Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Vallese, Francesca (2013) New insights into the [FeFe]-hydrogenase maturation pathway. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
3593Kb

Abstract (english)

The aim of my PhD project was to obtain new structural and functional insights useful to draw a more detailed overall picture of the [FeFe]-hydrogenase maturation machinery. Indeed, although during recent years advances have been made in the knowledge of this maturation pathway, significant gaps remain in the understanding of how this process occurs.
In this context, my work has been developed in these topics:
The resolution of the tridimensional crystal structure of HydF, the key protein of the [FeFe]-hydrogenase maturation system. The results and the analysis of the structure and its domains are contained in Chapter 1 of the thesis. The obtained informations have also opened up new scenarios that have led me to investigate further aspects of the HydF protein structure-function relationship, reported in the other two chapters.
In the second Chapter I describe the work that has led to the characterization of the HydF FeS cluster binding pocket. In particular, we have analyzed the role, in the cluster coordination as well as in the hydrogenase activation, of two histidines present close to three cysteines all belonging to the highly conserved FeS cluster binding consensus sequence.
Finally, in the last part of my PhD work (whose results are collected in Chapter 3) I focused my attention on the biochemical characterization of the interactions between HydF and the other components of the [FeFe]-hydrogenase maturation process, which are needed for the activity of HydF both as a scaffold and a FeS cluster carrier in this pathway. Moreover, I investigated the HydF GTPase properties, which had been previously shown to be essential for the [FeFe]-hydrogenase activation.

Abstract (italian)

Lo scopo del mio progetto di dottorato è stato quello di ottenere nuove informazioni strutturali e funzionali nell’ambito dello studio del sistema di maturazione della [FeFe]-idrogenasi. Nonostante negli ultimi anni siano stati fatti dei passi avanti nella comprensione di questo pathway di maturazione, rimangono comunque molti elementi che devono essere chiariti per poter capire come avviene tale processo. A questo scopo il mio lavoro si è concentrato su questi argomeni di studio:
La risoluzione della struttura tridimensionale di HydF, la proteina chiave del sistema di maturazione delle [FeFe]-idrogenasi. I risultati, e l’analisi della struttura e dei suoi domini, sono contenuti nel primo capitolo della tesi. Le informazioni ottenute hanno inoltre aperto nuovi scenari che mi hanno permesso di ipotizzare lo studio delle relazioni struttura-funzione della proteina HydF, che ho riportato negli altri due capitoli.
Nel secondo capitolo ho riproposto il lavoro che ci ha permesso di caratterizzare il binding pocket del cluster FeS di HydF. In particolare abbiamo analizzato il ruolo nella coordinazione del cluster di due istidine presenti in prossimità delle tre cisteine conservate in tutti i dominii dei cluster FeS.
Nell’ultima parte del mio lavoro (che è stato raccolto nel terzo capitolo) ho concentrato la mia attenzione nella caratterizzazione biochimica delle interazioni tra HydF e degli altri componenti del sistema di maturazione, e HydF ha un ruolo sia di scaffold che di carrier in questo sistema.
Inoltre ho cercato di approfondire il ruolo di HydF come GTPasi, che era stato visto essere essenziale per l’attivazione della FeFe idrogenasi.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Giacometti, Giorgio Mario
Supervisor:Costantini, Paola
Ph.D. course:Ciclo 25 > Scuole 25 > BIOSCIENZE E BIOTECNOLOGIE > BIOCHIMICA E BIOFISICA
Data di deposito della tesi:25 January 2013
Anno di Pubblicazione:25 January 2013
Key Words:HydF, FeS cluster, Hydrogenase, protein interactions, HydG, HydE, EPR
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Struttura di riferimento:Centri > Centro Interdipartimentale di servizi A. Vallisneri
Dipartimenti > Dipartimento di Biologia
Codice ID:5499
Depositato il:14 Oct 2013 12:17
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Adams M.W. (1990). The structure and mechanism of iron-hydrogenases. Biochim. Biophys. Acta 1020, 115-145 Cerca con Google

Albracht S.P. (1994). Nickel hydrogenases: in search of the active site. Biochim Biophys Acta 1188, 167-204 Cerca con Google

Beinert H., Holm R.H., and Münck E. (1997). Iron-sulfur cluster: nature’s modular, multipurpose structure. Science 277, 653-659 Cerca con Google

Berto P., Di Valentin M., Cendron L., Vallese F., Albertini M., Salvadori E., Giacometti G.M., Carbonera D., Costantini P. (2012). The [4Fe-4S]-cluster coordination of [FeFe]-hydrogenase maturation protein HydF as revealed by EPR and HYSCORE spectroscopies. Biochim Biophys Acta 1817, 2149-57 Cerca con Google

Böck A., King P.W., Blokesch M., Posewitz M.C. (2006). Maturation of hydrogenases. Adv. Microb. Physiol. 51, 1-72 Cerca con Google

Brazzolotto X., Rubach J.K., Gaillard J., Gambarelli S., Atta M., Fontecave M. (2006). The [FeFe]-hydrogenase maturation protein HydF from Thermotoga maritima is a GTPase with an iron-sulfur cluster. J. Biol. Chem. 281, 769-774 Cerca con Google

Brereton S.P., Verhagen M.F., Zhou Z.H., Adams M.W. (1998). Effect of iron-sulfur cluster environment in modulating the thermodynamic properties and biological function of ferredoxin from Pyrococcus furiousus. Biochemistry 37, 7351-7362. Cerca con Google

Bricogne G., Vonrhein, C., Flensburg C., Schiltz M., Paciorek W. (2003). Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. Sect. D-Biol. Crystallogr. 59, 2023-2030 Cerca con Google

Brunger A. T., Adams P. D., Clore G. M. (1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. Sect. D-Biol. Crystallogr. 54, 905-921 Cerca con Google

Cendron L., Berto P., D’Adamo S., Vallese F., Govoni C., Posewitz M.C., Giacometti G.M., Costantini P., Zanotti G. (2011). Crystal structure of HydF scaffold protein provides insights into [FeFe]-hydrogenase maturation. J. Biol. Chem. 286, 43944-43950 Cerca con Google

Chatterjee R., Milikisiyants S., Coates C.S., Lakshmi K.V. (2011). High-resolution two-dimensional 1H and 14N hyperfine sublevel correlation spectroscopy of the primary quinone of photosystem II. Biochemistry 50, 491-501 Cerca con Google

. Cerca con Google

Cohen J., Kim K., Posewitz M., Ghirardi M.L., Schulten K., Seibert M., King P. (2005). Molecular dynamics and experimental investigation of H2 and O2 diffusion in [Fe]-hydrogenase. Biochem Soc Trans. 33, 80-82 Cerca con Google

Collaborative Computational Project, Number 4. (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760-763 Cerca con Google

Czech I., Silakov A., Lubitz W., Happe T. (2010). The [FeFe]-hydrogenase maturase HydF from Clostridium acetobutylicum contains a CO and CN- ligated iron cofactor. FEBS Lett. 584, 638-642 Cerca con Google

Czech I., Stripp S., Sanganas O., Leidel N., Happe T., Haumann M. (2011). The [FeFe]-hydrogenase maturation protein HydF contains a H-cluster like [4Fe4S]-2Fe site. FEBS Lett. 585, 225-230 Cerca con Google

Darensbourg M.Y., Lyon E.J., Zhao X., Georgakaki I.P. (2003). The organometallic active site of [Fe]hydrogenase: models and entatic states. Proc Natl Acad Sci. 100, 3683-8 Cerca con Google

Delano W.L. MacPyMOL: a PyMOL-based molecular graphics application for Mac OS X. Palo Alto, FL: DeLano Scientific LLC. Cerca con Google

Dikanov S.A., Xun L., Karpiel A.B., Tyryshkin A.M., Bowman M.K. (1996). Orientationally-selected two-dimensional ESEEM spectroscopy of the Rieske-type iron-sulfur cluster in 2,4,5-trichlorophenoxyacetate monooxygenase from Burkholderia cepacia AC1100. J. Am. Chem. Soc. 118, 8048-8416 Cerca con Google

Driesener R.C., Challand M.R., McGlynn S.E., Shepard E.M., Boyd E.S., Broderick J.B., Peters J.W., Roach P.L. (2010) [FeFe]-hydrogenase cyanide ligands derived from S-adenosylmethionine-dependent cleavage of tyrosine. Angew. Chem. Int. Ed. Engl. 49, 1687-1690 Cerca con Google

Duffus B.R., Hamilton T.L., Shepard E.M., Boyd E.S., Peters J.W., Broderick J.B. (2012). Radical AdoMet enzymes in complex metal cluster biosynthesis. Biochim Biophys Acta. 1824, 1254-63 Cerca con Google

Emsley P., and Cowtan K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D-Biol. Crystallogr. 60, 2126-2132 Cerca con Google

Esper B., Badura A., Rögner M (2006). Photosynthesis as a power supply for bio-hydrogen production. Trends Plant Sci. 11, 543-9. Cerca con Google

Evans P. (2006). Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72-82 Cerca con Google

Foerster S., Van Gastel M., Brecht M., Lubitz W. (2005). An orientation –selected ENDOR and HYSCORE study of the Ni-C active state of Desulfovibrio vulgaris Miyazaki F hydrogenase. J. Biol. Inorg. Chem. 10, 51-62 Cerca con Google

Fontecilla-Camps J.C., Amara P., Cavazza C., Nicolet Y., Volbeda A. (2009). Structure-function relationships of anaerobic gas-processing metalloenzymes. Nature 460, 814-822 Cerca con Google

Fontecilla-Camps J.C., Volbeda A., Cavazza C., Nicolet Y. (2007). Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev. Oct. 107, 4273-4303 Cerca con Google

Frey M. (2002). Hydrogenases: hydrogen-activating enzymes. Chembiochem 3, 152-160 Cerca con Google

Ghirardi M.L., King P.W., Posewitz M.C., Maness P.C., Fedorov A., Kim K., Cohen J., Schulten K., Seibert M. (2005). Approaches to developing biological H(2)-photoproducing organisms and processes. Biochem Soc Trans. 33, 70-72 Cerca con Google

Ghirardi M.L., Posewitz M.C., Maness P.C., Dubini A., Yu J., Seibert M. (2007). Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu. Rev. Plant. Biol. 58, 71-91 Cerca con Google

Gruner I., Frädrich C., Böttger L.H., Trautwein A.X., Jahn D., Härtig E. (2011). Aspartate 141 is the fourth ligand of the oxygen-sensing [4Fe-4S]2+ cluster of Bacillus subtilis transcriptional regulator Fnr. J. Biol. Chem. 286, 2017-2021 Cerca con Google

Hallenbeck P.C., and Benemann J.R. (2002). Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy 27, 1185-1193 Cerca con Google

Hattori M., Jin Y., Nishimasu H., Tanaka Y., Mochizuki M., Uchiumi T., Ishitani R., Ito K., Nureki O. (2009). Structural basis of novel interactions between the small-GTPase and GDI-like domains in prokaryotic FeoB iron transporter. Structure 17, 1345-1355 Cerca con Google

Hurley J.K., Weber-Main A.M., Hodges A.E., Stankovich M.T., Benning M.M., Holden H.M., Cheng H., Xia B., Markley J.L., Genzor C., Gomez-Moreno C., Hafezi R., Tollin G. (1997). Iron-sulfur cluster cysteine-to-serine mutants of Anabaena [2Fe-2S] ferredoxin exhibit unexpected redox properties and are competent in electron transfer to ferredoxin:NADP+ reductase. Biochemistry. 36, 15109-15117. Cerca con Google

Jiang F., McCracken J., Peisach J. (1990). Nuclear quadrupole interactions in copper(II)-diethylentriamine-substituted imidazole complexes and in copper(II) proteins. J. Am. Chem. Soc. 112, 9035-9044. Cerca con Google

Johnson D.C., Dean D.R., Smith A.D., Johnson M.K. (2005). Structure, function, and formation of biological iron-sulfur clusters. Annu. Rev. Biochem. 74, 247–281. Cerca con Google

Kabsch W. (2010). Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 66, 125-132 Cerca con Google

Karlsson R. and Fält A. (1997). Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensor. J. Immunol. Methods 200, 121-133 Cerca con Google

Kim D.H., and Kim M.S. (2011). Hydrogenases for biological hydrogen production. Bioresource Technology 102, 8423–8431 Cerca con Google

King P.W., Posewitz M.C., Ghirardi M.L., Seibert M. (2006). Functional studies of [FeFe]-hydrogenase maturation in an Escherichia coli biosynthetic system. J. Bacteriol. 188, 2163-2172 Cerca con Google

Korbas M., Vogt S., Meyer-Klaucke W., Bill E., Lyon E.J., Thauer R.K., Shima S. (2006) The iron-sulfur cluster-free hydrogenase (Hmd) is a metalloenzyme with a novel iron binding motif. J Biol Chem. 281, 30804-30813 Cerca con Google

Kuchenreuther J.M., Stapleton J.A., Swartz J.R. (2009). Tyrosine, cysteine, and S-adenosyl methionine stimulate in vitro [FeFe] hydrogenase activation. PLoS One 4, e7565 Cerca con Google

Laskowski R.A., Macarthur M.W., Moss D.S., Thornton J.M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283-291 Cerca con Google

Lemon B.J., Peters J.W. (1999). Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum. Biochemistry 38, 12969-73 Cerca con Google

Leslie A.G.W. (2006). The integration of macromolecular diffraction data. Acta Crystallogr. D Biol. Crystallogr. 62, 48-57 Cerca con Google

Lill R. (2009). Function and biogenesis of iron-sulphur proteins. Nature 460, 831-838 Cerca con Google

Lubitz W., Reijerse E.J., Messinger J. (2008). Solar water-splitting into H2 and O2:design principles of photosisystem II and hydrigenases. Energy Environ. Sci. 1, 15-31 Cerca con Google

Lubitz W., Reijerse E., van Gastel M. (2007). [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem Rev. 107, 4331-65 Cerca con Google

Mansy S.S., Xiong Y., Hemann C., Hille R., Sundaralingam M., Cowan J.A. (2002). Crystal structure and stability studies of C77S HiPIP: a serine ligated [4Fe-4S] cluster. Biochemistry. 41, 1195-1201 Cerca con Google

McGlynn S.E., Mulder D.W., Shepard E.M., Broderick J.B., Peters J.W. (2009). Hydrogenase cluster biosynthesis: organometallic chemistry nature's way. Dalton Trans. 22, 4274-85 Cerca con Google

McGlynn S.E., Ruebush S.S., Naumov A.V., Nagy L.E., Dubini A., King P.W., Broderick J.B., Peters, J.W. (2007). In vitro activation of [FeFe]hydrogenase: new insights into hydrogenase maturation. J. Biol. Inorg. Chem. 12, 443-447 Cerca con Google

McGlynn S.E., Shepard E.M., Winslow M.A., Naumov A.V., Duschene K.S., Posewitz M.C., Broderick W.E., Broderick J.B., Peters J.W. (2008). HydF as a scaffold protein in [FeFe] hydrogenase H-cluster biosynthesis. FEBS Lett. 582, 2183-2187 Cerca con Google

Melis A., and Happe T. (2001). Hydrogen production. Green algae as a source of energy. Plant Physiol. 127 (3), 740-748 Cerca con Google

Meyer J. (2007). [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci. 64, 1063-1084 Cerca con Google

Meyer J. (2008). Iron-sulfur protein folds, iron-sulfur chemistry, and evolution. J. Biol. Inorg. Chem. 13, 157-170 Cerca con Google

Moulis J.M., Davasse V., Golinelli M.P., Meyer J. (1996). Quinkal I. The coordination sphere of iron-sulfur clusters: lessons from site-directed mutagenesis experiments. J. Biol. Inorg. Chem. 1, 2-14 Cerca con Google

Mulder D.W., Boyd E.S., Sarma R., Lange R.K., Endrizzi J.A., Broderick J.B., Peters J.W. (2010). Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA(EFG). Nature 465, 248-251 Cerca con Google

Mulder D.W., Ortillo D.O., Gardenghi D.J., Naumov A.V., Ruebush S.S., Szilagy R.K., Huynh B., Broderick J.B., Peters J.W .(2009). Activation of HydA(EFG) requires a preformed [4Fe-4S] cluster. Biochemistry 48, 6240-6248 Cerca con Google

Mulder D.W., Shepard E.M., Meuser J.E., Joshi N., King P.W., Posewitz M.C., Broderick J.B., Peters J.W. (2011). Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure 19, 1038-1052 Cerca con Google

Nicolet Y., Cavazza C., Fontecilla-Camps J.C. (2002). Fe-only hydrogenases: structure, function and evolution. J. Inorg. Biochem. 91, 1-8 Cerca con Google

Nicolet Y., and Fontecilla-Camps J.C. (2012). Structure-function relationships in [FeFe]-hydrogenase active site maturation. J. Biol. Chem. 287, 13532-40 Cerca con Google

Nicolet Y., de Lacey A.L., Vernede X., Fernandez V.M., Hatchikian E.C., Fontecilla-Camps J.C. (2001). Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. J. Am. Chem. Soc. 123, 1596-1601 Cerca con Google

Nicolet Y., Lemon B.J., Fontecilla-Camps J.C., Peters J.W. (2000). A novel FeS cluster in Fe-only hydrogenases. Trends Biochem. Sci. 25, 138-143 Cerca con Google

Nicolet Y., Martin L., Tron C., Fontecilla-Camps J.C. (2010). A glycyl free radical as the precursor in the synthesis of carbon monoxide and cyanide by the [FeFe]-hydrogenase maturase HydG. FEBS Lett. 584, 4197-4202 Cerca con Google

Nicolet Y., Piras C., Legrand P., Hatchikian C.E., Fontecilla-Camps J.C. (1999). Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7, 13-23 Cerca con Google

Nicolet Y., Rubach J.K., Posewitz M.C., Amara P., Mathevon C., Atta M., Fontecave M., Fontecilla-Camps J.C. (2008). X-ray structure of the [FeFe]-hydrogenase maturase HydE from Thermotoga maritima. J. Biol. Chem. 283, 18861-18872 Cerca con Google

Pavlov M., Siegbahn E.M., Blomberg M.R.A., Crabtree R.H. (1998). Mechanism of H−H Activation by Nickel−Iron Hydrogenase. J. Am. Chem. Soc. 120, 548-555 Cerca con Google

Peters J.W., Lanzilotta W.N., Lemon B.J., Seefeldt L.C. (1998). X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282, 1853-58 Cerca con Google

Peters J.W. and Broderick J.B. (2012). Emerging paradigms for complex iron-sulfur cofactor assembly and insertion. Annu. Rev. Biochem. 81, 429-450 Cerca con Google

Peters J.W., Szilagyi R.K., Naumov A., Douglas T. (2006). A radical solution for the biosynthesis of the H-cluster of hydrogenase. FEBS Lett. 580, 363-367 Cerca con Google

Pierik A.J., Hulstein M., Hagen W.R., Albracht S.P. (1998). A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in [Fe]-hydrogenases. Eur. J. Biochem. 258, 572-578 Cerca con Google

Pilet E., Nicolet Y., Mathevon C., Douki T., Fontecilla-Camps J.C., Fontecave M. (2009). The role of the maturase HydG in [FeFe]-hydrogenase active site synthesis and assembly. FEBS Lett. 583, 506-511 Cerca con Google

Posewitz M.C., King P.W., Smolinski S.L., Zhang L., Seibert M., Ghirardi M.L. (2004). Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J. Biol. Chem. 279, 25711-20 Cerca con Google

Rao P.V., and Holm R.H. (2004). Synthetic analogues of the active sites of iron-sulfur proteins. Chem. Rev. 104, 527-559 Cerca con Google

Rubach J.K., Brazzolotto X., Gaillard J., Fontecave M. (2005). Biochemical characterization of the HydE and HydG iron-only hydrogenase maturation enzymes from Thermotoga maritima. FEBS Lett. 579, 5055-5060 Cerca con Google

Rupprecht J., Hankamer B., Mussgnug J.H., Ananyev G., Dismukes C., Kruse O. (2006). Perspectives and advances of biological H2 production in microorganisms. Appl. Microbiol. Biotechnol. 72, 442–449 Cerca con Google

Ruzzene M., Brunati A.M., Sarno S., Donella-Deana A., Pinna L.A. (1999). Hematopoietic lineage cell specific protein 1 associates with and down-regulates protein kinase CK2. FEBS Lett. 461, 32-36 Cerca con Google

Scrima A., and Wittinghofer A. (2006). Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element. EMBO J. 25, 2940-2951 Cerca con Google

Shepard E.M., Boyd E.S., Broderick J.B., Peters J.W. (2011). Biosynthesis of complex iron-sulfur enzymes. Curr Opin Chem Biol. 1, 319-327 Cerca con Google

Shepard E.M., and Broderick J.B. (2010). S-adenosylmethionine and iron-sulfur cluster in biological radical reactions: the radical SAM superfamily. Comprehensive natural products chemistry 8, 625-661 Cerca con Google

Shepard E.M., Duffus B.R., George S.J., McGlynn S.E., Challand M.R., Swanson K.D., Roach P.L., Cramer S.P., Peters J.W., Broderick J.B. (2010). [FeFe]-hydrogenase maturation: HydG-catalyzed synthesis of carbon monoxide. J. Am. Chem. Soc. 132, 9247-9248 Cerca con Google

Shepard E.M., McGlynn S.E., Bueling A.L., Grady-Smit, C.S., George S.J., Winslow M.A., Cramer S.P., Peters J.W., Broderick J.B. (2010). Synthesis of the 2Fe sublcuster of the [FeFe]-hydrogenase H cluster on the HydF scaffold. Proc. Natl. Acad. Sci. U.S.A. 107, 10448-10453 Cerca con Google

Shisler K.A., and Broderick J.B. (2012). Emerging themes in radical SAM chemistry. Curr Opin Struct Biol. 22, 701-710 Cerca con Google

Shima S., and Thauer R.K. (2007). A third type of hydrogenase catalyzing H2 activation. Chem Rec.7, 37-46 Cerca con Google

Shima S., Pilak O., Vogt S., Schick M., Stagni M.S., Meyer-Klaucke W., Warkentin E, Thauer R.K., Ermler U. ( 2008). The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 321, 572-5. Cerca con Google

Silakov A., Wenk B., Reijerse E., Lubitz W. (2009). (14)N HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge. Phys. Chem. Chem. Phys. 11, 6592-6599 Cerca con Google

Sofia H.J., Chen G., Hetzler B.G., Reyes-Spindola JF., Miller N.E. (2001). Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29, 1097-1106 Cerca con Google

Stephenson M., and Stickland L.H. (1931). Hydrogenase: a bacterial enzyme activating molecular hydrogen. I. The properties of the enzyme. Biochem. J. 25, 205–214 Cerca con Google

Stoll S., and Schweiger A. (2006). EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J.Magn. Reson. 178, 42–55 Cerca con Google

Tu C., Zhou X., Tropea J. E., Austin B. P., Waugh D. S., Court D. L., Ji X. (2009). Structure of ERA in complex with the 3’ end of 16S rRNA. Implications for ribosome biogenesis. Proc. Natl. Acad. Sci. U. S. A. 106, 14843-48 Cerca con Google

Valente F.M., Oliveira A.S., Gnadt N., Pacheco I., Coelho A.V., Xavier A.V., Teixeira M., Soares C.M., Pereira I.A. (2005). Hydrogenases in Desulfovibrio vulgaris Hildenborough: structural and physiologic characterisation of the membrane-bound [NiFeSe] hydrogenase. J Biol Inorg Chem. 10, 667-82 Cerca con Google

Vallese F., Berto P., Ruzzene M., Cendron L., Sarno S., De Rosa E., Giacometti G.M., Costantini P. (2012). Biochemical analysis of the interactions between the proteins involved in the [FeFe]-hydrogenase maturation process. J Biol Chem. 287, 36544-55 Cerca con Google

Vignais P.M., and Billoud B. (2007). Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 107, 4206-4272 Cerca con Google

Vignais P.M., Billoud B., Meyer J. (2001). Classification and phylogeny of hydrogenases. FEMS Microbiol Rev. 25, 455-501 Cerca con Google

Volbeda A., Charon M.H., Piras C., Hatchikian E.C., Frey M., Fontecilla-Camps J.C. (1995). Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 16, 580-587 Cerca con Google

Zhang Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 9, 40-47. Cerca con Google

Zhang L., and Melis A. (2002). Probing green algal hydrogen production. Philos Trans R Soc Lond B Biol Sci. 357, 1499-1507 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record