Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Masiero, Alessandra (2008) Ruolo del tubulo renale nella patogenesi della nefropatia diabetica: analisi morfometrica mediante microscopia ottica ed elettronica in pazienti di tipo 2. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

In type 1 diabetes (D1) nephropathy is characterized by glomerular and tubulo-interstitial structural abnormalities. In type 2 diabetes (D2) histological picture is more heterogeneous and in a large proportion of patients tubulo-interstitial structural changes are present in absence of glomerular damage, suggesting an important role of tubular lesions in the pathogenesis of diabetic nephropathy. Aims: to measure in D2 patients with different albumin excretion rate (AER) levels proximal tubular basement membrane width (TBM width), interstitial expansion [Vv(Int/cortex)], the proportion of atrophic tubules [Vv(Ta/Tt)], the proportion of cytoplasmic empty spaces in tubular cells [Vv(ES/cit)], and the relationships with GBM width, Vv(mes/glom) and renal functional parameters.
Matherals and methods: In 42 D2 (16 normoalbuminuric-NA, 16 microalbuminuric-MA and 10 proteinuric-P) HbA1c, albumin excretion rate (AER), glomerular filtration rate (GFR) (plasma clearance of 51Cr-EDTA) and blood pressure were evaluated. Kidney biopsy was performed and by electron and light microscopy TBM and GBM width, Vv(ES/cit), Vv(mes/glom), Vv(Int/cortex) and Vv(Ta/Tt) were evaluated. Results: diabetes duration, BMI, HbA1c, blood pressure and GFR did not differed between groups. TBM width increased in the 3 groups (707±177 nm in NA, 875±225 in MA, 1055±169 in P, Anova < 0.001); GBM width, Vv(mes/glom) and Vv(Ta/Tt) were increased in P than in NA and MA (p<0.005 NA vs P e p<0.05 MA vs P). In P Vv(int/cortex) values were increased when compared with MA (p < 0.05 MA vs P). Vv(ES/cit) values were similar in the 3 groups. Regression analysis showed a direct correlation between TBM width, GBM width (r=0.53, p<0.001) and Vv(mes/glom) (r=0.475, p<0.01). Also Vv(Ta/Tt) was related to GBM width (r=0.48, p<0.01) and Vv(mes/glom) (r=0.64, p<0.0001). Vv(int/cortex) was correlated only to Vv (mes/glom) (r=0.43, p<0.05). Multiple regression analysis between AER and all structural parameters showed a significant correlation only between AER and TBM width (Beta = 0.40, p<0.05). TBM width and HbA1c were also related (r=0.41, p<0.01). Conclusions: TBM thickening is present in D2 patients and plays an important role in the pathogenesis of abnormal AER in these patients. The correlation between TBM width and HbA1c suggests a direct role of hyperglycemia in the pathogenesis of tubular damage.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Fioretto, Paola
Data di deposito della tesi:January 2008
Anno di Pubblicazione:January 2008
Key Words:nefropatia diabetica, tubulo prossimale renale, analisi morfometrica
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/09 Medicina interna
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Scienze Mediche e Chirurgiche
Codice ID:550
Depositato il:11 Sep 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1) Nyengaard JR, Bendtsen TF: Glomerular mumber and size relation to age, kidney weight and body surface in normal man. Anat Rec 232:194,1992 Cerca con Google

2) Wirz H, Hargitay B, Kuhn W: Lokalisation des Konzentrierung-sprozesses in der Niere durch direkte Kryoskopie. Helv Physiol Pharmacol Acta 9:196, 1951 Cerca con Google

3) Jorgensen F: The Ultastructure of the Normal Human Glomerulus. Ejnar Munksgaard, Copenhagen, 1996 Cerca con Google

4) Vasmant D, Maurice M, Feldman G: Cytoskeleton ultrastructure of podocytes and glomerular endothelial cells in man and in the rat. Anat Rec 210:17, 1984 Cerca con Google

5) Mundel P, Elger M, Sakai T, Kriz W: Microfibrils are a major component of the mesengial matrix in the glomerulus of the rat kidney . Cell Tissue Res 254:183, 1998. Cerca con Google

6) Scholondorff D: The glomerular mesangial cell: An expanding role for a specialized pericyte. FASEB J 1:272,1987. Cerca con Google

7) Farquhar MG: The glomerular basement membrane: A selective macromolecular filter. In Hay ED (ed): Cell Biology of Extracellular Matrix. Plenum Publishing, New York, 1981, p 335 Cerca con Google

8) Barajas L: The ultrastructure of the juxtaglomerular apparatus as disclosed by three- dimensional reconstructions from serial sections: The anatomical relationship between tubular and vascular components. J Ultrastruct Res 33:116,1970 Cerca con Google

9) Barajas L, Salido EC, Smolens P, et al: Phatology of the juxtaglomerular apparatus including Bartter’s syndrome. In Tisher CC, Brenner BM Lippincott, Philadelphia, 1989, p877 Cerca con Google

10) Bulger RE: The shape of rat kidney tubular cells. Am J Anat 116:237, 1965 Cerca con Google

11) Welling LW, Welling DJ: Shape of epithelial cells and intercellular channels in the rat proximal nephron. Kidney Int 9:385, 1976. Cerca con Google

12) Welling LW, Welling DJ, Holsapple JW, Evan AP: Morphometric analysis of distinct microanatomy near the base of proximal tubule cells. Am J Phisiol 253:F126, 1987. Cerca con Google

13) Farquar MG, Palde GE: Junctional complexes in various epithelia. J Cell Biol 17:375, 1963. Cerca con Google

14) Bulger RE, Siegel FL, Pendergrass R: Scanning and transmission electron microscopy of the rat kidney. Am J Anat 139:483, 1974. Cerca con Google

15) Maunsbach AB: Observations on the ultrastructure and acid phosphatase activity of the cytoplasmic bodies in the rat kidney proximal tubules, with a comment on their classification. J Ultrastructure Res 16: 197, 1996. Cerca con Google

16) Maunsbach AB: Ultrastructure of the proximal tubule. In Orloff J, Berliner RW (eds): Handbook of Phisiology Society, Washington, DC, 1973, p 31. Cerca con Google

17) Ericsson LJE: Mechanism of cellular autophagy. In Digle IT, Fell HB (eds): Lysosomes in Biology and Pathology, Vol 2, North Holland Publishing, Amsterdam, 1969, p 345. Cerca con Google

18) Christensen EI, Nielsen S: Structural and functional features of protein handling by the kidney proximal tubule. Semin Nephron 11:414, 1991 Cerca con Google

19) Maunsbach AB: Absorption of 125-labeled homologous albumin by rat kidney proximal tubule: A study of microperfused single proximal tubules by electron microscopic autoradiography and histochemestry. J Ultrastruct Res 15: 197, 1966. Cerca con Google

20) Maunsbach AB: Cellular mechanism of tubular protein transport. Int Rev Phisyol 11:145, 1976 Cerca con Google

21) Maack T, Johnson V, Kau ST, et al.: Renal filtration, transport, and metabolism of proteins of low-molecular- weight proteins: A review. Kidney Int 16:251, 1979 Cerca con Google

22) Maack T, Park CH, Camargo MJF: Renal filtration, transport, and metabolism of proteins. In Seldin DW, Giebisch G (eds): The kidney: Physiology and Patophysiology. Raven Press, New York , 1985, p 1773. Cerca con Google

23) Osvaldo L, Latta H: The thin limbs of the loop of Henle. J Ultrastruct Res 15:144, 1967 Cerca con Google

24) Bulger RE, Trumpt BR : Fine structure of thr rat renal papilla. Am J Anat 118:685,1966 Cerca con Google

25) Kaissling B, Kriz W: Structural analysis of the rabbit kidney. Adv Anat Embryol Cell Biol 56, 1979. Cerca con Google

26) Kone BC, Madsen KM, Tisher CC: Ultrastructure of the thick ascending limb of Henle in the rat Kidney. A m J Anat 171: 217, 1984. Cerca con Google

27) Crayen ML, Thoenes W: Architecture and cell structures in the distal nephron of the rat kidney. Cytobiologie 17:197,1978. Cerca con Google

28) Welling LW, Evan AP, Welling DJ: Shape of cell and extracellular channels in rabbit cortical connecting ducts. Kidney Int 20:211, 1981 Cerca con Google

29) Sonnenberg H: Medullary collecting-duct function in antidiuretic and in salt-or water – diuretic rats. Am J Physiol 226:501,1974. Cerca con Google

30) Diezi J, Michound P, Aceves J, Giebisch G: Micropunture study of electrolyte transport across papillary collecting duct of the rat. Am J Physiol 224:623,1973. Cerca con Google

31) Stein JH, Osgood RW, Kunau RT: Direct measurement of papillary collecting duct sodium transport in the rat. J Clin Invest 58:767,1976. Cerca con Google

32) Rocha AS, Kudo LH: Water, urea, sodium, chloride, and potassium transport in the vitro isolated perfused papillary collecting duct. Kidney Int 22:485,1982. Cerca con Google

33) Morgan T, Berliner RW: Permeability of the loop of Henle, vasa recta, and collecting duct to water, urea and sodium. Am J Phosiol 215:108,1968. Cerca con Google

34) Bohman SO: The ultrastructure of the renal medulla and interstitial cells. In Mandal AK, Bohman SO (eds) : The Renal papilla anh Hypertension. Plenum Publishing, New York, 1980, p.7. Cerca con Google

35) Lemley KV, Kriz W: Anatomy of the renal interstitium. Kidney Int 39:370,1991. Cerca con Google

36) Dunmill MS, Halley W: Some observation on the quantitative anatomy of the kidney. J Pathol 110: 113,1973. Cerca con Google

37) Bulger RE, Nagle RB: Ultrastructure of the interstitium I the rabbit kidney. Am J Anat 136: 183,1973. Cerca con Google

38) Bohman SO: The ultrastructure of the renal medulla as observed after improved fixation methods. J Ultrastruct Res 47: 329, 1974. Cerca con Google

39) Bohman SO, Jensen PKA : The interstitial cells in the renal medulla of rat, rabbit, and gerbil in different states of diuresis. Cell Tissue Res 189:1, 1978. Cerca con Google

40) Mauer SM, Steffers MW, Brown DM. The kidney in diabetes. Am J Med, 70: 603-612; 1981 Cerca con Google

41) Harris R.H., Steffes M.W., Sutherland D.E.R., Mauer S.M. Global glomerular sclerosis and arteriolar hyalinosis in insulin-dependent diabetes. Kidney Internat. 40, 107-114; 1991. Cerca con Google

42) Kimmelstiel I., Wilson C. Intercapillary lesions in the glomeruli of the kidney. Am. J. Phatol, 12: 83-105; 1936 Cerca con Google

43) Mauer S.M., Steffes M.W., Ellis E.N., Sutherland d.E.R., Brown D.M., Goetz F.C. Structural-functional relationships in diabetic nephropathy. J. Clin. Invest., 74, 1143-1155; 1984. Cerca con Google

44) Steffes M.W., Bilous R.W., Sutherland D.E.R., Mauer S.M. Cell and matrix components in the glomerular mesangium in type I diabetes. Diabetes 41: 679-84; 1992. Cerca con Google

45) Lane P.H., Steffes M.W., Fioretto P. Mauer S.M. Renal interstitial expansion in insulin-dependent diabetes mellitus. Kidney Int, 43:661-67; 1993 Cerca con Google

46) Brito PL, Fioretto P, Drummond K, Kim Y, Steffes MW, Basgen JM, Sisson-Ross S, Mauer M.: Proximal tubular basement membrane width in insulin-dependent diabetes mellitus. Kidney Int. 1998;53(3):754-61. Cerca con Google

47) Fioretto P. Steffes MW, Sutherland DER, Mauer M. Sequential renal biopsies in IDDM patients: structural factors associated with clinical progression. Kidney Int, 48: 1929-1935; 1995 Cerca con Google

48) Bjorn S.F, Bangstad H-J, Hanssen K.F, Nyberg G, Walker J.D, Viberti G.C, Osterby R. Glomerular epithelial foot processes and filtration slits in IDDM patients. Diabetologia 1995; 38:1197-1204. Cerca con Google

49) Ellis EN, Steffes MW, Goetz FC, et al: Glomerular filtration surface in type I diabetes mellitus. Kidney Int 1986; 29: 889-894. Cerca con Google

50) Parving H-H, Gall M-A, Skott P. Jorgensen HE, Lokkegaard H. Jorgensen F. Nielsen B. Larsen S. Prevalence and causes of albuminuria in non-insulin-dependent diabetic patients. Kidney Int 41: 758-762; 1992. Cerca con Google

51) Gambara V, Mecca G. Remuzzi G. Bertani T. Heterogeneous nature of renal lesions in type II diabetes. JASN 3, 1458-1466; 1993. Cerca con Google

52) Ruggenenti P, Gambara V, Perna A, Bertani T, Remuzzi G. The nephropathy of non insulin dependent diabetes: predictors of outcome relative to diverse patters of renal injury. J Am Soc Nephrol, 1998; 9(12), 2336-2343. Cerca con Google

53) Olsen S. Mogensen CE. Non-diabetic renal disease in NIDDM proteinuric patients may be rare in biopsies from clinical practice. Diabetologia, 39: 1638-1645; 1996 Cerca con Google

54) Waldherr R. ILkenhans C, Ritz E. How frequent is glomerulonephritis in diabetes mellitus type II? Clinical Nephrology, 37: 271-273; 1992 Cerca con Google

55) Kleinknecht D, Bennis D, Altman A, et al. Increased prevalence of non-diabetic renal pathology in type II diabetes mellitus. Nephrol Dial Transplant, 7: 1258-1259; 1992 Cerca con Google

56) Carpenter AM, Goetz FC, LeCompte PM, Williamson JR. Glomerulosclerosis in type 2 (non insulin-dependent) diabetes mellitus: relationship to glycemia at the University Group Diabetes Program (UGDP). Diabetologia, 36: 1057-1063; 1993 Cerca con Google

57) Hayashi H, Karasawa R, Inn H et al. An electron microscopic study of glomeruli in Japanese patients with non-insulin dependent diabetes mellitus. Kidney Int. 41, 749-757; 1992. Cerca con Google

58) Fioretto P., Mauer M., Brocco E., Velussi M., Frigato F., Muollo B., Sambataro M., Abaterusso C., Baggio B., Crepaldi G., Nosadini R. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia, 39, 1569-1576; 1996. Cerca con Google

59) Osterby R, Gall MA, Schmitz A et al. Glomerular Structure and function in proteinuric type 2 (non insulin dependent) diabetic patients. diabetologia 36: 1064- 1070; 1993. Cerca con Google

60) Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD, Rennke HG, Coplon NS, Meyer TW. Podocyte loss and progressive glomerular injury in type 2 diabetes. J Clin Invest, 1997, 99: 342-348. Cerca con Google

61) Meyer T.W., Bennett P.H., Nelson R.G. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia, 1999, 42:1341-1344. Cerca con Google

62) Dalla Vestra M, Masiero A, Roiter AM, Saller A, Crepaldi G, Fioretto P: Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes. Diabetes. 2003 Apr;52(4):1031-5. Cerca con Google

63)Ziyadeh FN, Snipes ER, Watanabe M, Alvarez RJ, Goldfarb S, Haverty TP: High glucose induces cell hypertrophy and stimulates collagen gene transcription in proximal tubule. Am J Physiol 259:F704-F714, 1990 Cerca con Google

64)Johnson DW, Saunders HJ, Baxter RC, Field MJ, Pollock CA: Paracrine stimulation of human renal fibroblast by proximal tubule cells. Kidney Int 54:747- 757, 1998 Cerca con Google

65) Okada H, Danof TM, Kalluri R, Neilson EG: Early role of FSP1 in epithelialmesenchymal transformation. Am J Physiol 42:F563-F574, 1997 Cerca con Google

66)Hooke DH, Gee DC, Atkins RC: Leukocyte analysis using monoclonal antibodies in human glomerulonephritis. Kidney Int 31:964-972, 1987 Cerca con Google

67) Cooper ME: Pathogenesis, prevention and treatment of diabetic nephropathy. Lancet 352:213-219, 1998 Cerca con Google

68) Bleyer AJ, Fumo P, Snipes ER, Goldfarb S, Simmons DA, Ziyadeh FN: Polyol pathway mediates high glucose-induced collagen synthesis in proximal tubule. Kidney Int 45:659-666, 1994 Cerca con Google

69) Kriz W, Hosser H, Hahnel B, Gretz N, Provoost AP: From segmental glomerulosclerosis to total nephron degeneration and interstitial fibrosis: A histopathological study in rat models and human glomerulophaties . Nephron Dial Transplant 13:2781-2798, 1998 Cerca con Google

70) Taft J, Nolan CJ, Yeung SP, Hewitson TD, Martin FIR: Clinical and histological correlations of decline in renal function in diabetic patients with proteinuria. Diabetes 43:1046-1051, 1994 Cerca con Google

71) Gandhi M, Olson JL, Meyer TW: Contribution of tubular injury to loss of remnant kidney function. Kidney Int 54:1157-1165. 1998 Cerca con Google

72) Marcussen N: Atubular glomeruli and the structural basis for chronic renal failure. Lab Invest 66:265-284, 1992 Cerca con Google

73) Behzad Najafian, Younki Kim, John T. Crosson, Michael Mauer: Atubular glomeruli and glomerulotubular junction abnormalities in diabetic nephropathy. J Am Soc Nephrol. 2003 Apr;14(4):908-17. Cerca con Google

74) Bader R, Bader E, Grung KE, Markensen-Haen S, Christ H, Bohole A: Structure and function of the kidney in diabetic glomerulosclerosis: Correletion between morphological and functional parameters. Pathol Res Pract 167:204-216, 1980 Cerca con Google

75) Fioretto P, Stehower CDA, Mauer M, Chiesuracorona M, Brocco E, Carraro A, Bortoloso E, Vanhinsbergh VWM, Crepaldi G, Nosadini R: Heterogeneus nature of microalbuminuria in NIDDM: Studies of endothelial function and renal structure. Diabetologia 41:233-236, 1998 Cerca con Google

76) Mogensen C.E., Christensen C.K., Vittinghus E. The stages in diabetic renal disease: with enphasis on the stage of incipient diabetic nephropathy. Diabetes, 32: 64-78; 1983 Cerca con Google

77) Rudberg S.R., Persson B., Dahlquist G. Increased glomerular filtration rate as a predictor of diabetic nephropathy -An - 8 year prospective study. Kidney Internat., 41: 822-828; 1992 Cerca con Google

78) Mogensen C.E., Andersen M.J.F. Increased kidney size and glomerular filtration rate in early juvenile diabetes. Diabetes 22: 706 712; 1973 Cerca con Google

79) Jones S.L., Wiseman M.J., Viberti G.C. Glomerular hyperfiltration prospective study. Diabetologia, 34, 59-69; 1991 Cerca con Google

80) Myers B.D., Nelson R.G., Williams G.W., Bennet P.H., Hardy S.A., Berg R.L., Loon N., Knowler W.C., Mitch W.E. Glomerular function in Pima Indians in NIDDM of recent onset. J. Clin. Invest., 8, 524 530; 1991 Cerca con Google

81) Vora J., Dolben J. Dean J., Thomas D., Williams J., Owens D., Peters J. Renal hemodynamics in newly presenting non insulin-dependent diabetes mellitus. Kidney Internat. 41: 829-835; 1992 Cerca con Google

82) Schmitz A., Christensen T., Moller A., Mogensen C.E. Kidney function and cardiovascular risk factors in NIDDM with microalbuminuria. J. Int. Med. 228: 347- 352; 1990 Cerca con Google

83) 0sterby R. Early phases in the development of diabetic glomerulopathy. Acta Med. Scand; 200 (Suppl. 574): 1-82; 1975 Cerca con Google

84) Fioretto P., Steffes M. W., Mauer M. Glomerular structure in non proteinuric IDDM patients with various levels of albuminuria Diabetes, 43: 1358-1364; 1994 Cerca con Google

85) Siegel J.E., Krolewski A.S., Warram J.H., Weinstein M.C. Cost effectivenes of screening and early treatment of nephropathy in patients with insulin-dependent diabetes mellitus. J.Am.Soc.Nephrol, 3: 3111-3119; 1992 Cerca con Google

86) Parving H.H., Andersen A.R., Smidt U.M., Svendensen P.A. Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet, 1175-1199, 1983 Cerca con Google

87) Mogensen C.E., Schmitz A., Christensen C.K. Comparative renal pathology relevant to IDDM and NIDDM patients Diabetes/Metabolism Review, 4: 453-483; 1988 Cerca con Google

88) Viberti G.C., Wiseman M.J. The kidney in diabetes: significance of the early abnormalities. Clinic in Endocrinology and Metabolism, 15: 753-782; 1986 Cerca con Google

89) Microalbuminuria Collaborative Study, United Kingdom. Risk factors for development of microalbuminuria in IDDM: a cohort study Br Med. J, 306: 1235- 1239; 1993 Cerca con Google

90) Mathiesen E.R., Rom B., Storm B., Foght H., Deckert T Developmen of microalbuminuria. A 10 year prospective study. Diabetologia, 36: 215-227, 1993. Cerca con Google

91) Mangili R., Bending J.J., Scott G., Li K., Gupta A., Viberti G.C. Increased sodium-lithium countertransport activity in red blood cells of patients with insulin-dependent diabetes and nephropathy. N. Engl. J.Med., 318: 146-150, 1988. Cerca con Google

92) Krolewsky A.S., Canessa M., Warram J.H. Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus.N. Engl. J. Med., 318: 140-145, 1988. Cerca con Google

93) Mogensen C.E., Damsgaard E.M., Froland A., Nielsen S., de Fine Olivarious N., Smith A. Microalbuminuria in NIDDM. Clin. Nephrol., Sl, 528-538, 1992. Cerca con Google

94) Schmitz A. The kidney in NIDDM: studies on glomerular structure and function and the relationships between microalbuminuria and mortality. Acta Diabetol., 29, 47- 69, 1992. Cerca con Google

95) Nelson R.G., Petitt D.S., Baird H.R., Charles M.A., Liu Q.Z., Bennet P.H., Knowler W.C. Prediabetic blood pressure predicts urinary albumin excretion after the onset of type 2 (NIDDM) in PimaIndians. Diabetologia, 36, 998-1001, 1993. Cerca con Google

96) Petitt D.S., Saad M.F., Bennet P.H., Nelson R.G., Knowler W. C. Familial predisposition to renal disease in two generation of Pima Indians with type 2 (NlDDM) diabetes. Diabetologia, 33, 438-443, 1990. Cerca con Google

97) Nielsen S., Schmitz A., Rheling M., Mogensen C.E. Systolic blood pressure relates to the rate of decline of glomerular filtration rate in Type 2 diabetes mellitus. Diabetes Care; 16: 1427-1432;1993. Cerca con Google

98) Ravid M., Savin H., Lang R., Jutrin I., Shoshana L., Lishner M. Proteinuria, renal impairment, metabolic control and blood pressure in Type 2 diabetes mellitus. Arch. Inter. Med.; 152: 1225-1229; 1992. Cerca con Google

99) Gall M.A., Nielsen F.S., Smidt U.M., Parving H.H. The course of kidney function in Type 2 (non insulin-dependent) diabetic patients with diabetic nephropathy. Diabetologia; 36:1071-1078; 1993. Cerca con Google

100) Schmitz A., Vaeth M. Microalbuminuria: a major risk factor in type 2 diabetes. A 10 year follow-up study of 503 patients. Diab Med, 5: 126-134; 1985. Cerca con Google

101) Mogensen C.E. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med, n 310; 1986 Cerca con Google

102) Jarrett R.J., Viberi G.C., Argyropoulos A., Hill R.D., Mahmud U. Murrells T.J. Microalbuminuria predicts mortality in non-insulin dependent diabetes. Diab Med 1: 17-19; 1984 Cerca con Google

103) Stehouwer C.D.A., Nauta J.J.P., Zeldenrust G.C., Hackeng W.H.L., Donker A.J.M., den Ottolander G.J.H. Urinary albumin excretion, cardiovascular disease, and endothelial dysfunction in non-insulin dependent diabetes mellitus. Lancet, 340: 319- 323;1992 Cerca con Google

104) Mogensen C.E. Microalbuminuria as a predictor of clinical diabetic nephropathy. Kidney International, 31: 673-689; 1987. Cerca con Google

105) Camamori ML, Fioretto P, Mauer M. The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient? Diabetes 49: 1399-408; 2000 Cerca con Google

106) Fink P, Romer M. et al. Measurement of proteins with the Behring nephelometer. A multicenter evaluation. J.Clin. Chem. Clin. Biochem; 27: 261- 276;1989 Cerca con Google

107) Di Mario U., Cancelli A., Pietravalle et al. Anionic vs cationic immunoglobulin clearance in normal subjects: a novel approach to the evaluation of charge permeselectivity. Nephron, 55: 400-407;1990 Cerca con Google

108) Viberti G.C. et al. Determinants of the penetration of proteins through the glomerular barrier in insulin dependent diabetes mellitus. Diabetes, 32 (Suppl. 2): 92- 95;1983 Cerca con Google

109) Deckert T., Feldt-Rasmussen B., Djunp R., Deckert M. Glomerular size and charge selectivity in insulin dependent diabetes mellitus. Kid. Int, 33: 100-106;1988 Cerca con Google

110) Deckert T. et al. Size and charge selectivity of glomerular filtration in Type 1 diabetic patients with and without albuminuria. Diabetologia, 36: 244-251; 1993 Cerca con Google

111) Vernier R.L., Steffes M.W., Sisson-Ross S., Mauer S.M: Heparan sulfate proteoglycan in the glomerular basement membrane in Type 1 diabetes mellitus. Kid. Int, 41:1070-1080; 1992 Cerca con Google

112) Brocco E., Fioretto P., Mauer M. et al. Renal structure and function in non insulin dependent diabetic patients with microalbuminuria. Kidney Int; 52: S40- 44;1997 Cerca con Google

113) Deckert T. Felt-Rasmussen B. Borch-Johnsen K, Jensen T. Kofoed Enevoldsen A. Albuminuria reflects widespread vascular damage. Diabetologia, 32: 219-226; 1989 Cerca con Google

114) Parving H.H., Rasmussen SM. Transcapillary escape rate of albumin and plasma volume in short- and long-term juvenile diabetics. Scand. J. Clin. Lab. Invest. 32, 81- 87, 1973. Cerca con Google

115) Parving H.H., Rossing N. Simultaneous determination of the transcapillary escape rate of albumin and IgG in normal and long-term juvenile diabetic subjects. Scand. J. Clin. Lab. Invest. 32, 239-244, 1973. Cerca con Google

116) Feldt-Rasmussen B. Increased transcapillary escape rate of albumin in type I (insulin-dependent) diabetic patients with microalbuminuria Diabetologia, 29, 282- 286, 1986. Cerca con Google

117) Norgaard K., Jensen T., Feldt-Rasmussen B. Trancapillary escape rate of albumin in hypertensive patients with type I (insulin-dependent) diabetes mellitus. Diabetologia, 36, 57-61, 1993. Cerca con Google

118) Porta M., Towsed C., Clover G.M. et al. Evidence for functional endothelial cell damage in early diabetic retinopathy. Diabetologia, 20, 597-601, 1981. Cerca con Google

119) Jensen T. Increased plasma level of von Willebrand factor in insulin dependent diabetic patients with incipient nephropathy. BMJ, 298, 27 28; 1989. Cerca con Google

120) Luetscher J.A., Kramer F.B., Wilson D.M., Schwartz H.C., Bryer-Ash M. Increased plasma inactive renin in diabetes mellitus. A marker of microvascular complications. N. Engl. J. Med., 312, 1412-1417; 1985. Cerca con Google

121) Feldt-Rasmussen B., Mathiesen E.R., Deckert T., et al. Central role for sodium in the pathogenesis of blood pressure changes independent of angiotensin, aldosterone and catecholamines in type 1 (insulin dependent) diabetes mellitus. Diabetologia, 30, 610-617; 1987. Cerca con Google

122) Wilson D.M., Luetscher J.A. Plasma prorenin activity and complications in children with insulin-dependent diabetes mellitus. N. Engl. J. Med., 323, 1101-1106; 1990. Cerca con Google

123) Franken A.A.M., Derkx F.H.M., Man in't Veld A.J. et al. High plasma prorenin in diabetes mellitus and its correlation with some complications. J. Clin. Endocrinol., 71, 1008-1015; 1990. Cerca con Google

124) Chen J.W., Gall M.-A., Deckert M., Jensen J.S., Parving H.H. Increased serum concentration of von Willebrand factor in non insulin dependent diabetic patients with and without diabetic nephropathy. BMJ, 311, 1405-1406; 1995. Cerca con Google

125) Parving H.H., Nielsen F.S., Bang L.E., Smidt U.M., Svedensen T.L., Chen J.W., Gall M.A., Rossing P. Macro-microangiopathy and endothelial dysfunction in NIDDM patients with and without diabetic nephropathy. Diabetologia, 39, 1590- 1597; 1996. Cerca con Google

126) Kearney EM, Mount JN, Watts GF, Slavin BM, Kind PRN, Simple immunoturbidimetric method for determining urinary albumin at low concentration using Cobas-Bio centrifugal analyzer. J Clin. Pathol. 40: 465-468; 1987 Cerca con Google

127) Dunn P.J., Cole R.A., Soeldner J.S. Further development andautomation of a high pressure liquid chromatographic method for determination of HbAlc. Metabolism, 28, 777-779; 1979. Cerca con Google

128) Cockcroft D.W., Gault M.H. Prediction of creatinine clearance from serum creatinine. Nephron, 16, 31-41; 1976. Cerca con Google

129) Sambataro M, Thomaseth K, Pacini G. Robaudo C., Carraro A., Bruseghin M., Brocco E., Abaterusso C., DeFerrari G., Maioli M., Tonolo G.C., Crepaldi G., Nosadini R. Plasma clearance of Cerca con Google

51 Cr-EDTA provides a precise and convenient technique for measurement of glomerular filtration rate in diabetic humans. JASN, 7, 1-10; 1996. Cerca con Google

130) Jensen E. B. , Gundersen H.J.G. , Osterby R. Determination of membrane thickness distribution from orthogonal intercepts. J. Microsc (Oxford), 115: 19-33; 1979 Cerca con Google

131) Thomas MC, Burns WC, Cooper ME. Tubular changes in early diabetic nephropathy. Adv Chronic Kidney Dis. 12: 177-86; 2005 Cerca con Google

132) Ziyadeh FN. Renal tubular basement membrane and collagen type IV in diabetes mellitus. Kidney Int. 43: 114-120; 1993. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record