Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Tomasi, Giampaolo (2007) Bayesian and population approaches for pixel-wise quantification of positron emission Tomography images: ridge regression and Global-Two-Stage. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
1818Kb

Abstract (inglese)

PET (Positron Emission Tomography) is a technique in which a radioactive tracer which decays by positron emission is injected into the subject's body. Through a complex instrumentation and sophisticated reconstruction algorithms, it is then possible to compute the distribution of the tracer over time in the area of interest, which is the desired outcome of the measurement.
After reconstruction the image is ready for quantitative analysis, necessary to derive the so-called kinetic parameters, which are relevant in that they have a physiological meaning. This analysis may be performed either at ROI level (Region-Of-Interest, an anatomically homogeneous region such as cerebellum or thalamus) or at pixel level. In the latter scenario kinetic parameters are computed separately for each of the hundreds of thousand of pixels of the image, and the so-called parametric images are generated. Pixel-by-pixel analysis has the intrinsic problem due to the high noise level of pixel TACs (Time Activity Curve, i.e. the value of radioactive concentration as a function of time)
as this may give rise to unreliable estimates for the kinetic parameters or to non-convergence of the algorithms used for estimation. Parametric maps, however, are of paramount importance as they are characterized by a high spatial resolution: phenomena such as a lesion in a cerebral structure or the presence of a small tumoral mass may be invisible with ROI analysis but detectable even at simple visual inspection through pixel analysis.
The aim of this thesis was to develop fast methods for the generation of more reliable parametrci maps. A method already developed in literature, known as ridge regression (RR), was comprehensively studied and developed; in addition, a technique completely new to the field of PET , Global-Two-Stages(GTS), belonging to the field of population approaches , was proposed and tested. The basic ideas of these methodologies which make them part of the family of Bayesian approaches is, loosely speaking, to employ, in the parameter estimation for a given pixel, not only the TAC of that pixel but to incorporate also the information driving from the other pixels in order to obtain a global regularizing effect, penalizing, for instance the noisiest TACs..The analysis was carried out first on simulated data because, in order to be able to compute indices which quantify the goodness of final estimates such BIAS and Root Mean Square Error (RMSE), the knowledge of "true" parameters is necessary, and data are necessarily to be simulated. The performances of the proposed Bayesian algorithms were compared to those of the appropriate "gold standard" , the most used estimation method for the tracer under examination. Interest was then addressed to a real rich dataset of the tracer [11C]PK11195, very used for the study of pathologies such as Alzheimer and Huntington, in that it is linked to the overall level of neuroinflammation.
The analysis of simulated data revealed that RR and GTS gave always rise to decrease of RMSE, leving BIAS substantially unchanged.The improvements are clearly dependent on the tracer, nose level, and specific kinetic parameter considered.The study of the [11C]PK11195 dataset showed how RR and GTS much more regular parametric maps with respect to SRTM, the "gold standard" used for comparison. The proposed approaches (RR and GTS) also yielded excellent results in terms of the ability to differentiate between healthy and ill subjects on the basis of the maps of the kinetic parameter BP (Binding Potential): this fact has clearly a significant diagnostic impact as more reliable methods (i.e. with higher sensitivity and specificity) are needed for the daily application in clinical practise.
In conclusion, Ridge Regression and Global-Two-Stage are precious instruments for the improvement of parametric maps: both methodologies can be applied with virtually any tracer and model, provided that initial estimates can be computed through standard weighted least squares, and have therefore a wide range of applicability.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Cobelli, Claudio
Correlatore:Lammerstma, Adrien
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > INGEGNERIA DELL'INFORMAZIONE > BIOINGEGNERIA
Data di deposito della tesi:2007
Anno di Pubblicazione:2007
Parole chiave (italiano / inglese):PET, Bayesian method, population approach, ridge regression, parametric map
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/06 Bioingegneria elettronica e informatica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:554
Depositato il:30 Set 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Wu.Y., Carson.R. Noise reduction in the Simplified Reference Tissue Model neuroreceptor functional imaging Journal of Cerebral Blood Flow and Metabolism 22(2002),1440-1452 Cerca con Google

[2] Lammerstma.AA., Hume.S. Simplified reference tissue model for PET receptor studies. Neuroimage 4(1996),153-158 Cerca con Google

[3] Irie.T., Fukushi.K, Namba.H., et al. Brain acetylcolinesterase activity:validation of a PET tracer in a rat model of Alzheimer's disease Journal of Nuclear Medicine 37(1996),649-655 Cerca con Google

[4] Herholz.K., Lercher.M., Wienhard.K., et al. PET measurement of cerebral acetylcoline esterase activity without blood sampling European Journal of Nuclear Medicine 28(2001),472-477 Cerca con Google

[5] Nagatsuka.S., Fukushi.K., Shinotoh.H., et al. Kinetic analysis of [11C]MP4A using a high radioactivity brain region that represents an integrated input function for measurement of cerebral acetylcolinesterase activity without arterial activity using N-[11C]methylpiperidin-4-yl acetate without arterial blood sampling. J Cereb Blood Flow and Metab 24(2001),600-611 Cerca con Google

[6] O'Sullivan.F., Saha.A. Use of ridge regression for improved estimation of kinetic constants from PET data. IEEE Transactions on Medical Imaging 18(1999),115- 125 Cerca con Google

[7] Zhou.Y., Huang.S.C., Bergsneider.B., Linear ridge regression with spatial constraint for generation of parametric images in dynamic positron emission tomography studies IEEE Transactions on Nuclear Science 48(2001),125-130 Cerca con Google

[8] Zhou.Y., Endres C., Brasic. J.R., et al. Linear regression with spatial constraint to generate parametric images of ligand-receptor dynamic PET studies with a simplified reference tissue model Neuroimage 18(2003),975-989. Cerca con Google

[9] Zhou.Y., Huang.S.C., Bergsneider.B., Wong.D., Improved parametric image generation using spatial-temporal analysis of dynamic PET studies Neuroimage 15(2002),697-707 Cerca con Google

[10] Kimura.Y.,Hsu.H.Toyama.H.et al. Improved signal-to-noise-ratio in parametric images by cluster analysis Neuroimage 9(1999),554-561. Cerca con Google

[11] Kimura.Y., Senda.M., Alpert.N. Fast formation of statistically reliable FDG parametric images based on clustering and principal components. Physics in Medicine and Biology, 47[3](2002),455-458 Cerca con Google

[12] Kimura.Y., Naganawa.M., Yamaguchi.J., et al. MAP-based kinetic analysis for voxel-by-voxel compartent model estimation: detalied imaging of the cerebral glucose metabolism using FDG. Neuroimage 29(2006),1203-1211. Cerca con Google

[13] Gunn.R., Gunn.S., Cunningham.V. Positron Emission Tomography Compartmental Models Jorurnal of Cerebral Blood Flow and Metabolism 21(2001),635-652 Cerca con Google

[14] Blomqvist.G. On the construction of functional maps in positron emission tomography Journal of Cerebral Blood Flow and Metabolism 4(1984),629-632 Cerca con Google

[15] Tomasi.G., Bertoldo.A., Cobelli.C. Parametric imaging of acetylcolinesterase activity with PET: evaluation of different methods. Proceedings of IFAC conference of Modelling in Biological Systems, Reims 2006 Cerca con Google

[16] Hartley.H. The modified Gauss-Newton method for the fitting of non-linear regression function by least squares. Technometric 3(1961),269 Cerca con Google

[17] Feng.D., Huang.S.C., Wang.Z.Z., Ho.D. An unbiased parameric imaging algorithm for nonuniformly sampled biomedical system parameter estimation. IEEE Transactions on Medical Imaging 15(1996),512-519 Cerca con Google

[18] Guo.H., Renaut.R., Chen.K., Reiman.E. Clustering huge data sets for parametric PET images BioSystems 71(2003),81-92 Cerca con Google

[19] Windischberger.C., Barth.M., Lamm.C., et al. Fuzzy cluster analysis of high-field funtional MRI data Artificial Intelligence in Medicine 29(2003),203-223 Cerca con Google

[20] Pike.V.W., McCarron.J.A., Lammertsma.A.A., Osman.S., et al. Exquisite delineation of 5-HT1A receptors in human brain with PET and [carbonyl-11 C]WAY- 100635. European Journal of Pharmacology 301(1996),R5-R7. Cerca con Google

[21] Carson.E. and Cobelli.C. Modelling methodology for physiology and medicine. Elsevier,2000,77-106 Cerca con Google

[22] Bailer.U., Frank.G., Henry.S., Price.J. et al. Exaggerated 5-HT1A but normal 5- HT2A receptor activity in individuals ill with anorexia nervosa. Biol Psichiatry 61(9)(2007),1090-1099 Cerca con Google

[23] Steimer.J., Mallet.A., Golmard.JL., Boisvieux.JF. Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the non linear mixed effect model. Drug Metabolism Reviews 15(1984),265-292. Cerca con Google

[24] Davidian.M. ,Giltinan.D. Nonlinear models for repeated measurement data New York, Chapman&Hall,1995,125-150 Cerca con Google

[25] Bertoldo.A., Sparacino.G., Cobelli.C. "Population approach" improves parameter estimation of kinetic models from dynamic PET data. IEEE Transcations of Medical Imaging, 23(2004),297-306 Cerca con Google

[26] Tomasi.G., Bertoldo.A., Cobelli.C. PET parametric imaging of imrpoved by Global-Two-Stage method. "Annals of Biomedical Engineering", Positive first review, July 2007 Cerca con Google

[27] Bertoldo.A., Pencek.R.R., Azuma.K., et al. Interactions between delivery, transport, and phosphorylation of glucose in governing uptake into human skeletal muscle Diabetes, 55(2006),3028-3037 Cerca con Google

[28] Bertoldo.A., Peltoniemi.P., Oikonen.V., et al. Kinetic modeling of [18F]FDG in skeletal muscle by PET: a four-compartment five-rate-constant model American Journal of Physiology, 281(2001),E524-E536. Cerca con Google

[29] Hertz L. Binding characteristics of the receptor and coupling to transport proteins. In: Giessen-Crouse E, ed. Peripheral benzodiazepine receptors. London: Academic Press; 1993:27-51. Cerca con Google

[30] Gebicke-Haerter PJ. Microarrays and expression profiling in microglia research and in inflammatory brain disorders. J Neurosci Res. 81(2005):327-341. Cerca con Google

[31] Banati RB. Visualising microglial activation in vivo. Glia. 40(2002):206-217. Cerca con Google

[32] Kropholler.MA., Boellaard.R., Schuitemaker.A., et al. Evaluation of reference tissue models for the analysis of [11C](R)-PK11195 studies.Journal of Cerebral Blood Flow and Metabolimism, 26[11](2006),1431-1441 Cerca con Google

[33] Anderson.AN., Pavese.N., Edison.P., et al. A systematic comparison of kinetic modelling methods generating parametric maps for [11C]-(R)-PK11195 Neuroimage. 36[1](2007),28-37 Cerca con Google

[34] Kropholler.M., Boellaard.R., Schuitemaker.A., et al. Development of a tracer kinetic plasma input model for [11C]-(R)-PK11195 brain studies. Journal of Cerebral Blood Flow and Metabolism, 25[7](2005),842-851 Cerca con Google

[35] Turkheimer.FE., Edison.P., Pavese.N., et al. Reference and Target Region Modeling of [11C]-(R)-PK11195 Brain Studies Journal of Cerebral Blood Flow and Metabolism 48(2007):158-167. Cerca con Google

[36] Pavese.N., Gerhard.A., Tai.YF., et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66(2006):1638-1643. Cerca con Google

[37] Hammers.A, Allom.R, Koepp.MJ.,et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Human Brain Mapping 19(2003):224-247. Cerca con Google

[38] Gunn.R., Lammerstma.A., Hume.P., Cunnigham.V.J. Parametric imaging of ligand receptor binding in PET using a simpli¯ed reference region model Neuroimage 6(1997),279-287. Cerca con Google

[39] Bertoldo.A, Pietra.L, Moresco.RM., et al. Quantitative in vivo imaging of microglia activation using [11C]-(R)-PK11195 and two reference tissue models. Neuroimage. (2006) 31:T79. Cerca con Google

[40] Tomasi.G., Edison.P., Bertoldo.A., et al. Novel reference region modelling reveals increased microglial and reduced vasculature binding of [11C]-(R)-PK11195 in Alzheimer's disease patients. submitted to the Journal of Nuclear Medicine, Septmeber 2007 Cerca con Google

[41] Liptrot.M., Adams.KH., Martiny.L., et al. Cluster analysis in kinetic modelling of the brain: a noninvasive alternative to arterial sampling. Neuroimage 21[2](2004):483-493. Cerca con Google

[42] Van der Weerdt.AP., Klein.LJ., Boellaard.R., et al. Image-derived input functions for determination of MRGlu in cardiac [18F]FDG PET scans. Journal of Nuclear Medicine 42[11](2001):1622-1629. Cerca con Google

[43] Wong.KP., Feng.D., Meikle.SR., Fulham. MJ. Simultaneous estimation of physiological parameters and the input function{in vivo PET data. IEEE Transactions on Information Technology in Biomedicine 5[1](2001):67-76. Cerca con Google

[44] Jay.L.Devore. Probability and Statistics for Engineering and the Sciences, 5th Edition, ,Pacific Grove(California),Duxbury Editions,2005,659. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record