Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Casiraghi, Mahesh (2013) Early selection of visual information as reflected by lateralized electrophysiological components: The roles of N1pc and N2pc. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF (Tesi Dottorato Mahesh Casiraghi 2013) - Versione accettata
Tesi non accessible per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

3518Kb

Abstract (inglese)

This thesis encompasses part of research I have been doing throughout the last three years of my life. Half of this time was spent in Padua, endorsed by the Department of Developmental and Social Psychology, under the supervision of Professor Roberto Dell'Acqua, and the rest of the time was spent at the Université de Montréal, under the supervision of Professor Pierre Jolicoeur. The precious guidance of these two figures helped me to learn how to properly design, code up, and administer attentional paradigms, and to analyze, interpret, and communicate results they yielded. Going more properly through the topics that will be presented and discussed in this work, we can state with a certain confidence that Chapter 1 is a sort of epistemological foundation, that walks the reader into constructs and models that will then be presented in Chapters 2 and 3. The domain unaware reader will hopefully easily start to step into terminology, methodology, techniques, and questions that will be later considered. Chapter 2 will focus on a work that has just been submitted to Psychophysiology, where a lateralized electroencephalographic component, which we called N1pc, is investigated, and a model for its functional origination is provided. N1pc is so called since it rises early - within the N1 time window - at parietooccipital sites, and it has been previously associated to attentional remapping by means of a model that we tested and partially refused, since it was unable to explain some of our results, and poorly performed when pit against our model. A discussion concerning these two models that aim at explaining the N1pc concludes the Chapter. Chapter 3 is follows a certain continuity with Chapter 2, in as much as it presents the basics of an ongoing work, which is aimed at coupling N1pc, on the basis of the results retrieved in Chapter 2, with N2pc, in identifying the role played by target numerosity and target items distance on the modulation of electrophysiological markers of lateralized attentional deployment. One key issue in this work is the employment of an innovative paradigm - which we called Multi Frame Procedure, or MFP - that represents a possibly promising optimizing tool for a good part of the existing attentional research. Differently from Chapter 2, Chapter 3 reports rather preliminary data, especially if we take into account that one investigated component - the N1pc - has not yet been the subject of considerable amount of research, and that it is further studied by means of a practically new paradigm. The reader wants to threat this Chapter as mainly explorative. We can think of Chapter 4 in terms of a self contained nucleus of field knowledge, which is born as applied and that represents an attempt to bring some scientific method to a ground, namely developmental clinical emotional psychodynamic research, that sees often the hegemony of non properly scientific or empirical grounded approaches. I tried my best to get something useful out of the tool I developed, and I consider Multimedia Story Stems a sort of success. I open sourced the procedure, and I wish more researchers and clinicals will be able to find this technique useful for their purposes. By building this applied tool, I probably matured a series of skills and insights that still drive me today in what I am going to do and make in the next few years. I feel joy in building working useful tools, and thanks to Multimedia Story Stems, I reached this awareness.

Abstract (italiano)

Questa tesi raccoglie parte del lavoro portato avanti nei tre anni appena trascorsi. Metà esatta di questo periodo è stata spesa a Padova, presso le strutture del DPSS e sotto la supervisione del Professor Roberto Dell'Acqua, mentre il tempo rimanente è stato trascorso presso le strutture dell'Université de Montréal, sotto la supervisione del Professor Pierre Jolicoeur. Sotto la preziosa guida di questi due supervisori ho imparato a disegnare, scrivere, somministrare propriamente paradigmi attentivi, nonché ad analizzare, interpretare, e presentare i risultati da essi forniti.
Entrando più nel merito degli argomenti trattati nell'arco del lavoro, possiamo dire che il Capitolo 1 costituisce una sorta di base epistemologica, con il compito di aiutare il lettore a circoscrivere il focus sui costrutti ed i modelli che verranno poi presentati nei successivi Capitoli 2 e 3, e ad introdurre quelli che sono i termini delle metodologie, delle tecniche, e dei problemi investigati in quella sede.

Il Capitolo 2 si focalizza su un lavoro al momento sottomesso a Psychophysiology, all'interno del quale una nuova componente elettroencefalografica lateralizzata - soprannominata N1pc in quanto occorrente nel dominio temporale della più nota componente N1 dell'ERP - viene indagata, ed un modello in grado di spiegare parzialmente la sua origine funzionale è proposto in alternativa ad un modello già proposto in letteratura, che si rivela non propriamente capace di spiegare alcuni risultati da noi ritrovati. Una discussione in merito ad N1pc ed al nostro modello trova luogo al termine del Capitolo. Il Capitolo 3 presenta una continuità piuttosto marcata con il Capitolo 2, nella misura in cui illustra i punti saldi di un lavoro attualmente in fase di svolgimento, il quale si propone di affiancare la N1pc, sulla base delle conoscenze offerte dal lavoro presentato nel Capitolo 2, alla più conosciuta N2pc, nell'identificazione del ruolo giocato da target numerosity e target items distance nella modulazione dei marker elettrofisiologici di deployment attentivo lateralizzato. Uno dei punti chiave del lavoro é costituito dall'utilizzo di un paradigma innovativo, che abbiamo definito con il nome di Multi Frame Procedure, e che rappresenta un possibile strumento di ottimizzazione potenzialmente applicabile alla pressoché totalità della presente ricerca attentiva. Al contrario di Capitolo 2, Capitolo 3 riporta risultati piuttosto preliminari, e rivolgendosi all'investigazione di una componente - la N1pc - ancora poco studiata, mediante un paradigma innovativo, presenta forte carattere esplorativo. Possiamo pensare al Capitolo 4 in termini autocontenitivi, nella misura in cui lo abbiamo detto presentare e validare una variante di uno strumento clinico da me ideata, costruita, e sviluppata, in un dominio della psicologia relativamente lontano, per certi versi, da quello cui Capitoli 1-3 fanno riferimento. Lo strumento é stato ideato e parzialmente sviluppato nell'arco della mia laurea specialistica, ed il lavoro portato avanti con il dottorato vedrà presto la pubblicazione. Mi auspico ricercatori e clinici possano trovare lo strumento utile per scopi di ricerca nell'ambito dello sviluppo emotivo. Costruire uno strumento di quel applicato, inoltre, mi ha dato modo di comprendere che lo sviluppo di strumenti operativi é un intorno di competenze e di attività nel quale trovo gratificazione interagire.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Dell'Acqua, Roberto
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > SCIENZE PSICOLOGICHE > SCIENZE COGNITIVE
Data di deposito della tesi:27 Gennaio 2013
Anno di Pubblicazione:26 Gennaio 2013
Parole chiave (italiano / inglese):Attention, Electrophysiology, Lateralized activity, N1pc, N2pc, Developmental Attachment, Story Stems.
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/02 Psicobiologia e psicologia fisiologica
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia dello Sviluppo e della Socializzazione
Codice ID:5527
Depositato il:25 Ott 2013 11:30
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Aguirre, G. K., Zarahn, E., & D'Esposito, M. (1998). An area within human ventral cortex sensitive to ‘building’ stimuli: Evidence and implications. Neuron, 21, 373–383. Cerca con Google

Arruda, J.E., Amoss, R.T., Kizer, L.D., & Coburn, K.L. (2002). The P2 visual evoked potential and the diagnosis of probable Alzheimer’s dementia: A psychometric study. International Journal of Psychophysiology, 45, 153. Cerca con Google

Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5, 119–126. Cerca con Google

Bahcall, D. O., & Kowler, E. (1999). Illusory shifts in perceived visual direction accompany adaptation of saccadic eye movements. Nature, 400, 864–866. Cerca con Google

Bar, M. (2003). A cortical mechanism for triggering top–down facilitation in visual object recognition. Journal of Cognitive Neuroscience. 15, 600–609. Cerca con Google

Bentin S, Allison T, Puce A, Perez E, McCarthy G. Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8, 551–565. Cerca con Google

Berger, H. (1929). Uber das elektroenkephalogramm des menschen. Archiv fur Psychiatrie und Nervenkrankheiten, 87, 527–570. Cerca con Google

Boussaoud, D., & Bremmer, F. (1999). Gaze effects in the cerebral cortex: Reference frames for space coding and action. Experimental Brain Research, 128, 170–180. Cerca con Google

Blangero, A., Khan, A., Rode, G., Rossetti, Y., & Pisella, L. (2011). Dissociation between intentional and automatic remapping: Different levels of inter-hemispheric transfer. Vision Research, 51, 932–939. Cerca con Google

Bles, M., Schwarzbach, J., De Weerd, P., Goebel, R., & Jansma, B. M. (2006). Receptive field size-dependent attention effects in simultaneously presented stimulus displays. Neuroimage, 30, 506–11. Cerca con Google

Brisson, B., Leblanc, E., and Jolicoeur, P. (2009). Contingent capture of visual-spatial attention depends on capacity-limited central mechanisms: evidence from human electrophysiology and the psychological refractory period. Biological Psychology, 80, 218–225. Cerca con Google

Brisson, B., & Jolicœur, P. (2007a). Early crossmodal multitasking interference revealed by event-related potentials. Visual Cognition, 15, 77–80. Cerca con Google

Brisson, B., & Jolicœur, P. (2007b). A psychological refractory period in access to visual short-term memory and the deployment of visual-spatial attention: Multitasking processing deficits revealed by event-related potentials. Psychophysiology, 44, 323–333. Cerca con Google

Brisson, B., & Jolicœur, P. (2007c). The N2pc component and stimulus duration. NeuroReport, 18, 1163–1166. Cerca con Google

Callaway, E., & Halliday, R. (1982). The effect of attentional effort on visual evoked potential N1 latency. Psychiatry Research, 7, 299–308. Cerca con Google

Calvanio, R., Petrone, P. N., Levine, D. N. (1987). Left visual spatial neglect is both environment-centered and body-centered. Neurology, 37, 1179–83. Cerca con Google

Cepeda, N. J., Cave, K. R., Bichot, N. P., & Kim, M. S. (1998). Spatial selection via feature-driven inhibition of distractor locations. Perception and Psychophysics, 60, 727–746. Cerca con Google

Clark, V. P., Fan S., & Hillyard, S. (1995). Identification of early visual evoked potential generators by retinotopic and topographic analyses. Human Brain Mapping, 2, 170–187. Cerca con Google

Colby, C. E., & Goldberg, M. E. (1999). Space and attention in parietal cortex. Annual Review of Neuroscience, 22, 319–349. Cerca con Google

Comerchero, M. D., Polich, J. (1999). P3a and P3b from typical auditory and visual stimuli. Clinical Neurophysiology, 110, 24–30. Cerca con Google

Corballis, M. C., Nagourney, B. A., Shetzer, L. I., & Stefanatos, G. (1978). Mental rotation under head tilt: Factors influencing the location of the subjective reference frame. Perception & Psychophysics, 24, 263–273. Cerca con Google

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Review of Neuroscience, 3, 201–215. Cerca con Google

Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behavioral Brain Science, 24, 87–114. Cerca con Google

Currie, C., McConkie, G., Carlson-Radvansky, L. A., & Irwin, D. E. (2000). The role of the saccade target object in the perception of a visual stable world. Perception & Psychophysics, 62, 673-683. Cerca con Google

Cutzu. F., & Tsotsos, J. (2003). The selective tuning model of attention: psychological evidence for a suppressive annulus around an attended item. Vision Research, 43, 205–219. Cerca con Google

Danziger, S., Kingstone, A., & Ward, R. (2001). Environmentally defined frames of reference: Their sensitivity to spatial cues and attention, and their timecourse. Journal of Experimental Psychology: Human Perception and Performance, 27, 494–503. Cerca con Google

Davis, H., Davis, P. A., Loomis, A. L., Harvey, E. N., & Hobart, G. (1939). Electrical reactions of the human brain to auditory stimulation during sleep. Journal of Neurophysiology, 2, 500–514. Cerca con Google

De Jong, R., Wierda, M., Mulder, G., Mulder, L. J. M., 1988. Use of partial stimulus information in response processing. Journal of Experimental Psychology, Human Perception and Performance, 14, 682–692. Cerca con Google

Dehaene, S., Kerszberg, M., & Changeux, J.-P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences, 95, 14529–14534 Cerca con Google

Dell’Acqua, R., Sessa, P., Jolicœur, P., & Robitaille, N. (2006). Spatial attention freezes during the attention blink. Psychophysiology, 43, 394–400. Cerca con Google

Dell'Acqua, R., Sessa, P., Toffanin, P., Luria, R., & Jolicœur, P. (2010). Orienting attention to objects in visual short-term memory. Neuropsychologia, 48, 419–428. Cerca con Google

Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. Cerca con Google

Di Russo, F., Martinez, A., & Hillyard, S. A. (2003). Source analysis of event-related cortical activity during visuo-spatial attention. Cerebral Cortex, 13, 486–499. Cerca con Google

Doallo, S., Lorenzo-López, L., Vizoso, C., Rodríguez Holguín, S., Amenedo, E., Bará, S., & Cadaveira, F. (2004). The time course of the effects of central and peripheral cues on visual processing: An event-related potentials study. Clinical Neurophysiology, 115, 199–210. Cerca con Google

Doallo, S., Lorenzo-López, L., Vizoso, C., Rodríguez Holguín, S., Amenedo, E., Bará, S., & Cadaveira, F. (2005). Modulations of the visual N1 component of event-related potentials by central and peripheral cueing. Clinical Neurophysiology, 116, 807–820. Cerca con Google

Donchin, E. (1981). Surprise! . . .. Surprise? Psychophysiology, 18, 493–515. Cerca con Google

Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and locations: Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General, 123, 161–177. Cerca con Google

Eimer, M. (1994). An ERP study on visual-spatial priming with peripheral onsets. Psychophysiology, 31, 154–163. Cerca con Google

Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99, 225–234. Cerca con Google

Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 20, 1423–1433. Cerca con Google

Eimer, M., & Schroger, E. (1998). Erp effects of intermodal attention and cross-modal links in spatial attention. Psychophysiology, 35, 313–327. Cerca con Google

Eimer, M., & Kiss, M. (2010). Top-down search strategies determine attentional capture in visual search: Behavioral and electrophysiological evidence. Attention, Perception, & Psychophysics, 72, 951–962. Cerca con Google

Fahrenfort, J. J., Scholte, H. S., Lamme, V. A. (2007). Masking disrupts reentrant processing in human visual cortex. Journal of Cognitive Neuroscience, 19, 1488–1497. Cerca con Google

Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044. Cerca con Google

Folk, C. L., Remington, R. W., & Wu, S.C (2009). Additivity of abrupt onset effects supports nonspatial distraction, not the capture of spatial attention. Attention, Perception, and Psychophysics, 71, 308–13. Cerca con Google

Foti, D., Hajcak, G., & Dien, J. (2009). Differentiating neural responses to emotional pictures: Evidence from temporal-spatial PCA. Psychophysiology, 46, 521–530. Cerca con Google

Freunberger, R., Klimiesch, W., Doppelmayr, M & Holler, Y. (2007). Visual P2 component is related to theta phase-locking. Neuroscience Letters, 426, 181–186. Cerca con Google

Funes , M. J., Lupiáñez, J., & Milliken, B. (2005). The role of Spatial Attention and other processes on the magnitude and time course of cueing effects. Cognitive Processing - International Quarterly of Cognitive Science, 6, 98–116. Cerca con Google

Galati, G., Pelle, G., Berthoz, A., & Committeri, G. (2010). Multiple reference frames used by the human brain for spatial perception and memory. Experimental Brain Research, 206, 109–120. Cerca con Google

Gao, Z., Li, J., Liang, J., Chen, H., Yin, J., & Shen, M. (2009). Storing fine detailed information in visual working memory—Evidence from event-related potentials. Journal of Vision, 17, 1–12. Cerca con Google

Giard, M. H., & Peronnet, F., 1999. Auditory-visual integration during multimodal object recognition in humans: A behavioral and electrophysiological study. Journal of Cognitive Neuroscience, 11 (5), 473–490. Cerca con Google

Girelli, M., & Luck, S. J. (1997). Are the same attentional mechanisms used to detect visual search targets defined by color, orientation, and motion? Journal of Cognitive Neuroscience, 9, 238–253. Cerca con Google

Goldsmith, M., & Yeari, M. (2003). Modulation of object-based attention by spatial focus under endogenous and exogenous orienting. Journal of Experimental Psychology: Human Perception & Performance, 29, 897–918. Cerca con Google

Golomb, J. D., Chun, M. M., & Mazer, J. A. (2008). The native coordinate system of spatial attention is retinotopic. Journal of Neuroscience, 28, 10654–10662. Cerca con Google

Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15, 20–25. Cerca con Google

Gratton, G., Coles, M. G. H., Sirevaag, E. J., Eriksen, C. W., & Donchin, E. (1988). Pre- and post-stimulus activation of response channels: A psychophysiological analysis. Journal of Experimental Psychology: Human Perception and Performance, 14, 331–344. Cerca con Google

Harmony, T., Alba, A., Marroquín, J. L., & González-Frankenberger, B. (2009). Time-frequency-topographic analysis of induced power and synchrony of EEG signals during a Go/No-Go task. International Journal of Psychophysiology, 71, 9–16. Cerca con Google

Heil, M., Osman, A., Wiegalman, J., Rolke, B., & Hennighausen, E. (2000). N200 in the Eriksen-Task: Inhibitory Executive Processes?. Journal of Psychophysiology, 14, 218–225. Cerca con Google

Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21, 760–775. Cerca con Google

Hickey, C., McDonald, J. J., & Theeuwes, J. (2006). Electrophysiological evidence of the capture of attention. Journal of Cognitive Neuroscience,18, 604-613. Cerca con Google

Hickey, C., & Theeuwes, J., (2011). Context and competition in the capture of visual attention. Attention, Perception, & Psychophysics, 73, 2053–2064. Cerca con Google

Hilimire, M. R., Mounts, J. R. W., Parks, N. A., & Corballis, P. M. (2009). Competitive interaction degrades target selection: An ERP study. Psychophysiology, 46, 1080–1089. Cerca con Google

Hilimire, M. R., Mounts, J. R. W., Parks, N. A., & Corballis, P. M. (2010). Event-related potentials dissociate effects of salience and space in biased competition for visual representation. PLoS ONE, 5, e12677. Cerca con Google

Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences, 95, 781–787. Cerca con Google

Hillyard, S. A., & Galambos, R. (1970). Eye movement artifact in the CNV. Electroencephalography and Clinical Neurophysiology, 28, 173–182. Cerca con Google

Hillyard, S. A., Mangun, G. R., Luck, S. J., & Heinze, H. J. (1990). Electrophysiology of visual attention. In E. R. John, T. Harmony, L. Prichep, M. Valdez, & P. Valdez (Eds.), Machinery of the Mind (pp. 186–205). Boston (USA): Birkhausen. Cerca con Google

Hillyard, S. A., & Münte, T. F. (1984). Selective attention to color and location: An analysis with event-related brain potentials. Perception and Psychophysics, 36, 185–198. Cerca con Google

Hillyard, S. A., Vogel, E. K., & Luck, S. J. (1998). Sensory gain control (amplification) as a mechanism of selective attention: Electrophysiological and neuroimaging evidence. Philosophical Transactions of the Royal Society: Biological Sciences, 353, 125. Cerca con Google

Höffken, O., Grehl, T., Dinse, H. R., Tegenthoff, M., & Bach, M. (2008). Paired-pulse behavior of visually evoked potentials recorded in human visual cortex using patterned paired-pulse stimulation. Experimental Brain Research, 188, 427–435. Cerca con Google

Hommel, B. (1993a). The role of attention for the Simon effect. Psychological Research, 55, 208–222. Cerca con Google

Hommel, B. (1993b). Inverting the Simon effect by intention: Determinants of direction and extent of effects of irrelevant spatial information. Psychological Research, 55, 270–279. Cerca con Google

Hopf, J.-M., Boehler, C. N., Luck, S. J., Tsotsos, J. K., Heinze, H. J., & Schoenfeld, M. A. (2006). Direct neurophysiological evidence for spatial suppression surrounding the focus of attention in vision. Proceedings of the National Academy of Science, 103, 1053–8. Cerca con Google

Hopf, J.-M., Luck, S. J., Girelli, M., Hagner, T., Mangun, G. R., Scheich, H., & Heinze, H.-J. (2000). Neural sources of focused attention in visual search. Cerebral Cortex, 10, 1233–1241. Cerca con Google

Hopf, J.-M., Vogel, E. K., Woodman, G. F., Heinze, H.-J., & Luck, S. J. (2002). Localizing visual discrimination processes in time and space. Journal of Neurophysiology, 88, 2088–2095. Cerca con Google

Hsu, C., Tsai, J., Lee, C., & Tzeng, O. (2009). Orthographic combinability and phonological consistency effects in reading Chinese phonograms: An event-related potential study. Brain & Language, 109, 55–66. Cerca con Google

Ito, M., Sugata, T., Kuwabara, H., Wu, C., & Kojima, K. (1999). Effects of angularity of the figures with sharp and round corners on visual evoked potentials. Japanese Psychological Research, 41, 91–101. Cerca con Google

Jack, A. I., Patel, G. H., Astafiev, S. V., Snyder, A. Z., Akbudak, E., Shulman, G. L., & Corbetta, M. (2007). Changing human visual field organization from early visual to extra-occipital cortex. PLoS ONE, 2(5), e452. Cerca con Google

Jeffreys, D. A. (1989). A face-responsive potential recorded from the human scalp. Experimental Brain Research, 78, 193–202. Cerca con Google

Jeffreys, D. A., Axford J. G. (1972a). Source locations of pattern-specific component of human visual evoked potentials. I. Component of striate cortical origin. Experimental Brain Research, 16, 1–21. Cerca con Google

Jeffreys, D. A., Axford J. G. (1972b). Source locations of pattern-specific component of human visual evoked potentials. II. Component of extrastriate cortical origin. Experimental Brain Research, 16, 22–40. Cerca con Google

Jiang, Y., Olson, I. R., & Chun, M. M. (2000). The organization of visual short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 683–702. Cerca con Google

Johannes, S., Munte, T. F., Heinze, H. J., & Mangun, G. R. (2003). Luminance and spatial attention effects on early visual processing. Cognitive Brain Research, 2, 189–205. Cerca con Google

Johnson, R. (1986). A triarchic model of P300 amplitude. Psychophysiology, 23, 367–384. Cerca con Google

Jolicœur, P., Brisson, B., & Robitaille, N. (2008). Dissociation of the N2pc and Sustained Posterior Contralateral Negativity in a Choice Response Task. Brain Research, 1215, 160–172. Cerca con Google

Jolicœur, P., & Dell'Acqua, R. (1999). Attentional and structural constraints on visual encoding. Psychological Research, 62, 154–164. Cerca con Google

Jolicœur, P., & Kosslyn, S. M. (1983). Coordinate systems in the long-term memory representation of three-dimensional shapes. Cognitive Psychology, 15, 301–345. Cerca con Google

Jolicœur, P., Sessa, P., Dell’Acqua, R., & Robitaille, N. (2006a). Attentional control and capture in the attentional blink paradigm: Evidence from human electrophysiology. European Journal of Cognitive Psychology, 18, 560–578. Cerca con Google

Jolicœur, P., Sessa, P., Dell’Acqua, R., & Robitaille, N. (2006b). On the control of visual spatial attention: Evidence from human electrophysiology. Psychological Research, 70, 414–424. Cerca con Google

Kastner, S., De Weerd, P., Pinsk, M. A., Elizondo, M. I., Desimone, R., & Ungerleider, L. G. (2001). Modulation of sensory suppression: Implications for receptive field sizes in the human visual cortex. Journal of Neurophysiology, 86, 1398–1411. Cerca con Google

Kehrer, S., Kraft, A., Irlbacher, K., Koch, S. P., Hagendorf, H., Kathmann, N., Brandt, S.A. (2009). Electrophysiological evidence for cognitive control during conflict processing in visual spatial attention. Psychological Research, 73, 751–761. Cerca con Google

Kelly, S. P., Gomez-Ramirez, M., & Foxe, J. J. (2008). Spatial Attention Modulates Initial Afferent Activity in Human Primary Visual Cortex. Cerebral Cortex, 18, 2629-36. Cerca con Google

Kirmizialsan, E., Bayraktaroglu, Z., Gurvit, H., Keskin, Y., Emre, M., Demiralp, T. (2006). Comparative analysis of event-related potentials during Go/NoGo and CPT: Decomposition of electrophysiological markers of response inhibition and sustained attention. Brain Research, 1104, 114–128. Cerca con Google

Kisley, M. A., & Cornwell, Z. M. (2006). Gamma and beta neural activity evoked during a sensory gating paradigm: Effects of auditory, somatosensory and cross-modal stimulation. Clinical Neurophysiology,117, 2549–2563. Cerca con Google

Kiss, M., Jolicœur, P., Dell’Acqua, R., & Eimer, M. (2008). Attentional capture by visual singletons is mediated by top-down task set: New evidence from the N2pc component. Psychophysiology, 45, 1013–1024. Cerca con Google

Koene, A., & Zhaoping, L. (2007). Feature-specific interactions in salience from combined feature contrasts: Evidence for a bottom-up saliency map in V1. Journal of Vision, 7, 1–14.. Cerca con Google

Kohn, A. (2007). Visual adaptation: Physiology, mechanisms, and functional benefits. Journal of Neurophysiology, 97, 3155–3164. Cerca con Google

Kok, A. (1997). Event-related-potential (ERP) reflections of mental resources: A review and synthesis. Biological Psychology, 45, 19–56. Cerca con Google

Lamme, V. A., Supèr, H., Landman, R., Roelfsema, P. R., Spekreijse, H. (2000). The role of primary visual cortex (V1) in visual awareness. Vision Research, 40, 1507-1521. Cerca con Google

Leblanc, É., Prime, D., & Jolicœur, P. (2008). Tracking the location of visuospatial attention in a contingent capture paradigm. Journal of Cognitive Neuroscience, 20, 657–671. Cerca con Google

Leber, A. B., & Egeth, H. E. (2006). It’s under control: Top-down search strategies can override attentional capture. Psychonomic Bulletin & Review, 13, 132–138. Cerca con Google

Lu, C. H., & Proctor, R. W. (1995). The influence of irrelevant location information on performance: A review of the Simon effect and Congruency effects. Psychonomic Bulletin & Review, 2, 174–207. Cerca con Google

Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77, 24–42. Cerca con Google

Luck, S. J., Heinze, H. J., Mangun, G. R., & Hillyard, S. A. (1990). Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalography and Clinical Neurophysiology, 75, 528–542. Cerca con Google

Luck, S. J., & Hillyard, S. A. (1994a). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31, 291–308. Cerca con Google

Luck, S. J., & Hillyard, S. A. (1994b). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20, 1000–1014. Cerca con Google

Luck, S. J., Girelli, M., McDermott, M., & Ford, M. (1997). Bridging the gap between monkey neurophysiology and human perception: An ambiguity resolution theory of visual selective attention. Cognitive Psychology, 33, 64–87. Cerca con Google

Luck, S. J. & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. Cerca con Google

Luo, C., Lupiáñez, J., Funes M. J., & Fu X. (2010). Modulation of spatial Stroop effect by object-based attention but not by space-based attention. The Quarterly Journal of Experimental Psychology, 63, 516–530. Cerca con Google

Lupiáñez, J., & Funes, M. J. (2005). Peripheral spatial cues modulate spatial congruency effects: Analysing the “locus” of the cueing modulation. European Journal of Cognitive Psychology, 17, 727–752. Cerca con Google

Luria, R., Sessa, P., Gotler, A., Jolicoeur, P., & Dell'Acqua, R. (2009). Visual short-term memory capacity for simple and complex objects. Journal of Cognitive Neuroscience, 22, 496–512. Cerca con Google

Makeig, S., Westerfield, M., Townsend, J., Jung, T-P., Courchesne, E., & Sejnowski, T. J. (1999). Functionally independent components of early event-related potentials in a visual spatial attention task. Philosophical Transactions of the Royal Society: Biological Sciences, 354, 1135–1144. Cerca con Google

Mangun, G. R. (1995). Neural mechanisms of visual selective attention. Psychophysiology, 32, 4–18. Cerca con Google

Mangun, G. R., & Hillyard, S. A. (1991). Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. Journal of Experimental Psychology: Human Perception and Performance, 17, 1057–1074. Cerca con Google

Mangun, G. R., Hillyard, S. A., & Luck, S. J. (1993). Electrocortical substrates of visual selective attention. In D. Meyer & S. Kornblum (Eds.), Attention and Performance XIV (pp. 219–243). Cambridge, Massachusetts: MIT Press. Cerca con Google

Marr, D. (1982). Vision. San Francisco: Freeman. Cerca con Google

Martinez, A., Teder-Salejarvi, W., Vazquez, M., Molholm, S., Foxe, J. J., Javitt, D. C., Di Russo, F., Worden, M. S., & Hillyard, S. A. (2006). Objects are highlighted by spatial attention. Journal of Cognitive Neuroscience, 18, 298–310. Cerca con Google

Martinez-Trujillo, J., & Treue, S., (2002) Attentional modulation strength in cortical area MT depends on stimulus contrast. Neuron, 35, 365–370. Cerca con Google

Mazza, V., & Caramazza, A. (2011). Temporal brain dynamics of multiple object processing: The flexibility of individuation. PLoS ONE, 6, e17453. Cerca con Google

McCarley, J. S., Mounts, J. R. W., & Kramer, A. F. (2004). Age-related differences in localized attentional interference. Psychology & Aging, 19, 203–210. Cerca con Google

McCarley, J. S., & Mounts, J. R. W. (2007). Localized attentional interference affects object individuation, not feature detection. Perception, 36, 17–32. Cerca con Google

McCollough, A. W., Machizawa, M. G., & Vogel, E. K. (2007). Electrophysiological measures of maintaining representations in visual working memory. Cortex, 43, 77-94. Cerca con Google

McMullen, P. A., & Jolicœur, P. (1990). The spatial frame of reference in object naming and discrimination of left-right reflections. Memory & Cognition, 18, 99–115. Cerca con Google

Melcher, D. (2009). Selective attention and the active remapping of object features in trans-saccadic perception. Vision Research, 49, 249–1255. Cerca con Google

Miller, J., & Hackley, S.A. (1992). Electrophysiological evidence for temporal overlap among contingent mental processes. Journal of Experimental Psychology: General, 121, 195–209. Cerca con Google

Mounts, J. R. W. (2000). Evidence for suppressive mechanisms in attentional selection: Feature singletons produce inhibitory surrounds. Perception & Psychophysics, 62, 969–983. Cerca con Google

Neggers, S. F. W., van der Lubbe, R. H. J., Ramsey, N. F., & Postma, A. (2006). Interactions between ego- and allocentric neural representations of space. NeuroImage, 15, 320­–331. Cerca con Google

Niedermeyer, E. & Lopes da Silva, F. (2004). Electroencephalography: Basic principles, clinical applications, and related fields, 5th ed., Williams & Wilkins, Baltimore. Cerca con Google

Olson, C. R. (2003). Brain representation of object-centered space in monkeys and humans. Annual Review of Neuroscience, 26, 331–354. Cerca con Google

Omoto, S., Kuroiwa, Y., Otsuka, S., Baba, Y., Wang, C., Li, M., Mizuki, N., Ueda, N., Koyano, & Suzuki, Y. (2010). P1 and P2 components of human visual evoked potentials are modulated by depth perception of 3-dimensional images. Clinical Neurophysiology, 121, 386–391. Cerca con Google

Oriet, C., Tombu, M., & Jolicœur, P. (2005). Symbolic distance affects two processing loci in the number comparison task. Memory & Cognition, 33, 913–926. Cerca con Google

Phillips, W.A. (1974). On the distinction between sensory storage and short-term visual memory. Perception & Psychophysics, 16, 283–290. Cerca con Google

Polich, J. (2003). Overview of P3a and P3b. In: Polich J., Editor. Detection of change: event-related potential and fMRI findings. Boston, MA: Kluwer, 83–98. Cerca con Google

Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128–48. Cerca con Google

Posner, M. I. (1978). Chronometric explorations of mind. Hillsdale, NJ: Erlbaum. Cerca con Google

Posner, M. I., & Petersen, S.E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42. Cerca con Google

Rauss, K. S., Pourtois, G., Vuilleumier, P., & Schwartz, S. (2009). Attentional load modifies early activity in human primary visual cortex. Hum Brain Mapping, 30, 1723–1733. Cerca con Google

Rensink, R. A., O'Regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8, 368–373. Cerca con Google

Reuter-Lorenz, P., Drain, M., & Hardy-Morais, C. (1996). Object centered attentional biases in the intact brain. Journal of Cognitive Neuroscience, 8, 540–550. Cerca con Google

Reynolds, J. H., & Heeger, D. J., (2009). The normalization model of attention. Neuron, 61, 168–185. Cerca con Google

Robitaille, N., Grimault, S., & Jolicoeur, P. (2009). Bilateral parietal and contralateral responses during maintenance of unilaterally encoded objects in visual short-term memory: evidence from magnetoencephalography. Psychophysiology, 46, 1090–9. Cerca con Google

Robitaille, N., & Jolicœur, P. (2006). Effect of cue-target interval on the N2pc. NeuroReport, 17, 1655–1658. Cerca con Google

Rossion, B., Curran, T., Gauthier, I. (2002). A defense of the subordinate level- expertise account for the N170 component. Commentary. Cognition, 85, 189–196. Cerca con Google

Rouder, J. N., Morey, R. D., Cowan, N. C., Zwilling, C. E., Morey, C. C., & Pratte, M. S. (2008). An Assessment of Fixed Capacity Models of Short-Term Memory. Proceedings of the National Academy of Science, 105, 5976–5979. Cerca con Google

Rubichi, S., Nicoletti, R., Iani, C., & Umiltà, C. (1997). The Simon effect occurs relative to the direction of an attention shift. Journal of Experimental Psychology: Human Perception and Performance, 23, 1353–64. Cerca con Google

Rubichi, S., Vu, K.-P. L., Nicoletti, R., & Proctor, R. W. (2006). Spatial coding in two dimensions. Psychonomic Bulletin & Review, 13, 201–216. Cerca con Google

Rugg, M. D., Milner, A. D., Lines, C. R., & Phalp, R. (1987). Modulations of visual event-related potentials by spatial and non-spatial visual selective attention. Neuropsychologia, 25, 85–96. Cerca con Google

Sapir, A., Hayes, A., Henik, A., Danziger, S., & Rafal, R. (2004). Parietal lobe lesions disrupt saccadic remapping of inhibitory location tagging. Journal of Cognitive Neuroscience, 16, 503–509. Cerca con Google

Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72, 1455–1470. Cerca con Google

Schendan, H. E., Ganis, G., & Kutas, M. (1998). Neurophysiological Evidence for Visual Perceptual Categorization of Words and Faces within 150 ms. Psychophysiology, 35, 240–251. Cerca con Google

Schmitt, B. M., Münte, T. F., & Kutas, M. (2000). Electrophysiological estimates of the time course of semantic and phonological encoding during implicit picture naming. Psychophysiology, 37, 473–484. Cerca con Google

Schreij, D., Owens, C., & Theeuwes, J. (2008). Abrupt onsets capture attention independent of top-down control settings. Perception & Psychophysics, 70, 208–218. Cerca con Google

Serences, J. T., Shomstein, S., Leber, A. B., Golay, X., Egeth, H. E., & Yantis, S. (2005). Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychological Science, 16, 114–122. Cerca con Google

Sessa, P., Luria, R., Gotler, A., Jolicœur, P., & Dell'Acqua, R. (2011). Inter-hemispheric ERP asymmetries over inferior parietal cortex reveal differential visual working memory maintenance for fearful versus neutral facial identities. Psychophysiology, 48, 187–197. Cerca con Google

Simons, D. J., & Levin, D. T. (1997). Change blindness. Trends in Cognitive Science, 1, 261–267. Cerca con Google

Slotnick, S. D., Hopfinger, J. B., Klein, S. A., & Sutter, E.E. (2001). Darkness beyond the light: Human electrophysiological evidence for a region of inhibition surrounding the attentional ‘spotlight’. Poster at the Cognitive Neuroscience Society Conference. Cerca con Google

Spratling, M. W. (2011). A single functional model accounts for the distinct properties of suppression in cortical area V1. Vision Research, 51, 563–576. Cerca con Google

Stige, S., Fjell, A. M., Smith, L., Lindgren, M., Walhovd, K. B. (2007). The development of visual P3a and P3b. Developmental Neuropsychology, 32, 563–84. Cerca con Google

Stins, J. F., & Michaels, C. F. (2000). Stimulus-response compatibility for absolute and relative spatial correspondence in reaching and in button pressing. Quarterly Journal of Experimental Psychology, 53, 569­–589. Cerca con Google

Todd, J. J., & Marois, R. (2005). Posterior parietal cortex activity predicts individual differences in visual short-term memory capacity. Cognitive, Affective, and Behavioral Neuroscience, 5(2), 144–155. Cerca con Google

Tong, F., (2003). Primary visual cortex and visual awareness. Nature Review of Neuroscience, 4, 219-29. Cerca con Google

Treisman, A. (1988). Features and objects. The fourteenth Bartlett memorial lecture. Quarterly Journal of Experimental Psychology, 40A, 201–237. Cerca con Google

Treisman, A., & Gelade, G. A. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 96–136. Cerca con Google

Treisman, A., Zhang, W. Location and binding in visual working memory. Memory and Cognition, 34, 1704–19. Cerca con Google

Trick, L. M., & Pylyshyn, Z. W. 1993. What enumeration studies can show us about spatial attention: Evidence for limited capacity preattentive processes. Journal of Experimental Psychology: Human Perception and Performance, 19, 331–351. Cerca con Google

Verleger, R., Vollmer, C., Wauschkuhn, B., van der Lubbe, R. H., & Wascher, E., (2000). Dimensional overlap between arrows as cueing stimuli and responses? Evidence from contra-ipsilateral differences in EEG potentials. Cognitive Brain Research, 10, 99–109. Cerca con Google

Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology, 37, 190–203. Cerca con Google

Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 784–751. Cerca con Google

Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438, 500–503. Cerca con Google

Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27, 92–114. Cerca con Google

Wandell, B. A., Brewer, A. A., & Dougherty, R.F. (2005). Visual field map clusters in human cortex. Philosophical Transactions of the Royal Society London, 360, 693–707. Cerca con Google

Wascher, E., & Beste, C. (2010). Tuning Perceptual Competition. Journal of Neurophysiology, 103, 1057–1065. Cerca con Google

Wascher, E., & Beste, C. (In press). Spatial representations as an emergent feature of perceptual processing: Evidence from human electrophysiology. Journal of Psychophysiology. Cerca con Google

Wascher, E., Hoffman, S., Sänger, J., Grosjean, M. (2009). Visuo-spatial processing and the N1 component of the ERP. Psychophysiology, 46, 1270–1277. Cerca con Google

Wascher, E., & Wauschkuhn, B. (1996). The interaction of stimulus - and response -related processes measured by event-related lateralizations of the EEG. Electroencephalography and Clinical Neurophysiology, 99, 149–162. Cerca con Google

Wlotko, E. W. & Federmeier, K. D. (2007). Finding the right word: Hemispheric asymmetries in the use of sentence context information. Neuropsychologia, 45, 3001–3014. Cerca con Google

Wolber, M., & Wascher, E. (2005). The posterior contralateral negativity as a temporal indicator of visuo-spatial processing. Journal of Psychophysiology, 19, 182–194. Cerca con Google

Woldorff, P. T., Matzke, M., Lancaster, J. L., Veeraswarmy, S., Zamarripa, F., Seabolt, M, & Jerabek, P. (1998). Retinotopic organization of early visual spatial attention effects as revealed by PET and ERPs. Human Brain Mapping, 5, 280–286. Cerca con Google

Wolfe, J. M. (1998). Visual search. In H. Pashler (Ed.), Attention (pp. 13-73). East Sussex, UK: Psychology Press. Cerca con Google

Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature, 400, 867–869. Cerca con Google

Woodman, G. F., & Luck, S. J. (2003). Serial deployment of attention during visual search. Journal of Experimental Psychology: Human Perception and Performance, 29, 121–138. Cerca con Google

Woodman G. F., & Vogel, E. K. (2008). Top-down control of visual working memory consolidation. Psychonomic Bulletin & Review, 15, 223–229. Cerca con Google

Yamashita, W., Wang, G, & Tanaka, K. (2010). View-invariant object recognition ability develops after discrimination, not mere exposure, at several viewing angles. European Journal of Neuroscience, 31, 327­–335. Cerca con Google

Yantis, S., & Egeth, H. E. (1999). On the distinction between visual salience and stimulus-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 25, 661–676. Cerca con Google

Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. Journal of Experimental Psychology, 16, 121–134. Cerca con Google

Zeki, S. (1993). A Vision of the Brain. Blackwell, Oxford. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record