Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Capurso, Giovanni (2013) Innovative Materials and Systems for Solid State Hydrogen Storage. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi dottorato) - Versione sottomessa
7Mb

Abstract (inglese)

The research presented in this doctoral thesis concerns with the development of novel
materials and systems for solid state hydrogen storage.
The first group of works presented is on alkaline and alkaline-earth borohydrides. The
possibility to enhance their properties with the help of nanosupports has been widely
explored. An attempt to improve the dehydrogenation kinetics of lithium borohydride has
been made dispersing this material on the surface of modified nanotubes and graphite.
The resulting nanoconfined material displayed a decreased decomposition temperature in
comparison with pure material and further decreasing was observed when the surface area
of the supports was increased. An analogous experiment was performed to investigate this
effect in combination with the assets of a reactive hydride composite, where two materials
are mixed to obtain a compound with a lower decomposition enthalpy. The effect of the
mixture was beneficial in presence of the support, due to lower temperature melting. For
calcium borohydride an ordered mesoporous carbon was used after chemical activation.
The increased properties of this support resulted in lower decomposition temperature and
improved reversibility for a number of cycles at different pressure values.
The second research line is focused on magnesium hydride. To improve its kinetic properties
a zirconium-nickel alloy was investigated to evaluate its influence on the reaction
rate, both in absorption and desorption. The degradation observed in experimental reactors,
of different magnesium hydride powders catalyzed with a transition metal oxide,
motivated the fabrication of pellets with the addition of a binding agent, to obtain mechanical
resistance, still allowing hydrogen diffusion. Each pellet was supposed to behave
as an independent system, so they were also tested in a small reactor. Several hydrogen
absorption/desorption cycles were performed to compare the behaviour of the small reactor
with the laboratory data obtained on smaller quantity of powdered and pelletized
specimens.
Finally, the feasibility of a vehicular hydrogen tank system was investigated using an
interstitial metal hydride as storage material. Apart from material basic characterization,
two different kinds of experiment were performed. Static tests (measurements with automatic
flow control and constant settings) were used to evaluate wether the requirements
for desorption are met by the tank set-up. Then, dynamic tests were designed and applied
on the tank, where the hydrogen flow was fluctuating following a hypothetical on-road
trial. It was possible to underline the heat management issues of high-demanding performances
and to analyze some solutions for that. Different cycles were carried out on the
tank to find the ideal setting for high average and peak flows in a realistic experiment.

Abstract (italiano)

L’attività di ricerca presentata in questa tesi di dottorato riguarda lo sviluppo di nuovi
materiali e sistemi per lo stoccaggio di idrogeno allo stato solido.
Il primo gruppo di attività presentate è sui boroidruri di metalli alcalini e alcalinoterrosi.
È stata ampiamente esplorata la possibilità di migliorare le loro proprietà con
l’ausilio di nanosupporti. Un tentativo di migliorare la cinetica di decomposizione del litio
boroidruro è stato fatto disperdendo tale materiale sulla superficie di nanotubi di carbonio
e grafite modificati.Il materiale nanoconfinato risultante ha mostrato una temperatura
di decomposizione inferiore, se paragonato al materiale puro e un’ulteriore diminuzione
è stata osservata aumentando l’area superficiale del supporto. Un esperimento analogo è
stato eseguito per osservare questo effetto in combinazione con i vantaggi di un reactive hydride
composite, nel quale due materiali sono combinati per ottenere un composto con una
minor entalpia di decomposizione. L’effetto del composto è stato positivo in presenza del
supporto, grazie alla minor temperatura di fusione. Per il calcio boroidruro è stato usato
carbone mesoporoso dopo attivazione chimica. Le migliorate proprietà di questo supporto
hanno dato una minor temperatura di decomposizione e una migliorata reversibilità per
vari cicli a diverse pressioni.
La seconda linea di ricerca si focalizza sull’idruro di magnesio. Per migliorare le sue
proprietà cinetiche, è stata testata una lega zirconio-nickel, al fine di valutare la sua
influenza sulla velocità di reazione in assorbimento e desorbimento. Il degrado di altre
polveri di magnesio idruro catalizzate con un ossido metallico in reattori sperimentali
ha motivato la produzione di pastiglie con l’aggiunta di un agente legante, per ottenere
resistenza meccanica, consentendo comunque la diffusione dell’idrogeno. Era previsto che
ogni pastiglia si comportasse come un sistema indipendente, infatti, sono state testate in
un piccolo reattore. Diversi cicli di assorbimento e desorbimento sono stati effettuati per
paragonare la risposta del reattore con dati di laboratorio ottenuti su minori quantità di
polvere o pastiglie.
Infine, è stata sperimentata la realizzabilità di un serbatoio di idrogeno veicolare usando
un idruro di un metallo interstiziale. Oltre alla caratterizzazione di base del materiale,
sono stati realizzati due tipi di esperimenti. Test statici (misure con controllo automatico
di flusso e impostazioni costanti) sono stati usati per valutare se il serbatoio soddisfacesse
i requisiti di rilascio di idrogeno. Test dinamici sono stati progettati e applicati al serbatoio,
dove il flusso di idrogeno era variabile seguendo un’ipotetica prova su strada. È
stato possibile evidenziare i problemi legati allo scambio di calore per le prestazioni di
maggior consumo e analizzare alcune possibili soluzioni. Cicli diversi sono stati effettuati
sul serbatoio in esperimenti realistici, per trovare le impostazioni ideali per alti valori di
flusso medio e di picco.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Maddalena, Amedeo
Correlatore:Principi, Giovanni
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > SCIENZA ED INGEGNERIA DEI MATERIALI
Data di deposito della tesi:30 Gennaio 2013
Anno di Pubblicazione:30 Gennaio 2013
Parole chiave (italiano / inglese):stoccaggio di idrogeno; idruri complessi; idruri metallici; sistemi di accumulo / hydrogen storage; complex hydrides; metal hydrides; storage system
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/03 Fisica della materia
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/22 Scienza e tecnologia dei materiali
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:5485
Depositato il:22 Ott 2013 11:16
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

• Abraham F.F., Homogeneous Nucleation Theory, (1974) Academic Press, New York. Cerca con Google

• Agarwal S., Aurora A., Jain A., Jain I.P., Montone A., Catalytic effect of ZrCrNi alloy on hydriding properties of MgH2, International Journal of Hydrogen Energy, 34 (2009) 9157–9162. Cerca con Google

• Agresti F., Khandelwal A., Capurso G., Lo Russo S., Maddalena A., Principi G., Improvement of dehydrogenation kinetics of LiBH4 dispersed on modified multi-walled carbon nanotubes, Nanotechnology, 21 (2010) 065 707. Cerca con Google

• Agresti F., Khandelwal A., Evidence of formation of LiBH4 by high-energy ball milling of LiH and B in a hydrogen atmosphere, Scripta Materialia, 60 (2009) 753–755. Cerca con Google

• Akiba E., “Metal Hydrides”, in: Hydrogen and Fuel Cells, Stolten D. (ed.), (2010) Wiley-VCH, Weinheim. Chap. 19, 395–413. Cerca con Google

• Allwood J.M., Ashby M.F., Gutowski T.G., Worrell E., Material efficiency: A white paper, Resources, Conservation and Recycling, 55 (2011) 362–381. Cerca con Google

• Anderson D.L., Composition of the Earth, Science 243 (1989) 367–370. Cerca con Google

• Andreasen A., Hydrogenation properties of Mg−Al alloys, International Journal of Hydrogen Energy, 33 (2008) 7489–7497. Cerca con Google

• Aoki M., Miwa K., Noritake T., Ohba N., Matsumoto M., Li H.-W., Nakamori Y., Towata S., Orimo S., Structural and dehydriding properties of Ca(BH4)2, Applied Physics A, 92 (2008) 601–605. Cerca con Google

• Arrhenius S., On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground, Philosophical Magazine and Journal of Science, 41 (1896) 237–276. Cerca con Google

• Ashby M.F., Bréchet Y.J.M., Cebon D., Salvo L., Selection strategies for materials and processes, Materials & Design, 25, (2004) 51–67. Cerca con Google

• Ashby M.F., Criteria for selecting the components of composites, Acta Metallurgica et Materialia, 41 (1993) 1313–1335. Cerca con Google

• Ashby M.F., Materials selection in conceptual design, Materials Science and Technology, 5 (1989) 517–525. Cerca con Google

• Ashby M.F., Materials selection in mechanical design, (1992) Pergamon Press, Oxford. Cerca con Google

• Ashby M.F., Multi-objective optimization in material design and selection, Acta Materialia, 48 (2000) 359–369. Cerca con Google

• Ashby M.F., Overview No. 92: Materials and shape, Acta Metallurgica et Materialia, 39 (1991) 1025–1039. Cerca con Google

• Au M., Jurgensen A., Modified Lithium Borohydrides for Reversible Hydrogen Storage, Journal of Physical Chemistry B, 110 (2006) 7062–7067. Cerca con Google

• Bardají E.G., Zhao-Karger Z., Boucharat N., Nale A., van Setten M.J., Lohstroh W., Röhm E., Catti M., Fichtner M.,. LiBH4−Mg(BH4)2: a physical mixture of metal borohydrides as hydrogen storage material, Journal of Physical Chemistry C, 115 (2011) 6095–6101. Cerca con Google

• Barkhordarian G., Klassen T., Bormann R., Composite Material Storing Hydrogen, and Device for the Reversible Storage of Hydrogen, (2004) International Patent Application WO 2006/063 627. Cerca con Google

• Barkhordarian G., Klassen T., Bormann R., Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. Scripta Materialia, 49 (2003) 213–217. Cerca con Google

• Barkhordarian G., Klassen T., Bormann R., Kinetic investigation of the effect of milling time on the hydrogen sorption reaction of magnesium catalyzed with different Nb2O5 contents, Journal of Alloys and Compounds, 407 (2006) 249–255. Cerca con Google

• Barkhordarian G., Klassen T., Dornheim M., Bormann R., Unexpected kinetic effect of MgB2 in reactive hydride composites containing complex borohydrides, Journal of Alloys and Compounds, 440 (2007) L18–L21. Cerca con Google

• Barreto L., Makihiraa A., Riahia K., The hydrogen economy in the 21st century: a sustainable development scenario, International Journal of Hydrogen Energy, 28 (2003) 267–284. Cerca con Google

• Barrett E.P., Joyner L.G., Halenda P.P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical Society, 73 (1951) 373–380. Cerca con Google

• Benjamin J.S., Mechanical alloying, Scientific American, 234 (1976) 40–48. Cerca con Google

• Berube V., Radtke G., Dresselhaus M., Chen G., Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. International Journal of Energy Research, 31 (2007) 637–663. Cerca con Google

• Bogdanovic B., Bohmhammel K., Christ B., Reiser A., Schlichte K., Vehlen R., Wolf U., Thermodynamic investigation of the magnesium–hydrogen system, Journal of Alloys and Compounds, 282 (1999) 84–92. Cerca con Google

• Bogdanovic B., Brand R.A., Marjanovic A., Schwickardi M., Tölle J., Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials, Journal of Alloys and Compounds, 302 (2000) 36–58. Cerca con Google

• Bogdanovic B., Sandrock G., Catalyzed Complex Metal Hydrides, MRS Bulletin, 27 (2002) 712–716. Cerca con Google

• Bogdanovic B., Schwickardi M., Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials, Journal of Alloys and Compound, 253-254 (1997) 1–9. Cerca con Google

• Bortz M., Bertheville B., Böttger G., Yvon K., Structure of the high pressure phase g-MgH2 by neutron powder diffraction, Journal of Alloys and Compounds, 287 (1999) L4–6. Cerca con Google

• Bösenberg U., Doppiu S., Mosegaard L., Borgschulte A., Eigen N., Barkhordarian G., Jensen T.R., Cerenius Y., Gutfleisch O., Klassen T., Dornheim M., Bormann R., Hydrogen sorption properties of MgH2-LiBH4 composites, Acta Materialia, 55 (2007) 3951–3958. Cerca con Google

• Bououdina M., Grant D., Walker G., Review on hydrogen absorbing materials — structure, microstructure, and thermodynamic properties, International Journal of Hydrogen Energy, 31 (2006) 177–182. Cerca con Google

• Bououdina M., Soubeyroux J.L., de Rango P., Fruchart D., Phase stability and neutron diffraction studies of the laves phase compounds Zr(Cr1 − xMox)2 with 0.0 6 x 6 0.5 and their hydrides, International Journal of Hydrogen Energy, 25 (2000) 1059–1068. Cerca con Google

• Bouten P.C.P., Miedema A.R., On the heats of formation of the binary hydrides of transition metals, Journal of the Less Common Metals, 71 (1980) 147–160. Cerca con Google

• Brown H.C., Choi Y.M., Narasimhan S., Addition Compounds of Alkali Metal Hydrides. 22. Convenient Procedures for the Preparation of Lithium Borohydride from Sodium Borohydride and Borane-Dimethyl Sulfide in Simple Ether Solvents, Inorganic Chemistry, 21 (1982) 3657–3661. Cerca con Google

• Brown H.C., Organic Syntheses via Boranes, (1975) John Wiley & Sons, Inc., New York. Cerca con Google

• Brunauer S., Deming L.S., Deming W.S., Teller E., On a Theory of the van der Waals Adsorption of Gases, Journal of the American Chemical Society, 62 (1940) 1723–1732. Cerca con Google

• Brunauer S., Emmett P.H., Teller E., Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, 60 (1938) 309–319. Cerca con Google

• Brundle C.R., Evans C.A., Wilson S. (eds), Encyclopedia of Materials Characterisation — Surfaces, Interfaces, Thin Films, (1992) Butterworth-Heinemann, Stoneham. Cerca con Google

• Cáceres C.H., Rovera D.M., Solid solution strengthening in concentrated Mg−Al alloys, Journal of Light Metals, 1 (2001) 151–156. Cerca con Google

• Cahen S., Eymery J.B., Janot R., Tarascon J.M., Improvement of the LiBH4 hydrogen desorption by inclusion in mesoporous carbon, Journal of Power Sources, 189 (2009) 902–908. Cerca con Google

• Capurso G., Agresti F., Crociani L., Rossetto G., Schiavo B., Maddalena A., Lo Russo S., Principi G., International Journal of Hydrogen Energy, 37 (2012) 10 768–10 773. Cerca con Google

• Capurso G., Agresti F., Lo Russo S., Maddalena A., Principi G., Cavallari A., Guardamagna C., Performance tests of a small hydrogen reactor based on Mg−Al pellets, Journal of Alloys and Compounds, 509 (2011) S646–S649. Cerca con Google

• Cerný R., Filinchuk Y., Hagemann H., Yvon K., Magnesium Borohydride: Synthesis and Crystal Structure, Angewandte Chemie, 119 (2007) 5867–5869. Cerca con Google

• Ceschini L., Balloni L., Boromei I., Mehtedi M.El, Morri A., Comportamento superplastico della lega di magnesio AZ31 prodotta mediante twin roll casting, Metallurgia Italiana, 9 (2007) 5–11. Cerca con Google

• Ceschini L., Mehtedi M.El, Morri A., Sambogna G., Spigarelli S., Superplastic Deformation of Twin Roll Cast AZ31 Magnesium Alloy, Materials Science Forum, 604-605 (2007) 267–277. Cerca con Google

• Chaise A., de Rango P., Marty Ph., Fruchart D., Experimental and numerical study of a magnesium hydride tank, International Journal of Hydrogen Energy, 35, (2010) 6311–6322. Cerca con Google

• Chaise A., de Rango P., Marty Ph., Fruchart D., Miraglia S., Olivès R., Garrier S., Enhancement of hydrogen sorption in magnesium hydride using expanded natural graphite, International Journal of Hydrogen Energy, 34 (2009) 8589–8596. Cerca con Google

• Checchetto R., Trettel G., Miotello A., Sievert-type apparatus for the study of hydrogen storage in solids, Measurement Science and Technology 15 (2004) 127–130. Cerca con Google

• Chłopek K., Frommen C., Léon A., Zabara O., Fichtner M., Synthesis and properties of magnesium tetrahydroborate, Mg(BH4)2, Journal of Materials Chemistry, 17 (2007) 3496–3503. Cerca con Google

• Comanescu C., Capurso G., Maddalena A., Nanoconfinement in activated mesoporous carbon of calcium borohydride for improved reversible hydrogen storage, Nanotechnology, 23 (2012) 385 401. Cerca con Google

• Crivello J.-C., Nobuki T., Kato S., Abe M., Kuji T., Hydrogen absorption properties of the g-Mg17Al12 phase and its Al-richer domain, Journal of Alloys and Compounds, 446 (2007) 157–161. Cerca con Google

• Crivello J.-C., Nobuki T., Kuji T., Improvement of Mg−Al alloys for hydrogen storage applications. International Journal of Hydrogen Energy, 34 (2009) 1937–1493. Cerca con Google

• Crosby K., Shaw L.L., Dehydriding and re-hydriding properties of high-energy ball milled LiBH4+MgH2 mixtures, International Journal of Hydrogen Energy, 35 (2010) 7519–7529. Cerca con Google

• Cullity B.D., Stock S.R., Elements of X-ray Diffraction, 3rd ed. (2001) Prentice-Hall, Upper Saddle River. Cerca con Google

• Dantzer P., Properties of intermetallic compounds suitable for hydrogen storage applications, Materials Science and Engineering: A, 329-331 (2002) 313–320. Cerca con Google

• David E., An overview of advanced materials for hydrogen storage. Journal of Materials Processing Technology, 162-163 (2005) 169–177. Cerca con Google

• de Boer J.H., Linsen B.G., Plas Th., Zondervan G.J., Studies on pore systems in catalysts: VII. Description of the pore dimensions of carbon blacks by the t method, Journal of Catalysis, 4 (1969) 649–653. Cerca con Google

• de Jongh P.E., Adelhelm P., Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals, ChemSusChem, 3 (2010) 1332–1348. Cerca con Google

• De Piccoli C., Dal Toé S., Lo Russo S., Maddalena A., Palade P., Saber A., Sartori S., Principi G., Hydrogen storage in magnesium hydride doped with niobium pentaoxide and graphite, Chemical Engineering Transactions, 4 (2004) 343–347. Cerca con Google

• de Rango P., Chaise A., Charbonnier J., Fruchart D., Jehan M., Marty Ph., Miraglia S., Rivoirard S., Skryabina N., Nanostructured magnesium hydride for pilot tank development, Journal of Alloys and Compounds, 446-447 (2007) 52–57. Cerca con Google

• de Rango P., Garrier S., Chaise A., Fruchart D., Miraglia S., Marty Ph., MgH2 tank tested under various experimental conditions, Diffusion and Defect Data Part B: Solid State Phenomena, 170 (2011) 342 . Cerca con Google

• Dehouche Z., Peretti H.A., Hamoudi S., Yoo Y., Belkacemi K., Effect of activated alloys on hydrogen discharge kinetics of MgH2 nanocrystals, Journal of Alloys and Compounds, 455 (2008) 432–439. Cerca con Google

• Delhomme B., de Rango P., Marty Ph., Bacia M., Zawilski B., Raufast C., Miraglia S., Fruchart D., Large scale magnesium hydride tank coupled with an external heat source, International Journal of Hydrogen Energy, 37 (2012) 9103–9111. Cerca con Google

• DoE Targets for onboard hydrogen storage systems for light-duty vehicles, Rev. 4.0 (2009), retrieved from: http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage_explanation.pdf (on 30/06/11). Vai! Cerca con Google

• Dornheim M., Doppiu S., Barkhordarian G., Bösenberg U., Klassen T., Gutfleisch O., Bormann R., Hydrogen storage in magnesium-based hydrides and hydride composites, Scripta Materialia, 56 (2007) 841–846. Cerca con Google

• Dubinin M.M., Radushkevich L.V., The equation of the characteristic curve of the activated charcoal, Proceedings of the USSR Academy of Sciences, 55 (1947) 331–337. Cerca con Google

• Dubinin M.M., Russian Journal of Physical Chemistry, 39 (1965) 697–704. Cerca con Google

• Durojaiye T., Ibikunle A., Goudy A.J., Hydrogen storage in destabilized borohydride materials, International Journal of Hydrogen Energy, 35 (2010) 10 329–10 333. Cerca con Google

• Eberle U., Arnold G., von Helmolt R., Hydrogen storage in metal-hydrogen systems and their derivatives, Journal of Power Sources, 154 (2006) 456–460. Cerca con Google

• Ebrahimi-Purkani A., Kashani-Bozorg S.F., Nanocrystalline Mg2Ni-based powders produced by high-energy ball milling and subsequent annealing, Journal of Alloys and Compounds, 456 (2008), 211–215. Cerca con Google

• Elliot J.R., Lira C.T., Introductory Chemical Engineering Thermodynamics, (1998) Prentice-Hall, Upper Saddle River. Cerca con Google

• Fang Z.Z., Kang X.D., Wang P.J., Li H.W., Orimo S., Unexpected dehydrogenation behavior of LiBH4/Mg(BH4)2 mixture associated with the in situ formation of dual-cation borohydride, Journal of Alloys and Compound, 491 (2010) L1–L4. Cerca con Google

• Farooque M., Maru H.C., Carbonate fuel cells: Milliwatts to megawatts, Journal of Power Sources, 160 (2006) 827–834. Cerca con Google

• Fedneva E.M., Alpatova V.L., Mikheeva V.I., LiBH4 Complex Hydride Materials, Russian Journal of Inorganic Chemistry, 9 (1964) 826 . Cerca con Google

• Felderhoff M., Weidenthaler C., von Helmolt R., Eberle U., Hydrogen storage: the remaining scientific and technological challenges, Physical Chemistry Chemical Physics, 9 (2007) 2643–2653. Cerca con Google

• Fichtner M., Zhao-Karger Z., Hu J., Roth A., Weidler P., The kinetic properties of Mg(BH4)2 infiltrated in activated carbon, Nanotechnology, 20 (2009) 204 029. Cerca con Google

• Fieser M., Reagents for Organic Synthesis, 14 (1989) John Wiley & Sons, Inc., New York. Cerca con Google

• Filinchuk Y., Ronnebro E., Chandra D., Crystal structures and phase transformations in Ca(BH4)2, Acta Materialia, 57 (2009) 732–738. Cerca con Google

• Flanagan T.B., Park C.N., Oates W.A., Hysteresis in solid state reactions, Progress in Solid State Chemistry, 23 (1995) 291–363. Cerca con Google

• Friedrichs O., Aguey-Zinsou F., Ares Fernández J. R., Sánchez-López J. C., Justo A., Klassen T., Bormann R., Fernández A., MgH2 with Nb2O5 as additive, for hydrogen storage: Chemical, structural and kinetic behavior with heating, Acta Materialia, 54 (2006), 105–110. Cerca con Google

• Friedrichs O., Buchter F., Borgschulte A., Remhof A., Zwicky C.N., Mauron Ph., Bielmann M., Züttel A., Direct synthesis of Li[BH4] and Li[BD4] from the elements, Acta Materialia, 56 (2008) 949–954. Cerca con Google

• Fukai Y., Site occupancy and phase stability of some metal hydrides, Zeitschrift für Physikalische Chemie, 164 (1989) 165–174. Cerca con Google

• Garrier S., Chaise A., de Rango P., Marty Ph., Delhomme B., Fruchart D., Miraglia S., MgH2 intermediate scale tank tests under various experimental conditions, International Journal of Hydrogen Energy, 36 (2011) 9719–9726. Cerca con Google

• Garroni S., Milanese C., Girella A., Marini A., Mulas G., Menéndez E., Pistidda C., Dornheim M., Suriñach S., Baró M.D., Sorption properties of NaBH4/MH2 (M=Mg, Ti) powder systems, International Journal of Hydrogen Energy, 35 (2010) 5434–5441. Cerca con Google

• Gerard N., Belkbir L., Joly E., High accuracy volumetric device for hydrogen sorption kinetic studies, Journal of Physics E: Scientific Instruments, 12 (1979) 476–477. Cerca con Google

• Glage A., Ceccato R., Lonardelli I., Girardi F., Agresti F., Principi G., Molinari A., Gialanella S., A powder metallurgy approach for the production of a MgH2−Al composite material, Journal of Alloys and Compounds, 478 (2009) 273–280. Cerca con Google

• Goerrig D., Verfahren zur herstellung von boranaten, (1958) German Patent 1 077 644. Cerca con Google

• Gotor F.J., Criado J.M., Malek J., Koga N., Kinetic Analysis of Solid-State Reactions: The Universality of Master Plots for Analyzing Isothermal and Nonisothermal Experiments, Journal of Physical Chemistry A, 104 (2000) 10 777–10 782. Cerca con Google

• Grønvold F., Enthalpy of fusion and temperature of fusion of indium, and redetermination of the enthalpy of fusion of tin, Journal of Chemical Thermodynamics, 25 (1993) 1133–1144. Cerca con Google

• Gross A.F., Vajo J.J., van Atta S.L., Olson G.L., Enhanced Hydrogen Storage Kinetics of LiBH4 in Nanoporous Carbon Scaffolds, Journal of Physical Chemistry B, 112 (2008) 5651–5657. Cerca con Google

• Guardamagna C., Cavallari A., Malvaldi V., Soricetti S., Pontarollo A., Molinas B., Andreasi D., Lo Russo S., Capurso G., Magistri L., Monteverde M., Nava R., Mazzanti V., Innovative Systems for Hydrogen Storage, Advances in Science and Technology, 72 (2010) 176–181. Cerca con Google

• Gupta R., Agresti F., Lo Russo S., Maddalena A., Palade P., Principi G., Structure and hydrogen storage properties of MgH2 catalysed with La2O3, Journal of Alloys and Compound, 450 (2008) 310–313. Cerca con Google

• Hagström M.T., Lund P.D., Vanhanen J.P., Metal hydride hydrogen storage for near-ambient temperature and atmospheric pressure applications, a PDSC study, International Journal of Hydrogen Energy, 20 (1995) 897–909. Cerca con Google

• Hagström M.T., Vanhanen J.P., Lund P.D., AB2 metal hydrides for high-pressure and narrow temperature interval applications, Journal of Alloys and Compounds, 269 (1998) 288–293. Cerca con Google

• Hall C., Tharakan P., Hallock J., Cleveland C., Jefferson M., Hydrocarbons and the evolution of human culture, Nature, 426 (2003) 318–322. Cerca con Google

• Halsey G., Physical Adsorption on Non-Uniform Surfaces, Journal of Chemical Physics, 16 (1948) 931–938. Cerca con Google

• Hanada N., Chłopek K., Frommen C., Lohstroh W., Fichtner M., Thermal decomposition of Mg(BH4)2 under He flow and H2 pressure, Journal of Material Chemistry, 18 (2008) 2611–2614. Cerca con Google

• Hanada N., Ichikawa T., Fujii H., Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. Journal of Physical Chemistry B, 109 (2005) 7188–7194. Cerca con Google

• Harringa J.L., Cook B.A., Beaudry B.J., Effects of vial shape on the rate of mechanical alloying in Si80Ge20, Journal of Material Science, 27 (1992) 801–804. Cerca con Google

• Harris J., Andersson S., H2 dissociation at metal surfaces, Physical Review Letters, 55 (1985) 1583–1586. Cerca con Google

• Harris P.M., Meibohm E.P., The Crystal Structure of Lithium Borohydride LiBH4, Journal of the American Chemical Society, 69 (1947) 1231–1232. Cerca con Google

• Her J.H., Stephens P.W., Gao Y., Soloveichik G.L., Rijssenbeek J., Andrus M., Zhao J.C., Structure of unsolvated magnesium borohydride Mg(BH4)2, Acta Crystallographica B, 63 (2007) 561–568. Cerca con Google

• Hofmann D.J., Butler J.H., Tans P.P., A new look at atmospheric carbon dioxide, Atmospheric Environment, 43 (2009) 2084–2086. Cerca con Google

• Höhne G., Hemminger W.F., FlammersheimH.-J., Differential Scanning Calorimetry, 2nd ed. (2003) Springer-Verlag, Berlin Heidelberg. Cerca con Google

• Holladay J.D., Hu J., King D.L., Wang Y., An overview of hydrogen production technologies, Catalysis Today, 139 (2009) 244–260. Cerca con Google

• Honerkamp J., Statistical Physics: An Advanced Approach with Applications, (2002) Springer-Verlag, Berlin Heidelberg. Cerca con Google

• Hu Z., Srinivasan M.P., Ni Y., Preparation of Mesoporous High-Surface-Area Activated Carbon, Advanced Materials, 12 (2000) 62–65. Cerca con Google

• Hubbert M.K., The energy resources of the Earth, Scientific American, 225 (1971) 60–70. Cerca con Google

• Huot J., “Metal Hydrides”, in: Handbook of Hydrogen Storage, Hirscher M. (ed.), (2010) Wiley-VCH, Weinheim. Chap. 4, 81–116. Cerca con Google

• Hwang S.J., Bowman R.C., Reiter J.W., Rijssenbeck J., Soloveichik G.L., Zhao J.C., Kabbour H., Ahn C.C., NMR Confirmation for Formation of [B12H12]–2 Complexes during Hydrogen Desorption from Metal Borohydrides, Journal of Physical Chemistry Letters, 112 (2008) 3164–3169. Cerca con Google

• Imamura H., Masanari K., Kusuhara M., Katsumoto H., Sumi T., Sakata Y., High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling, Journal of Alloys and Compounds, 386 (2005) 211–216. Cerca con Google

• Irani R.S., Hydrogen storage: High-pressure gas containment, MRS bulletin, 27 (2002) 680–682. Cerca con Google

• Irvine J., Theme issue: materials chemistry for hydrogen storage and generation, Journal of Materials Chemistry, 18 (2008) 2295–2297. Cerca con Google

• Ivey D.G., Northwood D.O., Hydriding properties of Zr(FexCr1 − x)2 intermetallic compounds, International Journal of Hydrogen Energy, 11 (1986) 583–591. Cerca con Google

• Ivey D.G., Northwood D.O., Storing energy in metal hydrides: a review of the physical metallurgy, Journal Material Science, 18 (1983) 321–347. Cerca con Google

• Jain A., Jain R.K., Agarwal S., Ganesan V., Lalla N.P., Phase D.M., Jain I.P., Synthesis characterization and hydrogenation of ZrFe2 − xNix (x = 0.2, 0.4, 0.6, 0.8) alloys, International Journal of Hydrogen Energy, 32 (2007) 3965–3971. Cerca con Google

• Jain I.P., Lal C., Jain A., Hydrogen storage in Mg: a most promising material, International Journal of Hydrogen Energy, 35 (2010) 5133–5144. Cerca con Google

• Jepsen J., Bellosta von Colbe J.M, Klassen T., Dornheim M., Economic potential of complex hydrides compared to conventional hydrogen storage systems, International Journal of Hydrogen Energy, 37 (2012) 4204–4214. Cerca con Google

• Jing F., Hou M., Shi W., Fu J., Yu H., Ming P., Yi B., The effect of ambient contamination on PEMFC performance, Journal of Power Sources, 166 (2007) 172–176. Cerca con Google

• Johnson H.R., Crawford P.M., Bunger J.W., Assessment of Strategic Issues, Strategic Significance of America’s Oil Shale Resource, U.S. Department of Energy, I (2004). Cerca con Google

• Johnson T.A., Jorgensen S.W., Dedrick D.E., Performance of a full-scale hydrogen-storage tank based on complex hydrides, Faraday Discussions, 151 (2011) 327–352, discussion 385–397. Cerca con Google

• Jorgensen S.W., Hydrogen storage tanks for vehicles: Recent progress and current status, Current Opinion in Solid State and Materials Science, 15 (2011) 39–43. Cerca con Google

• Kerr I., Laboratory mills for mechanical alloying, Metal Powder Report, 48 (1993) 36–38. Cerca con Google

• Khandelwal A., Agresti F., Capurso G., Lo Russo S., Maddalena A., Gialanella S., Principi G., Pellets of MgH2-based composites as practical material for solid state hydrogen storage, International Journal of Hydrogen Energy, 35 (2010), 3565–3571. Cerca con Google

• Kianvash A., Harris I.R., Hydrogen decrepitation as a method of powder preparation of a 2:17-type, Sm(Co, Cu, Fe, Zr)8.92 magnetic alloy, Journal of Material Science, 20 (1985) 682–688. Cerca con Google

• Kim J.H., Jin S.A., Shim J. H., Cho Y.W., Reversible hydrogen storage in calcium borohydride Ca(BH4)2, Scripta Materialia 58 (2008) 481–483. Cerca con Google

• Kim J.H., Jin S.A., Shim J.H., Cho, Y.W., Thermal decomposition behavior of calcium borohydride Ca(BH4)2, Journal of Alloys and Compound, 461 (2008) L20–L22. Cerca con Google

• Kim J.H., Shim J.H., Cho Y.W., On the reversibility of hydrogen storage in Ti- and Nb-catalyzed Ca(BH4)2, Journal of Power Sources, 181 (2008) 140–143. Cerca con Google

• Kleiner S., Beffort O., Wahlen A., Uggowitzer P. J., Microstructure and mechanical properties of squeeze cast and semi-solid cast Mg−Al alloys. Journal of Light Metals, 2 (2002) 277–280. Cerca con Google

• Koga N., Tanaka H., A physico-geometric approach to the kinetics of solid-state reactions as exemplified by the thermal dehydration and decomposition of inorganic solids, Thermochimica Acta, 388 (2002) 41–61. Cerca con Google

• Kosourov S., Patrusheva E., Ghirardi M.L., Seibert M., Tsygankov A., A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions. Journal of Biotechnology, 128 (2007) 776–787. Cerca con Google

• Kostka A., Coelho R.S., Dos Santos J., Pyzalla A.R., Microstructure of friction stir welding of aluminium alloy to magnesium alloy, Scripta Materialia, 60 (2009) 953–956. Cerca con Google

• Kothari R., Comparison of environmental and economic aspects of various hydrogen production methods, Renewable and Sustainable Energy Reviews, 12 (2008) 553–563. Cerca con Google

• Krozer A., Kasemo B., Equilibrium hydrogen uptake and associated kinetics for the Mg−H2 system at low pressures, Journal of Physics: Condensed Matter, 1 (1989) 1533–1538. Cerca con Google

• Lahaie D.J., Embury J.D., Ashby M.F., Scale dependent composite design charts, Scripta Metallurgica et Materialia, 32 (1995) 133–138. Cerca con Google

• Laurencelle F., Goyette J., Simulation of heat transfer in a metal hydride reactor with aluminium foam, International Journal of Hydrogen Energy, 32 (2007) 2957–2964. Cerca con Google

• Lee P.Y., Yang J.L., Lin H.M., Amorphization behaviour in mechanically alloyed Ni−Ta powders, Journal of Material Science, 33 (1998) 235–239. Cerca con Google

• Levin D.B., Pitt L., Love M., Biohydrogen production: prospects and limitations to practical application, International Journal of Hydrogen Energy, 29 (2004) 173–185. Cerca con Google

• Li H.-W., Kikuchi K., Nakamori Y., Miwa K., Towata S., Orimo S., Effects of ball milling and additives on dehydriding behaviors of well-crystallized Mg(BH4)2, Scripta Materialia, 57 (2007) 679–682. Cerca con Google

• Li H.-W., Kikuchi K., Nakamori Y., Ohba N., Miwa K., Towata S., Orimo S., Dehydriding and rehydriding processes of well-crystallized Mg(BH4)2 accompanying with formation of intermediate compounds, Acta Materialia, 56 (2008) 1342–1347. Cerca con Google

• Li H.-W., Orimo S., Nakamori Y., Miwa K., Ohba N., Towata S., Züttel A., Materials designing of metal borohydrides: Viewpoints from thermodynamical stabilities, Journal of Alloys and Compounds, 446-447 (2007) 315–318. Cerca con Google

• Liang G., Boily S., Huot J., van Neste A., Schulz R., Mechanical alloying and hydrogen absorption properties of the Mg−Ni system, Journal of Alloys and Compounds, 267 (1998) 302–306. Cerca con Google

• Liang G., Huot J., Boily S., van NesteA., Schulz R., Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2−Tm (Tm=Ti, V, Mn, Fe and Ni) systems, Journal of Alloys and Compounds, 292 (1999) 247–252. Cerca con Google

• Lide D.R. (ed.), Handbook of Chemistry and Physics, 84th ed. (2003) CRC Press, Boca Raton. Cerca con Google

• Lillo-Ródenas M.A., Cazorla-Amorós D., Linares-Solano A., Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism, Carbon, 41 (2003) 267–275. Cerca con Google

• Lillo-Ródenas M.A., Marco-Lozar J.P., Cazorla-Amorós D., Linares-Solano A., Activated carbons prepared by pyrolysis of mixtures of carbon precursor/alkaline hydroxide, Journal of Analytical and Applied Pyrolysis, 80 (2007) 166–174. Cerca con Google

• Lin B.Y.S., Kirk D.W., Thorpe S.J., Performance of alkaline fuel cells: A possible future energy system?, Journal of Power Sources, 161 (2006) 474–483. Cerca con Google

• Liu X., Peaslee D., Jost C.Z., Baumann T.F., Majzoub E.H., Systematic pore-size effects of nanoconfinement of LiBH4: elimination of diborane release and tunable behavior for hydrogen storage applications, Chemistry of Materials, 23 (2011) 1331–1336. Cerca con Google

• Liu X., Peaslee D., Jost C.Z., Majzoub E.H., Controlling the Decomposition Pathway of LiBH4 via Confinement in Highly Ordered Nanoporous Carbon, Journal of Physical Chemistry C, 114 (2010) 14 036–14 041. Cerca con Google

• Lowell S., Shields J.E., Thomas M.A., Thommes M., Characterization of Porous Materials and Powders: Surface Area, Pore Size and Density, (2006) Springer-Verlag, Berlin Heidelberg. Cerca con Google

• Lozano G.A., Bellosta von Colbe J.M., Bormann R., Klassen T., Dornheim M., Enhanced volumetric hydrogen density in sodium alanate by compaction, Journal of Power Sources, 196 (2011) 9254–9259. Cerca con Google

• Lozano G.A., Na Ranong C., Bellosta von Colbe J.M., Bormann R., Fieg G., Hapke J., Klassen T., Dornheim M., Empirical kinetic model of sodium alanate reacting system (I). Hydrogen absorption, International Journal of Hydrogen Energy, 35 (2010) 6763–6772. Cerca con Google

• Lozano G.A., Na Ranong C., Bellosta von Colbe J.M., Bormann R., Fieg G., Hapke J., Klassen T., Dornheim M., Empirical kinetic model of sodium alanate reacting system (II). Hydrogen desorption, International Journal of Hydrogen Energy, 35 (2010) 7539–7546. Cerca con Google

• Lozano G.A., Na Ranong C., Bellosta von Colbe J.M., Bormann R., Hapke J., Fieg G., Klassen T., Dornheim M., Optimization of hydrogen storage tubular tanks based on light weight hydrides, International Journal of Hydrogen Energy, 37 (2012) 2825–2834. Cerca con Google

• Lozano Martinez G.A., Development of Hydrogen Storage Systems using Sodium Alanate, (2010) PhD thesis, Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH. Cerca con Google

• Luo W., Rönnebro E., Towards a viable hydrogen storage system for transportation application, Journal of Alloys and Compounds, 404-406 (2005) 392–395. Cerca con Google

• Lutterotti L., Matthies S., Wenk H.R., Goodwin M., Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra, Journal of Applied Physics, 81 (1997) 594–600. Cerca con Google

• Lutterotti L., Scardi P., Maistrelli P., LSI — a computer program for simultaneous refinement of material structure and microstructure, Journal of Applied Crystallography, 25 (1992) 459–462. Cerca con Google

• Luz Z., Genossar J., Rudman P.S., Identification of the diffusing atom in MgH2, Journal of the Less Common Metals, 73 (1980) 113–118. Cerca con Google

• Maciá-Agulló J.A., Moore B.C., Cazorla-Amorós D., Linares-Solano A., Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation, Carbon, 42 (2004) 1367–1370. Cerca con Google

• Matsunaga T., Buchter F., Mauron P., Bielman M., Nakamori Y., Orimo S., Ohba N., Miwa K., Towata S., Züttel A., Hydrogen storage properties of Mg[BH4]2, Journal of Alloys and Compound, 459 (2008) 583–588. Cerca con Google

• Mauron Ph., Buchter F., Friedrichs O., Remhof A., Bielmann M., Zwicky C.N., Züttel A., Stability and reversibility of Li[BH4], Journal of Physical Chemistry B, 112 (2008) 906–910. Cerca con Google

• Maxoulis C.N., Tsinoglou D.N., Koltsakis G.C., Modeling of automotive fuel cell operation in driving cycles, Energy Conversion and Management, 45 (2004) 559–573. Cerca con Google

• McWhorter S., Read C., Ordaz G., Stetson N., Materials-based hydrogen storage: Attributes for near-term, early market PEM fuel cells, Current Opinion in Solid State and Materials Science, 15 (2011) 29–38. Cerca con Google

• Melnichuk M., Silin N., Guidelines for thermal management design of hydride containers, International Journal of Hydrogen Energy, 37 (2012) 18 080–18 094. Cerca con Google

• Miedema A.R., Buschow K.H.J., van Mal H.H., Which intermetallic compounds of transition metals form stable hydrides?, Journal of the Less Common Metals, 49 (1976) 463–472. Cerca con Google

• Miedema A.R., The electronegativity parameter for transition metals: Heat of formation and charge transfer in alloys, Journal of the Less Common Metals, 32 (1973) 117–136. Cerca con Google

• Mikheeva V.I., Titov L.V., Russian Journal of Inorganic Chemistry, 9 (1964) 789. Cerca con Google

• Miwa K., Aoki M., Noritake T., Ohba N., Nakamori Y., Towata S., Züttel A., Orimo S., Thermodynamical stability of calcium borohydride Ca(BH4)2, Physical Review B, 74 (2006) 155 122. Cerca con Google

• Miwa K., Ohba N., Towata S., Nakamori Y., Züttel A., Orimo S., First-principles study on thermodynamical stability of metal borohydrides: Aluminum borohydride Al(BH4)3, Journal of Alloys and Compound, 446-447 (2007) 310–314. Cerca con Google

• Mohr P.J., Taylor B.N., Newell D.B., CODATA Recommended Values of the Fundamental Physical Constants: 2006, Reviews of Modern Physics, 80 (2008) 633–730. Cerca con Google

• Molinas B., Ghilarducci A.A., Melnichuk M., Corso H.L., Peretti H.A., Agresti F., Bianchin A., Lo Russo S., Maddalena A., Principi G., Scaled-up production of a promising Mg-based hydride for hydrogen storage, International Journal of Hydrogen Energy, 34 (2009) 4597–4601. Cerca con Google

• Mori D., Hirose K., Recent challenges of hydrogen storage technologies for fuel cell vehicles, International Journal of Hydrogen Energy, 34 (2009) 4569–4574. Cerca con Google

• Mubiru J., Banda E.J.K.B., Estimation of monthly average daily global solar irradiation using artificial neural networks, Solar Energy, 82 (2008) 181–187. Cerca con Google

• Murray J.L., “Aluminum – Magnesium”, in ASM Handbook, (1992) ASM International. Vol. 3 – Alloy Phase Diagrams, 305–306. Cerca con Google

• Mushnikov N.V., Ermakov A.E., Uimin M.A., Gaviko V.S., Terent’ev P.B., Skripov A.V., Tankeev A.P., Soloninin A.V., Buzlukov A.L., Kinetics of Interaction of Mg-based mechanically activated alloys with hydrogen, Physics of Metals and Metallography, 102 (2006) 421–431. Cerca con Google

• Nakamori Y., Li H.W., Kikuchi K., Aoki M., Miwa K., Towata S., Orimo, S., Thermodynamical stabilities of metal-borohydrides, Journal of Alloys and Compound, 446-447 (2007) 296–300. Cerca con Google

• Nakamori Y., Miwa K., Ninomiya A., Li H., Ohba N., Towata S., Züttel A., Orimo S., Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativities: First-principles calculations and experiments, Physical Review B, 74 (2006) 045 126. Cerca con Google

• Nale A., Catti M., Bardají E.G, Fichtner M., On the decomposition of the 0.6 LiBH4 – 0.4 Mg(BH4)2 eutectic mixture for hydrogen storage, International Journal of Hydrogen Energy, 36 (2011) 13 676–13 682. Cerca con Google

• Nash P., Jayanth C.S., The Ni−Zr system, Bulletin of Alloy Phase Diagrams, 5 (1984) 144–147. Cerca con Google

• Ni M., Leung D.Y.C., Leung M.K.H., Sumathy K., An overview of hydrogen production from biomass, Fuel Processing Technology, 87 (2006) 461–472. Cerca con Google

• Nickels E.A., Jones M.O., David W.I., Johnson S.R., Lowton R.L., Sommariva M., Edwards P.P., Tuning the decomposition temperature in complex hydrides: synthesis of a mixed alkali metal borohydride, Angewandte Chemie International Edition 47 (2008) 2817–2819. Cerca con Google

• Nielsen T.K., Bösenberg, Gosalawit R., Dornheim M., Cerenius Y., Besenbacher F., Jensen T.R., A Reversible Nanoconfined Chemical Reaction, ACS Nano, 4 (2010) 3903–3908. Cerca con Google

• Nijkamp M.G., Raaymakers J.E.M.J., van Dillen A.J., De Jong K.P., Hydrogen storage using physisorption — materials demands. Applied Physics A, 72 (2001) 619–623. Cerca con Google

• Noia M., Ratto C.F., Festa R., Solar irradiance estimation from geostationary satellite data: I. Statistical models, Solar Energy, 51 (1993) 449–456. Cerca con Google

• Noia M., Ratto C.F., Festa R., Solar irradiance estimation from geostationary satellite data: II. Physical models, Solar Energy, 51 (1993) 457–465 Cerca con Google

• Oelerich W., Klassen T., Bormann R., Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials, Journal of Alloys and Compounds 315 (2001), 237–242. Cerca con Google

• Ohta T., Some thoughts about the hydrogen civilization and the culture development, International Journal of Hydrogen Energy, 31 (2006) 161–166. Cerca con Google

• Oi T., Maki K., Sakaki Y., Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger, Journal of Power Sources, 125 (2004) 52–61. Cerca con Google

• Orimo S., Nakamori Y., Kitahara G., Miwa K., Ohba N., Towata S., Züttel A., Dehydriding and rehydriding reactions of LiBH4, Journal of Alloys and Compound, 404-406 (2005), 427–430. Cerca con Google

• Orimo S., Nakamori Y., Ohba N., Miwa K., Aoki M., Towata S., Züttel, A., Experimental studies on intermediate compound of LiBH4, Applied Physics Letters, 89 (2006) 021 920. Cerca con Google

• Orimo S., Nakamori Y., Züttel A., Material properties of MBH4 (M = Li, Na, and K) Materials Science and Engineering: B, 108 (2004) 51–53. Cerca con Google

• Oxtoby D.W., Homogeneous nucleation: theory and experiment, Journal of Physics: Condensed Matter, 4 (1992) 7 627. Cerca con Google

• Palade P., Sartori S., Maddalena A., Principi G., Lo Russo S., Lazarescu M., Schinteie G., Kuncser V., Filoti G., Hydrogen storage in Mg−Ni−Fe compounds prepared by melt spinning and ball milling, Journal of Alloys and Compounds, 415 (2006) 170–176. Cerca con Google

• Parent M.A., Moffat J.B., A Comparison of Methods for the Analysis of Adsorption-Desorption Isotherms of Microporous Solids, Langmuir, 11 (1995) 4474–4479. Cerca con Google

• Pasini J.M, van Hassel B.A., Mosher D.A., Veenstra M.J., System modeling methodology and analyses for materials-based hydrogen storage, International Journal of Hydrogen Energy, 37 (2012) 2874–2884. Cerca con Google

• Petit J. R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.-M., Basile I., Bender M., Chappellaz J., Davisk M., Delaygue J., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pépin L., Ritz C., Saltzmank E., Stievenard M., Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica, Nature, 399 (1999) 429–436. Cerca con Google

• Pierard N., Fonseca A., Colomer J.F., Bossuot C., Benoit J.M., van Tendeloo G., Pirard J.P., Nagy J.B., Ball milling effect on the structure of single-wall carbon nanotubes, Carbon 42 (2004) 1691–1697. Cerca con Google

• Pierard N., Fonseca A., Konya Z., Willems I., van Tendeloo G., Nagy J.B., Production of short carbon nanotubes with open tips by ball milling, Chemical Physics Letter, 335 (2001) 1–8. Cerca con Google

• Pighin S.A. , Capurso G. , Lo Russo S. , Peretti H.A., Hydrogen sorption kinetics of magnesium hydride enhanced by the addition of Zr8Ni21 alloy, Journal of Alloys and Compounds, 530 (2012) 111–115. Cerca con Google

• Pistidda C., Barkhordarian G., Rzeszutek A., Garroni S., Bonatto Minella C., Baró M.D., Nolis P., Bormann R., Klassen T., Dornheim M., Activation of the reactive hydride composite 2NaBH4 + MgH2, Scripta Materialia, 64 (2011) 1035–1038. Cerca con Google

• Pohlmann C., Röntzsch L., Heubner F., Weißgärber T., Kieback B., Solid-state hydrogen storage in Hydralloy-graphite composites, Journal of Power Sources, 231 (2013) 97–105. Cerca con Google

• Pohlmann C., Röntzsch L., Kalinichenka S., Hutsch T., Kieback B., Magnesium alloy-graphite composites with tailored heat conduction properties for hydrogen storage applications, International Journal of Hydrogen Energy, 35 (2010) 12829–12836. Cerca con Google

• Pohlmann C., Röntzsch L., Kalinichenka S., Hutsch T., Weissgärber T., Kieback B., Hydrogen storage properties of compacts of melt-spun Mg90Ni10 flakes and expanded natural graphite, Journal of Alloys and Compounds, 509, (2011), S625–S628. Cerca con Google

• Pohlmann C., Röntzsch L., Weißgärber T., Kieback B., Heat and gas transport properties in pelletized hydride-graphite-composites for hydrogen storage applications, International Journal of Hydrogen Energy, 38 (2013) 1685–1691. Cerca con Google

• Polanski M., Bystrzycki J., Plocinski T., The effect of milling conditions on microstructure and hydrogen absorption/desorption properties of magnesium hydride (MgH2) without and with Cr2O3 nanoparticles, International Journal of Hydrogen Energy, 33 (2008) 1859–1867. Cerca con Google

• Raynor G.V. (ed.), The Physical Metallurgy of Magnesium and Its Alloys, (1959) Pergamon Press, New York. Cerca con Google

• Rietveld H.M., A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography, 2 (1969) 65–71. Cerca con Google

• Rietveld H.M., Line profiles of neutron powder-diffraction peaks for structure refinement, Acta Crystallographica, 22 (1967) 151–152. Cerca con Google

• Rifkin J., The Hydrogen Economy: The Creation of the Worldwide Energy Web and the Redistribution of Power on Earth, (2003) Penguin Putnam Inc., New York. Cerca con Google

• Riktor M.D., Sørby M.H., Chłopek K., Fichtner M., Buchter F., Züttel A., Hauback B.C., In situ synchrotron diffraction studies of phase transitions and thermal decomposition of Mg(BH4)2 and Ca(BH4)2, Journal of Materials Chemistry, 17 (2007) 4939–4942. Cerca con Google

• Rönnebro E., Development of group II borohydrides as hydrogen storage materials, Current Opinion in Solid State and Materials Science, 15 (2011) 44–51. Cerca con Google

• Rönnebro E., Majzoub E.H., Calcium borohydride for hydrogen storage: Catalysis and reversibility, Journal of Physical Chemistry B, 111 (2007) 12045–12047. Cerca con Google

• Rosa E.A., Dietz T., Climate Change and Society: Speculation, Construction and Scientific Investigation, International Sociology, 13 (1998) 421–455. Cerca con Google

• Ross D.K., Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars, Vacuum, 80 (2006) 1084–1089. Cerca con Google

• Rouquerol J., Avnir, D., Fairbridge C.W., Everett D.H., Haynes J.H., Pernicone N., Ramsay J.D.F., Sing K.S.W., Unger K.K., Recommendations for the Characterization of Porous Solids, Pure and Applied Chemistry, 66 (1994) 1739–1758. Cerca con Google

• Ruiz F.C., Castro E.B., Peretti H.A., Visintin A., Study of the different ZrxNiy phases of Zr-based AB2 materials, International Journal of Hydrogen Energy, 35 (2010) 9879–9887. Cerca con Google

• Ryan D.H., Coey J.M.D., Thermopiezic analysis: gas absorption and desorption studies on milligram samples, Journal of Physics E: Scientific Instruments, 19 (1986) 693–694. Cerca con Google

• Ryoo R., Joo S.H., Kruk M., Jaroniec M., Ordered Mesoporous Carbons, Advanced Materials, 13 (2001) 677–681. Cerca con Google

• Saito A., Foley H.C., Curvature and parametric sensitivity in models for adsorption in micropores, AIChE Journal, 37 (1991) 429–436. Cerca con Google

• Sakintuna B., Lamari-Darkrim F., Hirscher M., Metal hydride materials for solid hydrogen storage:a review, International Journal of Hydrogen Energy, 32 (2007) 1121–1140. Cerca con Google

• Sarkar A., Banerjee R., Net energy analysis of hydrogen storage options. International Journal of Hydrogen Energy, 30 (2005) 867–877. Cerca con Google

• Satyapal S., Petrovic J., Read C., Thomas G., Ordaz G., The U.S. Department of Energy’s National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements, Catalysis Today, 120 (2007) 246–256. Cerca con Google

• Schiavo B., Solid state hydrogen storage: a study on different materials and development of an applicative system, (2012) PhD thesis, Università degli Studi di Palermo. Cerca con Google

• Schlapbach L., Shaltiel D., Oelhafen P., Catalytic effect in the hydrogenation of Mg and Mg compounds: surface analysis of Mg−Mg2Ni and Mg2Ni, Material Research Bulletin, 14 (1979) 1235–1246. Cerca con Google

• Schlapbach L., Züttel A., Hydrogen-storage materials for mobile applications, Nature, 414 (2001) 353–358. Cerca con Google

• Schlenk W., in: Die Methoden der organischen Chemie, Weyl T., Houben J. (eds), (1924) Thieme Verlag, Stuttgart. Vol. IV, 720–978. Cerca con Google

• Schlesinger H.I., Brown H.C., Abraham B., Bond A.C., Davidson N., Finholt A.E., Gilbreath J.R., Hoekstra H., Horvitz L., Hyde E.K, Katz J.J, Knight J., Lad R.A, Mayfield D.L., Rapp L., Ritter D.M., Schwartz A.M., Sheft I., Tuck L.D., Walkeret A.O., New Developments in the Chemistry of Diborane and the Borohydrides, Journal of the American Chemical Society, 75 (1953) 186–190. Cerca con Google

• Schlesinger H.I., Brown H.C., Hyde E.K., The Preparation of Other Borohydrides by Metathetical Reactions Utilizing the Alkali Metal Borohydrides, Journal of the American Chemical Society, 75 (1953) 209–213. Cerca con Google

• Schlesinger H.I., Brown H.C., Metallo Borohydrides. III. Lithium Borohydride, Journal of the American Chemical Society, 62 (1940) 3429–3435. Cerca con Google

• Schlesinger H.I., Sanderson R.T., Burg A.B., A Volatile Compound of Aluminum, Boron and Hydrogen, Journal of the American Chemical Society, 61 (1939) 536 . Cerca con Google

• Schulz R., Huot J., Liang G., Boily S., Lalande G., Denis M.C., Dodelet J.P., Recent developments in the applications of nanocrystalline materials to hydrogen technologies, Materials Science and Engineering: A, 267 (1999) 240–245. Cerca con Google

• Shaltiel D., Jacob I., Davidov D., Hydrogen absorption and desorption properties of AB2 Laves-phase pseudobinary compounds, Journal of the Less Common Metals, 53 (1977) 117–131. Cerca con Google

• Shoemaker D.P., Shoemaker C.B., Concerning atomic sites and capacities for hydrogen absorption in the AB2 Friauf-Laves phases, Journal of the Less Common Metals, 68 (1979) 43–58. Cerca con Google

• Sholl D.S., Using density functional theory to study hydrogen diffusion in metals: a brief overview, Journal of Alloys and Compounds, 446 (2007) 462–468. Cerca con Google

• Shriver D.F., Drezdon M.A., The Manipulation of Air-Sensitive Compounds, 2nd ed. (1986) John Wiley & Sons, Inc., New York. Cerca con Google

• Siegel D.J., Wolverton C., Ozoli¸nš V., Thermodynamic guidelines for the prediction of hydrogen storage reactions and their application to destabilized hydride mixtures, Physical Review B, 76 (2007) 134 102. Cerca con Google

• Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., Siemieniewska T., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and Applied Chemistry, 57 (1985) 603–619. Cerca con Google

• Skripnyuk V.M., Ron M., Hydrogen desorption kinetics in intermetallic compounds C2, C51 and C52 with Laves phase structure, International Journal of Hydrogen Energy, 28 (2003) 303–309. Cerca con Google

• Souahlia A., Dhaou H., Askri F., Sofiene M., Jemni A., Ben Nasrallah S., Experimental and comparative study of metal hydride hydrogen tanks, International Journal of Hydrogen Energy, 36 (2011) 12 918–12 922. Cerca con Google

• Soulié J.-Ph., Renaudin G., Cerný R., Yvon K., Lithium boro-hydride LiBH4: I. Crystal structure, Journal of Alloys and Compound, 346 (2002) 200–205. Cerca con Google

• Speight J.D., “The Hydrogen Cycle”, in: Hydrogen as a Future Energy Carrier, Züttel A., Borgschulte A., Schlapbach L. (eds), (2008) Wiley-VCH, Weinheim. Chap. 3.3, 43–67. Cerca con Google

• Staninevich D.S., Egorenko G.A., Russian Journal of Inorganic Chemistry, 13 (1988) 341. Cerca con Google

• Stein F., Palm M., Sauthoff G., Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability, Intermetallics, 12 (2004) 713–720. Cerca con Google

• Stioui M., Grayevski A., Resnik A., Shaltiel D., Kaplan N., Macroscopic and microscopic kinetics of hydrogen in magnesium-rich compounds, Journal of the Less Common Metals, 123 (1986) 9–24. Cerca con Google

• Stoeckli F., Centeno T.A., On the determination of surface areas in activated carbons, Carbon, 43 (2005) 1184–1190. Cerca con Google

• Stolten D. (ed.), Hydrogen and Fuel Cells, (2010) Wiley-VCH, Weinheim. Cerca con Google

• Stucki S., “The Carbon Cycle and Biomass Energy”, in: Hydrogen as a Future Energy Carrier, Züttel A., Borgschulte A., Schlapbach L. (eds), (2008) Wiley-VCH, Weinheim. Chap. 3.2, 37–43. Cerca con Google

• Suess H., Urey, H., Abundances of the Elements, Reviews of Modern Physics, 28 (1956) 53–74. Cerca con Google

• Suryanarayana C., Does a disordered g-TiAl phase exist in mechanically alloyed Ti−Al powders?, Intermetallics, 3 (1995) 153–160. Cerca con Google

• Suryanarayana C., Mechanical alloying and milling, Progress in Materials Science, 46 (2001) 1–184. Cerca con Google

• Takeichi N., Senoh H., Yokota T., Tsuruta H., Hamada K., Takeshita H. T., Tanaka H., Kiyobayashi T., Takano T., Kuriyama N., “Hybrid hydrogen storage vessel”, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material, International Journal of Hydrogen Energy, 28 (2003) 1121–1129. Cerca con Google

• Töpler J., Feucht K., Results of a Test Fleet with Metal Hydride Motor Cars, Zeitschrift für Physikalische Chemie, 164 (1989) 1451–1461. Cerca con Google

• Tributsch H., Photovoltaic hydrogen generation, International Journal of Hydrogen Energy, 33 (2008) 5911–5930. Cerca con Google

• Turner J., Sverdrup G., Mann M.K., Maness P.-C., Kroposki B., Ghirardi M., Evans R.J., Blake D., Renewable Hydrogen Production, International Journal of Energy Research, 32 (2008) 379–407. Cerca con Google

• Uppenbrink J., Arrhenius and Global Warming, Science, 272 (1996) 1122. Cerca con Google

• Urgnanai J., Torres F.J., Palumbo M., Baricco M., Hydrogen release from solid state NaBH4, International Journal of Hydrogen Energy, 33 (2008) 3111–3115. Cerca con Google

• Utz I., Schmidt N., Wörner A., Hub J.J., Zabara O., Fichtner M., Experimental results of an air-cooled lab-scale H2 storage tank, International Journal of Hydrogen Energy, 36 (2011) 3556–3565. Cerca con Google

• Vajeeston P., Ravindran P., Kjekshus A., Fjellvåg H., Pressure-Induced Structural Transitions in MgH2, Physical Review Letters, 89 (2002) 175 506. Cerca con Google

• Vajo J.J, Olson G.L., Hydrogen storage in destabilized chemical systems, Scripta Materialia, 56 (2007) 829–834. Cerca con Google

• Vajo J.J., Influence of nano-confinement on the thermodynamics and dehydrogenation kinetics of metal hydrides, Current Opinion in Solid State and Materials Science, 15 (2011) 52–61. Cerca con Google

• Vajo J.J., Mertens F., Ahn C.C., Bowman R.C., Fultz B., Altering Hydrogen Storage Properties by Hydride Destabilization through Alloy Formation: LiH and MgH2 Destabilized with Si, Journal of Physical Chemistry B, 108 (2004) 13977–13983. Cerca con Google

• Vajo J.J., Mertens F.O., Skeith S., Balogh M.P., Reversible Hydrogen Storage System and Methods for Use Thereof, (2004) International Patent Application WO 2005/097 671. Cerca con Google

• Vajo J.J., Skeith S.L., Mertens F., Reversible Storage of Hydrogen in Destabilized LiBH4, Journal of Physical Chemistry B, 109 (2005) 3719–3722. Cerca con Google

• van Mal H.H., Buschow K.H.J., Miedema A.R., Hydrogen absorption in LaNi5 and related compounds: Experimental observations and their explanation, Journal of the Less Common Metals, 35 (1974) 65–76. Cerca con Google

• van Setten M.J., de Wijs G.A., Fichtner M., Brocks G., A Density Functional Study of a-Mg(BH4)2, Chemistry of Materials, 20 (2008) 4952–4956. Cerca con Google

• Vanhanen J.P., Lund P.D., Hagström M.T., Feasibility study of a metal hydride hydrogen store for a self-sufficient solar hydrogen energy system, International Journal of Hydrogen Energy, 21 (1996) 213–221. Cerca con Google

• Verga M., Armanasco F., Guardamagna C., Valli C., Bianchin A., Agresti F., Lo Russo S., Maddalena A., Principi G., Scaling up effects of Mg hydride in a temperature and pressure-controlled hydrogen storage device, International Journal of Hydrogen Energy, 34 (2009) 4602–4610. Cerca con Google

• Verga M., Guardamagna C., Valli C., Principi G., Molinas B., Sistemi di accumulo di idrogeno ad idruri di magnesio: verifica sperimentale degli effetti di scala, La Metallurgia Italiana, 1 (2009) 59–67. Cerca con Google

• Vigeholm B., Kjoller J., Larsen B., Pedersen A.S., Formation and decomposition of magnesium hydride, Journal of the Less Common Metals, 89 (1983) 135–44. Cerca con Google

• Visaria M., Mudawar I., Coiled-tube heat exchanger for high-pressure metal hydride hydrogen storage systems — part 1. Experimental study, Internationa Journal of Heat and Mass Transfer, 55 (2012) 1782–1795. Cerca con Google

• von Helmolt R., Eberle U., Fuel cell vehicles: Status 2007, Journal of Power Sources, 165 (2007) 833–843. Cerca con Google

• Wallén, C.C., Global monitoring of carbon dioxide in the atmosphere, Environment International, 2 (1979) 351–355. Cerca con Google

• Wang P.J., Fang Z.Z., Ma L.P, Kang X.D., Wang P., Effect of carbon addition on hydrogen storage behaviors of Li−Mg−B−H system, International Journal of Hydrogen Energy, 35 (2010) 3072–3075. Cerca con Google

• Watanabe H., Tsutsui H., Mukai T., Kohzu M., Tanabe S., Higashi K., Deformation mechanism in a coarse-grained Mg−Al−Zn alloy at elevated temperatures, International Journal of Plasticity, 17 (2001) 387–397. Cerca con Google

• Weidenthaler C., Felderhoff M., “Complex Hydrides”, in: Handbook of Hydrogen Storage, Hirscher M. (ed.), (2010) Wiley-VCH, Weinheim. Chap. 5, 117–157. Cerca con Google

• Wiberg E., Hartwimmer R.Z., Zeitschrift für Naturforschung B, 10 (1955) 295. Cerca con Google

• Wiberg E., Noth H., Hartwimmer R.Z., Zeitschrift für Naturforschung B, 10 (1955) 292. Cerca con Google

• Winter C.-J., Energy policy is technology politics — The hydrogen energy case (with an eye particularly on safety comparison of hydrogen energy to current fuels), International Journal of Hydrogen Energy, 31 (2006) 1623–1631. Cerca con Google

• Wolf J., Liquid-hydrogen technology for vehicles, MRS Bulletin, 27 (2002) 684–687 Cerca con Google

• Yang F.S., Wang G.X., Zhang Z.X., Meng X.Y., Rudolph V., Design of the metal hydride reactors — A review on the key technical issues, International Journal of Hydrogen Energy, 35 (2010) 3832–3840. Cerca con Google

• Young R.A., Willes D.B., Profile shape functions in Rietveld refinements, Journal of Applied Crystallography, 15 (1982) 430–438. Cerca con Google

• Yu X.B., Grant D.M., Walker G.S., A new dehydrogenation mechanism for reversible multicomponent borohydride systems — The role of Li−Mg alloys, Chemical Communications, (2006) 3906–3908. Cerca con Google

• Yu X.B., Wu Z., Chen Q.R., Li Z.L., Weng B.C., Huang T.S., Improved hydrogen storage properties of LiBH4 destabilized by carbon, Applied Physics Letter, 91 (2007) 034 106. Cerca con Google

• Yu X.B., Yang Z.X., Liu H.K., Grant D.M., Walker G.S., The effect of a Ti−V-based bbc alloy as a catalyst on the hydrogen storage properties of MgH2, International Journal of Hydrogen Energy, 35 (2010) 6338–6344. Cerca con Google

• Yvon K., “Complex Transition Metal Hydrides”, in: Hydrogen as a Future Energy Carrier, Züttel A., Borgschulte A., Schlapbach L. (eds), (2008) Wiley-VCH, Weinheim. Chap. 6.4, 195–203. Cerca con Google

• Zachariasen W.H., Holley C.E., Stampfer J.F., Neutron diffraction study of magnesium deuteride, Acta Crystallographica, 16 (1963) 352–353. Cerca con Google

• Zaluska A., Zaluski L., Strom-Olsen J.O., Nanocrystalline magnesium for hydrogen storage, Journal of Alloys and Compounds, 288 (1999) 217–225. Cerca con Google

• Zanella P., Crociani L., Giunchi G., Process for the preparation of crystalline magnesium borohydride, (2007) U.S. Patent US 7 678 356. Cerca con Google

• Zanella P., Crociani L., Masciocchi N., Giunchi G., Facile high-yield synthesis of pure, crystalline Mg(BH4)2, Inorganic Chemistry, 46 (2007) 9039–9041. Cerca con Google

• Zhang L., Cao Z.Y., Liu Y.B., Su G.H., Cheng L.R., Effect of Al content on the microstructure and mechanical properties of Mg−Al alloys, Material Science and Engineering: A, 508 (2009) 129–133. Cerca con Google

• Züttel A., “Metal Hydrides”, in: Hydrogen as a Future Energy Carrier, Züttel A., Borgschulte A., Schlapbach L. (eds), (2008) Wiley-VCH, Weinheim. Chap. 6.3, 188–195. Cerca con Google

• Züttel A., Borgschulte A., Orimo S., Tetrahydroborates as new hydrogen storage materials, Scripta Materialia, 56 (2007) 823–828. Cerca con Google

• Züttel A., Materials for hydrogen storage, Materials Today, 6 (2003) 24–33. Cerca con Google

• Züttel A., Remhof A., Borgschulte A., Friedrichs O., Hydrogen: the future energy carrier, Philosophical Transaction of the Royal Society A, 368 (2010) 3329–3342. Cerca con Google

• Züttel A., Rentsch S., Fischer P., Wenger P., Sudan P., Mauron Ph., Emmenegger Ch., Hydrogen storage properties of LiBH4, Journal of Alloys and Compound, 356-357 (2003) 515–520. Cerca con Google

• Züttel A., Wenger P., Rentsch S., Sudan P., Mauron Ph., Emmenegger Ch., LiBH4 a new hydrogen storage material, Journal of Power Sources, 118 (2003) 1–7. Cerca con Google

• Züttel A., Wenger P., Sudan P., Mauron Ph., Orimo S., Hydrogen density in nanostructured carbon, metals and complex materials, Material Science and Engineering: B, 108 (2004) 9–18. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record