Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Bonetto, Greta (2013) Structural analysis of SulP/SLC26 anion transporters. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
6Mb

Abstract (inglese)

The subject of this thesis is a family of anion transporters known as SulP/SLC26 (Sulfate Permease/Solute Carrier 26) family, a large and ubiquitous family of membrane proteins capable of transporting a wide variety of monovalent and divalent anions, whose members were found in eubacteria, plants, fungi, and mammals. The clinical relevance of the SulP/SLC26 gene family has been highlighted with the identification of pathogenic mutations related to hereditary genetic human diseases with diverse symptoms that arise as a result of the different substrate specificities and tissue localizations of the different transporters, such as dystrophic dysplasia (SLC26A2), congenital chloride diarrhoea (SLC26A3) and Pendred syndrome (SLC26A4). The SulP/SLC26 family belongs to the APC (Amino Acid-Polyamine-Organocation) superfamily, one of the largest superfamily of secondary carriers. While some members of other families of the APC superfamily have been structurally characterized, very little is known about the molecular organization of the SulP/SLC26 proteins and no high-resolution three-dimensional structure of full-length sequences is available. The SulP/SLC26 anion transporters share a common structural organization: a highly conserved transmembrane domain and a less conserved cytoplasmic C-terminal portion mainly composed of a STAS domain. The name STAS (Sulfate Transporter and Anti-Sigma factor antagonist) is due to a remote but statistically significant sequence similarity with bacterial ASA (Anti-Sigma factor Antagonist) proteins (Aravind and Koonin, 2000). The bacterial ASA proteins are functionally and structurally well characterized in their 3D structure both by NMR spectroscopy and X-ray crystallography. Unlike these proteins, the STAS domains present in anion transporters are poorly characterized in terms of both their function and structure. Despite the fact that their precise role is unclear, the STAS domains play a fundamental role in the function/regulation of SulP/SLC26 anion transporters. In particular, it has been proposed that the STAS domain, like ASA proteins, could have a role in protein/protein interaction; for instance the STAS domains of SCL26A3, -A4, -A6 and -A9 interact with the R domain of CFTR (Cystic Fibrosis Transmembrane conductance Regulator), the transmembrane protein involved in cystic fibrosis disease. So far three 3D structures of STAS domains from different species are available in literature, two from bacteria and one from mammalian, the latter solved during my Master Degree Thesis in the same laboratory where I've attended the PhD. The structural characterization of the full-length SulP/SLC26 transporters and of their STAS domains is fundamental for the comprehension of their mode of action and it is an essential step for the understanding of the functional consequences of the mutations responsible for related pathologies.
To address this issue, one part of my PhD project focused on the production and the structural characterization of STAS domains from different species, and mutants of the STAS domain whose 3D structure have been solved, in order to study the anion-binding site and the possible role of the STAS domain in the transport. We identified a fundamental residue for the proper function of the transporter, probably implicated in the anion translocation within the transmembrane domain.
The other part of the project dealt with the production of a selection of full-length SulP/SLC26 transporters from different orthologs, both Prokaryotes and Eukaryotes. To this aim, in collaboration with Prof. Frank Bernhard at the Johann Wolfgang Goethe University of Frankfurt (Germany), I used the cell-free (CF) expression method, an emerging technique for the large-scale production of membrane proteins for structural studies. Sample properties after post-translational solubilization have been analyzed by evaluation of homogeneity and protein stability. This is the first quality evaluation of the SulP/SLC26 transporters produced by CF expression mode in quantities appropriate for structural approaches.

Abstract (italiano)

Il soggetto di questa tesi è una famiglia di trasportatori di anioni nota come famiglia SulP/SLC26 (Sulfate Permease/Solute Carrier 26), una grande ed ubiquitaria famiglia di proteine di membrana in grado di trasportare un'ampia varietà di anioni monovalenti e divalenti, i cui membri sono stati trovati in eubatteri, piante, funghi, e mammiferi. La rilevanza clinica della famiglia genica SulP/SLC26 è stata evidenziata dall'identificazione di mutazioni patogene connesse a malattie umane genetiche ed ereditarie, con diversi sintomi che sorgono come risultato delle differenti specificità di substrato e localizzazioni tissutali dei differenti trasportatori, come la displasia distrofica (SLC26A2), la diarrea cloridrica congenita (SLC26A3) e la sindrome di Pendred (SLC26A4). La famiglia SulP/SLC26 appartiene alla superfamiglia APC (Amino Acid-Polyamine-Organocation), una delle più grandi superfamiglie di trasportatori secondari. Mentre alcuni membri di altre famiglie della superfamiglia APC sono stati caratterizzati strutturalmente, si sa molto poco riguardo l'organizzazione molecolare delle proteine SulP/SLC26 e non è disponibile nessuna struttura tridimensionale ad elevata risoluzione delle intere sequenze. I trasportatori di anioni SulP/SLC26 condividono un'organizzazione strutturale simile: un dominio transmembrana altamente conservato ed una porzione C-terminale meno conservata principalmente composta da un dominio STAS. Il nome STAS (Sulfate Transporter and Anti-Sigma factor antagonist) è dovuto ad una similarità di sequenza remota ma statisticamente significativa con le proteine batteriche ASA (Anti-Sigma factor Antagonist) (Aravind and Koonin, 2000). Le proteine batteriche ASA sono state ben caratterizzate funzionalmente e strutturalmente nella loro struttura 3D sia mediante la spettroscopia NMR sia mediante cristallografia a raggi X. A differenza di queste proteine, i domini STAS presenti nei trasportatori di anioni sono stati poco caratterizzati sia in termini della loro funzione, sia della loro struttura. Nonostante il fatto che il loro preciso ruolo non sia chiaro, i domini STAS svolgono un ruolo fondamentale nella funzione/regolazione dei trasportatori di anioni SulP/SLC26. In particolare, è stato proposto che il dominio STAS, come le proteine ASA, potesse svolgere un ruolo nell'interazione proteina/proteina; per esempio, domini STAS di SCL26A3, -A4, -A6 e -A9 interagiscono con il dominio R di CFTR (Cystic Fibrosis Transmembrane conductance Regulator), la proteina transmembrana coinvolta nella fibrosi cistica. Finora tre strutture 3D di domini STAS provenienti da specie diverse sono disponibili in letteratura, due da batteri ed una da mammifero, quest'ultima risolta durante la mia tesi di laurea specialistica nello stesso laboratorio dove ho frequentato il dottorato. La caratterizzazione strutturale degli interi trasportatori SulP/SLC26 e dei loro domini STAS è fondamentale per la comprensione del loro modo di azione ed è una fase essenziale per comprendere le conseguenze funzionali delle mutazioni responsabili delle patologie collegate.
Per raggiungere questo obiettivo, una parte del mio progetto di dottorato si è focalizzata sulla produzione e caratterizzazione strutturale dei domini STAS provenienti da diverse specie, e mutanti del dominio STAS la cui struttura 3D è stata risolta per studiare il sito di legame dell'anione ed il possibile ruolo del dominio STAS nel trasporto. È stato identificato un residuo fondamentale per il corretto funzionamento del trasportatore, probabilmente implicato nella traslocazione dell'anione all'interno del dominio transmembrana.
L'altra parte del progetto riguarda la produzione di una selezione di trasportatori SulP/SLC26 interi provenienti da diversi ortologhi, sia Procarioti che Eucarioti. Per questo scopo, in collaborazione con il Prof. Frank Bernhard presso l'università Johann Wolfgang Goethe di Francoforte (Germania), utilizzai il metodo di espressione cell-free (CF), una tecnica emergente per la produzione a larga scala di proteine di membrana per studi strutturali. Le proprietà dei campioni dopo la solubilizzazione post-traduzionale sono state analizzate mediante la valutazione di omogeneità e della stabilità della proteina. Questa è la prima valutazione della qualità dei trasportatori SulP/SLC26 prodotti mediante il modo di espressione CF in quantità appropriate per approcci strutturali.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Battistutta, Roberto
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > SCIENZE MOLECOLARI > SCIENZE CHIMICHE
Data di deposito della tesi:27 Gennaio 2013
Anno di Pubblicazione:2013
Parole chiave (italiano / inglese):SulP/SLC26 transporters STAS domain cell-free expression/ Trasportatori SulP/SLC26 dominio STAS espressione cell-free
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/06 Chimica organica
Area 03 - Scienze chimiche > CHIM/11 Chimica e biotecnologia delle fermentazioni
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:5532
Depositato il:16 Ott 2013 11:14
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

A. Accardi, S. Lobet, C. Williams, C. Miller and R. Dutzler (2006). Synergism between halide binding and proton transport in a CLC-type exchanger. Journal of molecular biology 362: 691-699 Cerca con Google

P. D. Adams, R. W. Grosse-Kunstleve, L. W. Hung, T. R. Ioerger, A. J. McCoy, N. W. Moriarty, R. J. Read, J. C. Sacchettini, N. K. Sauter, T. C. Terwilliger (2002). PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58(11): 1948-54 Cerca con Google

J. T. Albert, H. Winter, T. J. Schaechinger, T. Weber, X. Wang, D. Z. Z. He, O. Hendrich, H. Geisler, U. Zimmermann, K. Oelmann, M. Knipper, M. C. Göpfert and D. Oliver (2007). Voltage-sensitive prestin orthologue expressed in zebrafish hair cells. J Physiol 580(2): 451-461 Cerca con Google

A. I. Alexandrov, M. Mileni, E. Y. T. Chien, M. A. Hanson, and R. C. Stevens (2008). Microscale Fluorescent Thermal Stability Assay for Membrane Proteins. Structure 16: 351-359 Cerca con Google

L. Aravind and E. V. Koonin (2000). The STAS domain - a link between anion transporters and antisigma-factor antagonists. Curr. Biol. 10: 53-55 Cerca con Google

J. Ashmore (2008). Cochlear Outer Hair Cell Motility. Physiol Rev 88: 173-210 Cerca con Google

M. Babu, J. F. Greenblatt, A. Emili, N. C. J. Strynadka, R. A. F. Reithmeier, and T. F. Moraes (2010). Structure of a SLC26 Anion Transporter STAS Domain in Complex with Acyl Carrier Protein: Implications for E. coli YchM in Fatty Acid Metabolism. Structure 18: 1450-1462 Cerca con Google

J. Bai, A. Surguchev, S. Montoya, P. S. Aronson, J. Santos-Sacchi, and D. Navaratnam (2009). Prestin’s Anion Transport and Voltage-Sensing Capabilities Are Independent. Biophysical Journal 96: 3179-3186 Cerca con Google

J. Bai, A. Surguchev, Y. Ogando, L. Song, S. Bian, J. Santos-Sacchi, and D. Navaratnam (2010). Prestin surface expression and activity are augmented by interaction with MAP1S, a microtubule associated protein. The journal of Biological Chemistry 285: 20834-20843 Cerca con Google

T. H. Bayburt, Y. V. Grinkova, and S. G. Sligar (2002). Self-Assembly of Discoidal Phospholipid Bilayer Nanoparticles with Membrane Scaffold Proteins. Nano Lett 2(8): 853-856 Cerca con Google

T. H. Bayburt and S. G. Sligar (2002). Membrane protein assembly into Nanodiscs. FEBS Letters 584: 1721-1727 Cerca con Google

M. Benvenuti and S. Mangani (2007). Crystallization of soluble proteins in vapor diffusion for x-ray crystallography. Nature Protocols 2(7): 1633-1651 Cerca con Google

T. Bergfors (2003). Seed to crystals. Journal of structural Biology 142: 66-76 Cerca con Google

S. E. Bondos and A. Bicknell (2003). Detection and prevention of protein aggregation before, during, and after purification. Analytical Biochemistry 316: 223-231 Cerca con Google

M. Caffrey, D, Li, and A. Dukkipati (2012). Membrane Protein Structure Determination Using Crystallography and Lipidic Mesophases: Recent Advances and Successes. Biochemistry 51: 6266-6288 Cerca con Google

M. Chang, C. Plata, K. Zandi-Nejad, A. Sinđić, C. R. Sussman, A. Mercado, V. Broumand, V. Raghuram, D. B. Mount, and M. F. Romero (2009). Slc26A9 - anion exchanger, channel and Na+ transporter. J Membr Biol. 228(3): 125-140 Cerca con Google

M. Chang, C. Plata, A. Sindic, W. K. Ranatunga, A. Chen, K. Zandi-Nejad, K. W. Chan, J. Thompson, D. B. Mount, and M. F. Romero (2009 b). Slc26a9 Is Inhibited by the R-region of the Cystic Fibrosis Transmembrane Conductance Regulator via the STAS Domain. J Biol Chem 284(41): 28306-28318 Cerca con Google

M. N. Chernova, L. Jiang, B. E. Shmukler, C. W. Schweinfest, P. Blanco, S. D. Freedman, A. K. Stewart and S. L. Alper (2003). Acute regulation of the SLC26A3 congenital chloride diarrhoea anion exchanger (DRA) expressed in Xenopus oocytes. J Physiol 549(1): 3-19 Cerca con Google

J. Y. Choi, D. Muallem, K. Kiselyov, M. G. Lee, P. J. Thomas and S. Muallem (2001). Aberrant CFTR-dependent HCO3- transport in mutationsassociated with cystic fibrosi. Nature 410: 94-97 Cerca con Google

J. Clarkson, I. D. Campbell and M. D. Yudkin (2003). Phosphorylation induces subtle structural changes in SpoIIAA, a key regulator of sporulation. Biochem. J. 372:113-119 Cerca con Google

E. L. R. Compton, E. Karinou, J. H. Naismith, F. Gabel, and A. Javelle (2011). Low Resolution Structure of a Bacterial SLC26 Transporter Reveals Dimeric Stoichiometry and Mobile Intracellular Domains. J. Biol. Chem. 286(30): 27058-27067 Cerca con Google

P. Dallos and B. Fakler (2002). Prestin, a new type of motor protein. Nature reviews, Molecular cell biology 3: 104-111 Cerca con Google

P. Dallos, J. Zheng and M. A. Cheatham (2006). Prestin and the cochlear amplifier. J Physiol 576(1): 37-42 Cerca con Google

P. Dallos (2008). Cochlear amplification, outer hair cells and prestin. Current Opinion in Neurobiology 18: 370-376 Cerca con Google

A. D’Arcy, F. Villarda and M. Marshb (2007). An automated microseed matrix-screening method for protein crystallization. Acta Cryst. D63: 550-554 Cerca con Google

P. A. Dawson and D. Markovich (2005). Pathogenetics of the Human SLC26 Transporters. Current Medicinal Chemistry 12: 385-396 Cerca con Google

L. Deák, J. Zheng, A. Orem, G. Du, S. Aguiñaga, K. Matsuda and P. Dallos (2005). Effects of cyclic nucleotides on the function of prestin. J Physiol 563(2): 483-496 Cerca con Google

Y. Dehouck, A. Grosfils, B. Folch, D. Gilis, P. Bogaerts and M. Rooman (2009). Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Structural Bioinformatics 25(19): 2537-2543 Cerca con Google

S. Detro-Dassen, M. Schanzler, H. Lauks, I. Martin, S. M. zu Berstenhorst, D. Nothmann, D. Torres-Salazar, P. Hidalgo, G. Schmalzing, C. Fahlke (2008). Conserved Dimeric Subunit Stoichiometry of SLC26 Multifunctional Anion Exchangers. Journal of biological chemistry 283: 4177-4188 Cerca con Google

M. R. Dorwart, N. Shcheynikov, D. Yang, S. Muallem (2008). The Solute Carrier 26 Family of Proteins in Epithelial Ion Transport. Physiology 23: 104-114 Cerca con Google

S. Dossena, S. Rodighiero, V. Vezzoli, C. Nofziger, E. Salvioni, M. Boccazzi, E. Grabmayer, G. Botta, G. Meyer, L. Fugazzola, P. Beck-Peccoz and M. Paulmichl (2009). Functional characterization of wild-type and mutated pendrin (SLC26A4), the anion transporter involved in Pendred syndrome. Journal of Molecular Endocrinology 43: 93-103 Cerca con Google

A. B. Elgoyhen, and L. F. Franchini (2011). Prestin and the cholinergic receptor of hair cells: positively-selected proteins in mammals. Hear Res 273(1-2): 100-108 Cerca con Google

P. Emsley, K. Cowtan (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60(12 1): 2126-2132 Cerca con Google

T. Etezady-Esfarjani, W. J. Placzek, T. Herrmann and K. Wuthrich (2006). Solution structures of the putative anti-σ-factor antagonist TM1442 from Thermotoga maritima in the free and phosphorylated states. Magn. Reson. Chem. 44: S61-S70 Cerca con Google

P. Evans (2005). Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 62(1): 72-82 Cerca con Google

L. A. Everett, I. A. Belyantseva, K. Noben-Trauth, R. Cantos, A. Chen, S. I. Thakka, S. L. Hoogstraten-Miller, B. Kachar, D. K. Wu, E. D. Green (2001). Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Human Molecular Genetics 10: 153-161 Cerca con Google

S. Faham, A. Watanabe, G. M. Besserer, D. Cascio, A. Specht, B. A. Hirayama, E. M. Wright, J. Abramson (2008). The Crystal Structure of a Sodium Galactose Transporter Reveals Mechanistic Insights into Na+/Sugar Symport. Science 321: 810-814 Cerca con Google

J. Felce, M. H. Saier, Jr. (2004). Carbonic Anhydrases Fused to Anion Transporters of the SulP Family: Evidence for a Novel Type of Bicarbonate Transporter. Mol Microbiol Biotechnol 8: 169-176 Cerca con Google

P. Fong (2012). CFTR-SLC26 transporter interactions in epithelia. Biophys Rev 4:107-116 Cerca con Google

L. F. Franchini, A. B. Elgoyhen (2006). Adaptive evolution in mammalian proteins involved in cochlear outer hair cell electromotility. Molecular Phylogenetics and Evolution 41: 622-635 Cerca con Google

X. Gao, F. Lu, L. Zhou, S. Dang, L. Sun, X. Li, J. Wang, Y. Shi (2009). Structure and Mechanism of an Amino Acid Antiporter. Science 324: 1565-1568 Cerca con Google

M. A. Gray (2004). Bicarbonate secretion: it takes two to tango. Nature cell biology 6(4): 392-394 Cerca con Google

J. N. Greeson, L. E. Organ, F. A. Pereira, R. M. Raphael (2006). Assessment of prestin self-association using fluorescence resonance energy transfer. Brain research 1091: 140-150 Cerca con Google

S. Haberstock, C. Roos, Y. Hoevels, V. Dötsch, G. Schnapp, A. Pautsch, F. Bernhard (2012). A systematic approach to increase the efficiency of membrane protein production in cell-free expression systems. Protein Expression and Purification 82: 308-316 Cerca con Google

R. Hallworth and M. G. Nichols (2011). Prestin in HEK Cells is an Obligate Tetramer. J Neurophysiol 107(1): 5-11 Cerca con Google

H. Hamada, T. Arakawa and K. Shiraki (2009). Effect of Additives on Protein Aggregation. Current Pharmaceutical Biotechnology 10: 400-407 Cerca con Google

D. Z. Z. He, S. Jia, T. Sato, J. Zuo, L. R. Andrade, G. P. Riordan, and B. Kachar (2010). Changes in plasma membrane structure and electromotile properties in prestin deficient outer hair cells. Cytoskeleton (Hoboken) 67(1): 43-55 Cerca con Google

R. Hibbs, and E. Gouaux (2011). Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474: 54-60 Cerca con Google

K. Homma, K. K. Miller, C. T. Anderson, S. Sengupta, G. Du, S. Aguiñaga, M. Cheatham, P. Dallos, J. Zheng (2010). Interaction between CFTR and prestin (SLC26A5). Biochim. Biophys. Acta 1798(6):1029-1240 Cerca con Google

F. Junge, S. Haberstock, C. Roos, S. Stefer, D. Proverbio, V. Dötsch and F. Bernhard (2010). Advances in cell-free protein synthesis for the functional and structural analysis of membrane proteins. N. Biotechnol 28(3): 262-71 Cerca con Google

M. Jurk, M. Dorn, and P. Schmieder (2011). Blue Flickers of Hope: Secondary Structure, Dynamics, and Putative Dimerization Interface of the Blue-Light Receptor YtvA from Bacillus subtilis. Biochemistry 50: 8163−8171 Cerca con Google

W. Kabsch (2010) XDS. Acta Cryst. D66: 125-132 Cerca con Google

E. Karinou, E. L. Compton, M. Morel, A. Javelle (2012). The Escherichia coli SLC26 homologue YchM (DauA) is a C(4) -dicarboxylic acid transporter. Mol Microbiol. Cerca con Google

S. B. H. Ko, N. Shcheynikov, J. Y. Choi, X. Luo, K. Ishibashi, P. J.Thomas, J. Y. Kim, K. H. Kim, M. G. Lee, S. Naruse and S. Muallem (2002). A molecular mechanism for aberrant CFTR-dependent HCO3- transport in cystic fibrosis. The EMBO Journal 21(21): 5662-5672 Cerca con Google

S. B. H. Ko, W. Zeng, M. R. Dorwart, X. Luo, K. H. Kim, L. Millen, H. Goto, S. Naruse, A. Soyombo, P. J. Thomas and S. Muallem (2004). Gating of CFTR by the STAS domain of SLC26 transporters. Nature cell biology 6(4): 343-350 Cerca con Google

H. Kovacs, D. Comfort, M. Lord, I. D. Campbell, and M. D. Yudkin (1998). Solution structure of SpoIIAA, a phosphorylatable component of the system that regulates transcription factor σF of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 95: 5067-5071 Cerca con Google

S. Kumano, X. Tan, D. Z. Z. He, K. Iida, M. Murakoshi, H. Wada (2009). Mutation-induced reinforcement of prestin-expressing cells. Biochemical and Biophysical Research Communications 389: 569-574 Cerca con Google

S. Kumano, M. Murakoshi, K. Iida, H. Hamana, H. Wada (2010). Atomic force microscopy imaging of the structure of the motor protein prestin reconstituted into an artificial lipid bilayer. FEBS Letters 584: 2872-2876 Cerca con Google

K. Legendre, S. Safieddine, P. Küssel-Andermann, C. Petit and A. El-Amraoui (2008). αII-βV spectrin bridges the plasma membrane and cortical lattice in the lateral wall of the auditory outer hair cells. Journal of Cell Science 121: 3347-3356 Cerca con Google

C. Le Grimellec, M. C. Giocondi, M. Lenoir, M. Vater, G. Sposito, and R. Pujol (2002). High-resolution three-dimensional imaging of the lateral plasma membrane of cochlear outer hair cells by atomic force microscopy. J. Comp. Neurol. 451: 62- 69 Cerca con Google

X. Z. Liu, X. M. Ouyang, X. J. Xia, J. Zheng, A. Pandya, F. Li, L. L. Du, K. O. Welch, C. Petit, R. J. Smith, B. T. Webb, D. Yan, K. S. Arnos, D. Corey, P. Dallos, W. E. Nance, Z. Y. Chen (2003). Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. Hum Mol Genet 12(10): 1155-62 Cerca con Google

S. Lobet, and R. Dutzler (2006). Ion-binding properties of the ClC chloride selectivity filter. The EMBO journal 25: 24-33 Cerca con Google

M. A. Lomize, A. L. Lomize, I. D. Pogozheva, and H. I. Mosberg (2006). OPM: Orientations of Proteins in Membranes Database. Bioinformatics 22: 623-625 Cerca con Google

F. Lu, S. Li1, Y. Jiang, J. Jiang, H. Fan, G. Lu, D. Deng, S. Dang, X. Zhang, J. Wang, N. Yan (2011). Structure and mechanism of the uracil transporter UraA. Nature 472: 243-247 Cerca con Google

M. P. Malakhov, M. R. Mattern, O. A. Malakhova, M. Drinker, S. D. Weeks, T. R. Butt (2004). SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. Journal of Structural and Functional Genomics 5: 75-86 Cerca con Google

D. Markovich (2012). Slc13a1 and Slc26a1 KO Models Reveal Physiological Roles of Anion Transporters. Phisiology 27: 7-14 Cerca con Google

S. Masuda, K. S. Murakami, S. Wang, C. A. Olson, J. Donigian, F. Leon, S. A. Darst and E. A. Campbell (2004). Crystal Structures of the ADP and ATP Bound Forms of the Bacillus Anti-σ Factor SpoIIAB in Complex with the Anti-anti-σ SpoIIAA. J. Mol. Biol. 340: 941-956 Cerca con Google

A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni, R. J. Read (2007). Phaser crystallographic software. J Appl Crystallogr 40(4): 658-674 Cerca con Google

J. S. Minor, H. Tagng, A. Pereira, R. L. Alford (2009). DNA Sequence Analysis of SLC26A5, Encoding Prestin, in a Patient-Control Cohort: Identification of Fourteen Novel DNA Sequence Variations. PloS ONE 4(6): e5762 Cerca con Google

K. Mio, Y. Kubo, T. Ogura, T. Yamamoto, F. Arisaka, C. Sato (2008). The Motor Protein Prestin Is a Bullet-shaped Molecule with Inner Cavities. J Biol Chem 283(2): 1137-1145 Cerca con Google

P. Mistrìk, N. Daudet, K. Morandell and J.F. Ashmore (2012). Mammalian prestin is a weak Cl-/HCO3- electrogenic antiporter. J Physiol 590(22): 5597-5610 Cerca con Google

D. B. Mount, M. F. Romero (2004). The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch – Eur J Physiol 447: 710-721 Cerca con Google

D. Muallem and J. Ashmore (2006). An Anion Antiporter Model of Prestin, the Outer Hair Cell Motor Protein. Biophysical Journal 90: 4035-4045 Cerca con Google

M. Murakoshi, K. Iida, S. Kumano, H. Wada (2008). Immune atomic force microscopy of prestin-transfected CHO cells using quantum dots. Pflugers Arch – Eur J Physiol 457: 885-898 Cerca con Google

G. N. Murshudov, A. A. Vagin, E. J. Dodson (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53(3): 240-255 Cerca con Google

Y. Nakasone and K. J. Hellingwerf (2011). On the Binding of BODIPY-GTP by the Photosensory Protein YtvA from the Common Soil Bacterium Bacillus subtilis. Photochemistry and Photobiology 87: 542-547 Cerca con Google

D. Navaratnam, J. Bai, H. Samaranayake, and J. Santos-Sacchi (2005). N-Terminal-Mediated Homomultimerization of Prestin, the Outer Hair Cell Motor Protein. Biophysical Journal 89: 3345-3352 Cerca con Google

N. Oganesyan, S. Kim and R. Kim (2004). On-column Chemical Refolding of Proteins. Pharmagenomics 4: 22-25 Cerca con Google

E. Ohana, N. Shcheynikov, M. Park, S. Muallem (2012). Solute Carrier Family 26 Member a2 (Slc26a2) Protein Functions as an Electroneutral SO42-/OH-/Cl- Exchanger Regulated by Extracellular Cl-. J. Biol. Chem. 287: 5122-5132 Cerca con Google

D. Oliver, D. Z. Z. He, N. Klocker, J. Ludwig, U. Schulte, S. Waldegger, J. P. Ruppersberg, P. Dallos, B. Fakler (2001). Intracellular Anions as the Voltage Sensor of Prestin, the Outer Hair Cell Motor Protein. Science 292: 2340-2343 Cerca con Google

M. W. Pantoliano, A. W. Rhind, F. R. Salemme. Microplate thermal shift assay for ligand development and multi-variable protein chemistry optimization. US Patent 6,020,141 (Issued 2/1/2000). Cerca con Google

E. Pasqualetto, A. Seydel, A. Pellini, R. Battistutta (2008). Expression, purification and characterisation of the C-terminal STAS domain of the SLC26 anion transporter prestin. Protein Expression and Purification 58: 249-256 Cerca con Google

E. Pasqualetto, R. Aiello, L. Gesiot, G. Bonetto, M. Bellanda and R. Battistutta (2010). Structure of the Cytosolic Portion of the Motor Protein Prestin and Functional Role of the STAS Domain in SulP/SLC26 Anion Transporters. J. Mol. Biol. 400: 448-462 Cerca con Google

G. D. Price, F. J. Woodger, M. R. Badger, S. M. Howitt, and L. Tucker (2004). Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. PNAS 101(52): 18228-18233 Cerca con Google

G. D. Price (2011). Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. Photosynth Res 109(1-3): 47-57 Cerca con Google

G. D. Price and S. M. Howitt (2011). The cyanobacterial bicarbonate transporter BicA: its physiological role and the implications of structural similarities with human SLC26 transporters. Biochem. Cell Biol. 89: 178-188 Cerca con Google

Procedure 28-9490-13 AA (2008). Combining detergent screening and size homogeneity analysis of histidine-tagged membrane protein using His MultiTrap FF and Superdex 200 5/150 GL. GE Healthcare Cerca con Google

M. Quin, J. Newman, S. Firbank, R. J. Lewis, and J. Marles-Wright (2008). Crystallization and preliminary X-ray analysis of RsbS from Moorella thermoacetica at 2.5 Å resolution. Acta Cryst. F64: 196-199 Cerca con Google

S. Ressl, A. C. Terwisscha van Scheltinga, C. Vonrhein, V. Ott, C. Ziegler (2009). Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature 458: 47-53 Cerca con Google

H. Rouached, P. Berthomieu, E. El Kassis, N. Cathala, V. Catherinot, G. Labesse, J. Davidian, and P. Fourcroy (2005). Structural and Functional Analysis of the C-terminal STAS (Sulfate Transporter and Anti-sigma Antagonist) Domain of the Arabidopsis thaliana Sulfate Transporter SULTR1;2. J. Biol. Chem. 280(16): 15976 -15983 Cerca con Google

V. Rybalchenko and J. Santos-Sacchi (2003). Cl- flux through a non-selective, stretch-sensitive conductance influences the outer hair cell motor of the guinea-pig. J Physiol 547(3): 873-891 Cerca con Google

M. H. Saier Jr., B. H. Eng, S. Fard, J. Garg, D. A. Haggerty, W. J. Hutchinson, D. L. Jack, E. C. Lai, H. J. Liu, D. P. Nusinew, A. M. Omar, S. S. Pao, I. T. Paulsen, J. A. Quan, M. Sliwinski, T. Tseng, S. Wachi, G. B. Young (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochimica et Biophysica Acta 1422: 1-56 Cerca con Google

M. H. Saier, Jr (2000). Families of transmembrane transporters selective for amino acids and their derivatives. Microbiology 146: 1775-1795 Cerca con Google

T. J. Schaechinger and D. Oliver (2007). Nonmammalian orthologs of prestin (SLC26A5) are electrogenic divalent/chloride anion exchangers. PNAS 104(18): 7693-7698 Cerca con Google

T. J Schaechinger, D. Gorbunov, C. R. Halaszovich, T. Moser, S. Kugler, B. Fakler and D. Oliver (2011). A synthetic prestin reveals protein domains and molecular operation of outer hair cell piezoelectricity. The EMBO Journal 30: 2793-2804 Cerca con Google

M. Schänzler and C. Fahlke (2012). Anion transport by the cochlear motor protein prestin. J Physiol 590(2) 259-272 Cerca con Google

B. Schneider, F. Junge, V. A. Shirokov, F. Durst, D. Schwarz, V. Dötsch, and F. Bernhard (2010). Membrane Protein Expression in Cell-Free Systems. I. Mus-Veteau (ed.), Heterologous Expression of Membrane Proteins, Methods in molecular Biology 601: 165-186 Cerca con Google

P. Schulz, J. J. Garcia-Celma, K. Fendler (2008). SSM-based electrophysiology. Methods 46: 97-103 Cerca con Google

S. Schulze, S. Koster, U. Geldmacher, A. C. Terwisscha van Scheltinga, W. Kuhlbrandt (2010). Structural basis of Na+-independent and cooperative substrate/product antiport in CaiT. Nature 467: 233-237 Cerca con Google

D. Schwarz, F. Junge, F. Durst, N. Frolich, B. Schneider, S. Reckel, S. Sobhanifar, V. Dötsch and F. Bernhard (2007). Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nature Protocols 2: 2945-2957 Cerca con Google

P. R. Seavers, R. J. Lewis, J. A. Brannigan, K. H. G. Verschueren, G. N. Murshudov, and A. J. Wilkinson (2001). Structure of the Bacillus Cell Fate Determinant SpoIIAA in Phosphorylated and Unphosphorylated Forms. Structure 9: 605-614 Cerca con Google

S. Sengupta, K. K. Miller, K. Homma, R. Edge, M. A. Cheatham, P. Dallos, J. Zheng (2010). Interaction between the motor protein prestin and the transporter protein VAPA. Biochim Biophys Acta 1803(7): 796-804 Cerca con Google

P. Serrano, B. Pedrini, M. Geralt, K. Jaudzems, B. Mohanty, R. Horst, T. Herrmann, M. Elsliger, I. A. Wilson, and K. Wuthrich (2010). Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites. Acta Cryst. F66: 1393-1405 Cerca con Google

P. L. Shaffer, A. Goehring, A. Shankaranarayanan, E. Gouaux (2009). Structure and mechanism of a Na+-independent amino acid transporter. Science. 325: 1010-1014 Cerca con Google

A. K. Sharma, L. Ye, A. S. Zolotarev, S. L. Alper, A. C. Rigby (2009). NMR assignment and secondary structure of the STAS domain of Rv1739c, a putative sulfate transporter of Mycobacterium tuberculosis. Biomol NMR Assign 3(1): 99-102 Cerca con Google

A. K. Sharma, L. Ye, C. E. Baer, K. Shanmugasundaram, T. Alber, S. L. Alper, and A. C. Rigby (2010). Solution Structure of the Guanine Nucleotide-binding STAS Domain of SLC26-related SulP Protein Rv1739c from Mycobacterium tuberculosis. J. Biol. Chem. 286(10): 8534-8544 Cerca con Google

A. K. Sharma, A. C. Rigby and S. L. Alper (2011). STAS Domain Structure and Function. Cell Physiol Biochem 28: 407-422 Cerca con Google

M. C. Shelden, S. M. Howitt, G. D. Price (2010). Membrane topology of the cyanobacterial bicarbonate transporter, BicA, a member of the SulP (SLC26A) family. Molecular Membrane Biology 27(1): 12-23 Cerca con Google

N. Shibagaki and A. R. Grossman (2004). Probing the Function of STAS Domains of the Arabidopsis Sulfate Transporters. J. Biol. Chem. 279(29): 30791-30799 Cerca con Google

N. Shibagaki and A. R. Grossman (2006). The Role of the STAS Domain in the Function and Biogenesis of a Sulfate Transporter as Probed by Random Mutagenesis. J. Biol. Chem. 281(32): 22964-22973 Cerca con Google

N. Shibagaki and A. R. Grossman (2010). Binding of Cysteine Synthase to the STAS Domain of Sulfate Transporter and Its Regulatory Consequences. J. Biol. Chem. 285(32): 25094 -25102 Cerca con Google

G. P. Sinha, F. Sabri, E. K. Dimitriadis, K. H. Iwasa (2010). Organization of membrane motor in outer hair cells: an atomic force microscopic study. Pflugers Arch - Eur J Physiol 459: 427-439 Cerca con Google

M. Soleimani, T. Greeley, S. Petrovic, Z. Wang, H. Amlal, P. Kopp and C. E. Burnham (2001). Pendrin: an apical Cl−/OH−/HCO3− exchanger in the kidney cortex. Am J Physiol Renal Physiol 280: F356-F364 Cerca con Google

Y. Sonoda, S. Newstead, N. Hu, Y. Alguel, E. Nji, K. Beis, S. Yashiro, C. Lee, J. Leung, A. D. Cameron, B. Byrne, S. Iwata and D. Drew (2011) Benchmarking Membrane Protein Detergent Stability for Improving Throughput of High-Resolution X-ray Structures. Structure 19: 17-25 Cerca con Google

X. Tan, J. L. Pecka, J. Tang, O. E. Okoruwa, Q. Zhang, K. W. Beisel, and D. Z. Z. He (2011). From Zebrafish to Mammal: Functional Evolution of Prestin, the Motor Protein of Cochlear Outer Hair Cells. J Neurophysiol 105: 36-44 Cerca con Google

A. Touré, L. Morin, C. Pineau, F. Becq, O. Dorseuil, and G. Gacon (2001). Tat1, a Novel Sulfate Transporter Specifically Expressed in Human Male Germ Cells and Potentially Linked to RhoGTPase Signaling. J. Biol. Chem. 276(23): 20309 -20315 Cerca con Google

F. van den Ent, J. Lowe (2006). RF cloning: A restriction-free method for inserting target genes into plasmids. J. Biochem. Biophys. Methods 67: 67-74 Cerca con Google

L. Vuillard, C. Braun-Bretont and T. Rabilloud (1995). Non-detergent sulphobetaines: a new class of mild solubilization agents for protein purification. Biochem. J. 305: 337-343 Cerca con Google

X. Wang, S. Yang, S. Jia, D. Z. Z. He (2010). Prestin forms oligomer with four mechanically independent subunits. Brain Res 1333: 28-35 Cerca con Google

P. Wangemann, K. Nakaya, T. Wu, R. J. Maganti, E. M. Itza, J. D. Sanneman, D. G. Harbidge, S. Billings, D. C. Marcus (2007). Loss of cochlear HCO3- secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model. American Journal of Physiology. Renal Physiology 292: F1345-F1353 Cerca con Google

S. Weyand, T. Shimamura, S. Yajima, S. Suzuki, O. Mirza, K. Krusong, E. P. Carpenter, N. G. Rutherford, J. M. Hadden, J. O'Reilly, P. Ma, M. Saidijam, S. G. Patching, R. J. Hope, H. T. Norbertczak, P. C.J. Roach, S. Iwata, P. J. F. Henderson, and A. D. Cameron (2008). Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322: 709-713 Cerca con Google

F. H. Wong, J. S. Chen, V. Reddy, J. L. Day, M. A. Shlykov, S. T. Wakabayashi, M. H. Saier, Jr (2012). The Amino Acid-Polyamine-Organocation Superfamily. J Mol Microbiol Biotechnol. 22:105-113 Cerca con Google

M. Xu, G. Bernat, A. Singh, H. Mi, M. Rogner, H. B. Pakrasi, and T. Ogawa (2008). Properties of Mutants of Synechocystis sp. Strain PCC 6803 Lacking Inorganic Carbon Sequestration Systems. Plant Cell Physiol 49(11): 1672-1677 Cerca con Google

J. Xu, P. Song, S. Nakamuraʈ, M. Miller, S. Barone, S. L. Alper, B. Riederer, J. Bonhagen, L. J. Arend, H. Amlal, U. Seidler, and M. Soleimani (2009). Deletion of the Chloride Transporter Slc26a7 Causes Distal Renal Tubular Acidosis and Impairs Gastric Acid Secretion. J. Biol. Chem. 284: 29470 -29479 Cerca con Google

A. Yamashita, S. K. Singh, T. Kawate, Y. Jin, E. Gouaux (2005). Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters. Nature 437: 215-223 Cerca con Google

A. Yoshida, S. Taniguchi, I. Hisatome, I. E. Royaux, E. D. Green, L. D. Kohn, and K. Suzuki (2002). Pendrin Is an Iodide-Specific Apical Porter Responsible for Iodide Efflux from Thyroid Cells. The Journal of Clinical Endocrinology & Metabolism 87(7): 3356-3361 Cerca con Google

J. Zheng, W. Shen, D. Z. Z. He, K. B. Long, L. D. Madison and P. Dallos (2000). Prestin is the motor protein of cochlear outer hair cells. Nature 405: 149-155 Cerca con Google

J. Zheng, G. Du, C. T. Anderson, J. P. Keller, A. Orem, P. Dallos, and M. Cheatham (2006). Analysis of the Oligomeric Structure of the Motor Protein Prestin. J. Biol. Chem. 281(29): 19916-19924 Cerca con Google

J. Zheng, C. T. Anderson, K. K. Miller, M. Cheatham and P. Dallos (2009). Identifying components of the hair-cell interactome involved in cochlear amplification. BMC Genomics 10: 127 Cerca con Google

A. S. Zolotarev, M. Unnikrishnan, B. E. Shmukler, J. S. Clark, D. H. Vandorpe, N. Grigorieff, E. J. Rubin, S. L. Alper (2008). Increased sulfate uptake by E. coli overexpressing the SLC26-related SulP protein Rv1739c from Mycobacterium tuberculosis. Comparative Biochemistry and Physiology, Part A 149: 255-266 Cerca con Google

M. Zulauf and A. D'Arcy (1992). Light scattering of proteins as a criterion for crystallization. J Cryst. Growth 122: 102-106 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record