring Equipment. Nuclear Security Series No. 1, 2006. Cerca con Google

[75] International Electrotechnical Commission. Radiation protection instrumentation Hand-held instruments for detection and identi_cation of radioactive isotopes and additionally for the indication of ambient dose equivalent rate from photon radiation. 2008. Cerca con Google

[76] D. Gilliam, S. Leigh, A. Rukhin, and W. Strawderman. Pass-Fail Testing: Statistical Requirements and Interpretations. J. Res. Natl. Inst. Stand. Technol., 114:195-199, 2009. Cerca con Google

[77] N. Johnson, S. Kot, and A. Kemp. Univariate Discrete distributions. New York, 1992. Cerca con Google

[78] K. Wells and D.A. Bradley. A review of x-ray explosives detection techniques for checked baggage. Applied Radiation and Isotopes, 70:1729-1746, 2012. Cerca con Google

[79] M. Voytchev, P. Chiaro, and R. Rade. Development of international standards for instrumentation used for detection of illicit tra_cking of radioactive material. Radiation Measurements, 44:1-5, 2009. Cerca con Google

[80] J. P. Sullivan, M. W. Rawool-Sullivan, and T. R. Wenz. LaCl3(Ce) and LaBr3(Ce) gamma-ray spectra with various plutonium isotopic and uranium enrichment standards. Journal of Radioanalytical and Nuclear Chemistr, 276:699-705, 2008. Cerca con Google

[81] W. El Kanawati, B. Perot, C. Carasco, C. Eleon, V. Valkovic, D. Sudac, J. Obhodas, and G. Sannie. Acquisition of prompt gamma-ray spectra induced by 14 Mev neutrons and comparison with Monte Carlo simulations. Applied Radiation and Isotopes, 69:732-743, 2011. Cerca con Google

[82] M.B. Chadwick and et al. ENDF/B-VII.0, Next generation evaluated nuclear data library for nuclear science and technology. Nuclear Data Sheets, 107:2931-3060, 2009. Cerca con Google

[83] L. Stewart and R. E. Hunter. Evaluated neutron-induced gamma-ray production cross sections for 238U and 235U. Report LA-4918 UC-34, 1972. Cerca con Google

[84] Robert C. Runkle. Neutron sensors and their role in nuclear non proliferation. Nucl. Instrum. and Meth., A652:37-40, 2011. Cerca con Google

[85] http://www.eljentechnology.com/images/stories/Data_Sheets/Liquid_Scintillators/EJ-309\%20data\%20sheet.pdf. Vai! Cerca con Google

[86] S.A. Pozzi, S.D. Clarke, M. Flaska, and P. Peerani. Pulse-height distributions of neutron and gamma rays from plutonium-oxide samples. Nucl. Instrum. and Meth., A608:310-315, 2009. Cerca con Google

[87] A. Lavietes, C. Liquori, M. Pickrell, R. Plenteda, M. Sweet, M. Shigeyama, T. Asano, T. Nagatani, and S. Nakajima. Gamma and neutron detector performance in a MOX fuel fabrication plant environment. In Proceedings of the International Safeguards Symposium 2010, Vienna, November 2010. http://www.iaea.org/OurWork/SV/Safeguards/Symposium/2010/Documents/PapersRepository/340.pdf. Vai! Cerca con Google

[88] L. Swiderski, M. Moszynski, D. Wolski, J. Iwanowska, T. Szczesniak, P. Schotanus, and C. Hurlbut. Suppression of gamma-ray sensitivity of liquid scintillators for neutron detection. Nucl. Instrum. and Meth., A652:330-333, 2011. Cerca con Google

[89] J. Iwanowska, L. Swiderski, M. Moszynski, T. Szczesniak, P. Sibczynski, N.Z. Galunov, and N.L. Karavaeva. Neutron/gamma discrimination properties of composite scintillation detectors. JINST, 6:P07007, 2011. Cerca con Google

[90] R. T. Kouzes, J. H. Ely, A. T. Lintereur, E. K. Mace, D. L. Stephens, and M. L. Woodring. Neutron detection gamma ray sensitivity criteria. Nucl. Instrum. and Meth., A654:412-416, 2011. Cerca con Google

[91] S. D. Ambers, M. Flaska, and S. A. Pozzi. A hybrid pulse shape discrimination technique with enhanced performance at neutron energies below 500 keV. Nucl. Instrum. and Meth., A638:116-121, 2011. Cerca con Google

[92] S. Pesente, G. Nebbia, G. Viesti, F. Daniele, D. Fabris, M. Lunardon, S. Moretto, K. Nad, D. Sudac, and V. Valkovic. Progress in tagged neutron beams for cargo inspections. Nucl. Instrum. and Meth., B261:268-271, 2007. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record