Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

marcolin, enrico (2013) Post-fire restoration in Alpine environment: from the microsite to the landscape. Multi-scale approach for the definition of mitigation strategies. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (tesi di dottorato)
10Mb

Abstract (inglese)

Forest fires in the Alps are increasing both in frequency and size, especially on southern slopes where environmental conditions are more suitable for fire ignition and spread. Post-fire restoration activities are often applied without considering the large heterogeneity and variability of ecological constraints. Fire severity, species composition and site characteristics heavily affect vegetation recovery dynamics.
The main objectives of this study were to test the hypothesis that post-fire burned wood management may greatly affect forest recovery and to identify the main environmental variables affecting seedling establishment and survival.
We investigated restoration dynamics following high severity crown fire in two forests located in Western (Bourra site - Aosta Valley) and Eastern (Barcis site - Friuli Venezia Giulia) Italian Alps. Fires burnt large area of pine forests (P. sylvestris, P. nigra) located on southern slopes, characterized by harsh conditions (dry environment with high solar radiation exposure). In both sites active restoration strategies were adopted in the following years. These practices consisted in Salvage logging (cut and deadwood removal) followed by plantation or not, and Cut and release (living deadwood on site). Passive management area (remnants of burnt stand trees, where no intervention occurred) was also considered and compared.
The recovery processes of vegetation were explored through methods of integrated analysis, using different spatial- and temporal-scale approaches. Field-data measures on regeneration, shelter elements and environmental variables were analyzed at microsite scale. Maps of fire severity were created by means of change-detection techniques on Landsat TM/ETM+ images. A scan through the time of forest recovery was performed associating regeneration and environmental data with Vegetation Indices (VIs) derived from a chronosequence of multispectral images. The evaluation of post-fire recovery dynamics, their relationships with fire severity and restoration activities are analyzed at a landscape scale, combining field-data, VIs, topographic and vegetation parameters extracted from LiDAR data. The influence of post-fire management on microclimate was investigated by means of instrumental measurements of environmental parameters affecting the regeneration dynamics. Measurements of soil temperature and moisture together with estimates of near-ground solar radiation were carried during a whole growing season within areas subjected to different restoration practices.
Differences in species composition were found in the study sites among treatments. Regeneration density and diversity were positively associated with deadwood presence. Early establishment of pine seedlings was associated with the presence of standing or lying deadwood. Conversely, Populus tremula, regenerating mostly vegetatively, showed a different behaviour from the other tree species.
Ground cover conditions contributed to patterns of seedling occurrence.
The strong spatial association of seedlings with deadwood suggests that this latter produces microsites that enhance the establishment of regeneration. The relationship between nurse deadwood elements and regeneration was found to be highly anisotropic, as a consequence of the higher protection from radiation and lower soil moisture loss in the shady sides of the shelter element. Marked differences in incoming solar radiation, soil moisture and temperature were detected among treatments, in particular, salvaged areas resulted strongly associated with severe environmental conditions. Higher fire severity diminishes seed availability reducing the seeders, thus the distance from seed source has emerged as an important constraint for pine regeneration establishment.
In relation to different spatio-temporal scales of analysis, this research reports a significant impact of the post-fire management actions on forest recovery. Restoration practices may significantly affect environmental parameters, particularly in stressful conditions,. The presence of burnt wood provides an amelioration of microsite reducing the extreme values, buffering microclimatic fluctuations thus favoring the establishment of regeneration. Standing and lying deadwood, also resulting from active management, should be leaved in situ during restoration activities.

Abstract (italiano)

Gli incendi boschivi nelle Alpi presentano negli ultimi decenni un trend di crescita sia in frequenza che per superficie, in particolare sui versanti meridionali dove l’eventuale innesco e la rapida diffusione dell’incendio sono favorite dalle condizioni ambientali. Le attività di ripristino post-incendio vengono condotte spesso senza considerare le peculiarità dell’ambiente montano e la grande eterogeneità e variabilità dei principali parametri ecologico-ambientali. La severità dell’incendio, le caratteristiche del sito e la composizione specifica delle foreste coinvolte influiscono significativamente sulle dinamiche di ricostituzione della vegetazione.
Gli obiettivi principali di questo studio consistono nel verificare l'ipotesi che la gestione post-incendio della necromassa legnosa possa significativamente influire sulle dinamiche di ricostituzione della foresta, e di individuare le principali variabili ambientali che condizionano l’insediamento e la sopravvivenza della rinnovazione.
Per verificare tali ipotesi, le dinamiche di ricostituzione a seguito di incendi ad alta severità sono state analizzate in due foreste situate una nelle Alpi occidentali (sito di Bourra - Valle d'Aosta) e una in quelle orientali (sito di Barcis - Friuli Venezia Giulia). L’incendio ha interessato, in entrambi i siti, una estesa superficie di pineta (P. sylvestris, P. nigra), soprattutto su versanti aridi esposti a Sud (con elevata esposizione alle radiazioni solari e scarsa disponibilità idrica). In entrambi i casi, negli anni successivi all’incendio, sono stati effettuati interventi (trattamenti) di ricostituzione attiva: “Salvage logging” (taglio ed esbosco del materiale legnoso, talvolta seguito da rimboschimenti localizzati) e “Cut and release” (taglio e rilascio a terra del materiale legnoso). A tali tipologie si sono contrapposte e comparate aree a “Passive management” (ricostituzione passiva, aree in cui non si sono effettuati interventi).
Le dinamiche di ricostituzione della vegetazione sono state valutate integrando differenti metodi di analisi applicati a diverse scale sia spaziali che temporali. A scala di microsito si sono rilevati, per ogni semenzale, i principali parametri ambientali e l’eventuale presenza nelle vicinanze di necromassa e/o massi. Applicando tecniche di change-detection a opportuni indici di stato della vegetazione (Vegetation Indices - VIs), derivati da immagini Landsat TM/ETM+ (pre- e post-incendio), si sono definite delle cartografie di severità dell’incendio per ciascun sito. Associando i VIs estratti da una crono-sequenza di immagini multispettrali con i rilievi dei dati ambientali e della rinnovazione, si sono individuate le dinamiche di ricostituzione della vegetazione. Si sono inoltre valutate, a scala di paesaggio, le relazioni fra la severità dell’incendio e i patterns della rinnovazione associati ai diversi trattamenti. A tale scopo, sono stati utilizzati dati topografici e strutturali della vegetazione estratti da dati LiDAR. L’influenza dei trattamenti sui principali parametri microclimatici è stata valutata per mezzo di misure strumentali di campo. In tale campagna di misure si sono monitorate la temperatura e l’umidità del suolo, unitamente alla stima della radiazione solare al suolo.
Differenze significative si sono evidenziate nella composizione specifica della rinnovazione tra i trattamenti. Densità di rinnovazione e diversità specifica sono risultate positivamente correlate con la presenza di necromassa legnosa. Un precoce insediamento della rinnovazione di pino si è evidenziato nelle aree ove vi fosse presenza di materiale legnoso a terra o piante morte in piedi. Il pioppo tremolo, specie rinnovatasi prevalentemente per via vegetativa, ha invece evidenziato una dinamica di ricolonizzazione diversa dalle altre specie arboree. Anche le condizioni di copertura del suolo hanno contribuito alla definizione dei patterns di ricostituzione della copertura vegetale.
L’evidente associazione spaziale fra semenzali della rinnovazione ed elementi di necromassa conferma l’ipotesi che uest’ultima contribuisca in maniera determinante alla creazione di micrositi idonei all’insediamento della rinnovazione stessa. L’effetto di facilitazione prodotto dalla necromassa legnosa, nei riguardi dell’insediamento dei semenzali, è risultato altamente anisotropo; ciò sembra associato all’ombreggiamento prodotto dallo shelter legnoso sul semenzale, che proteggendo il microsito dall’eccessivo carico radiativo consente anche la conservazione di adeguati livelli di umidità nel terreno. Notevoli differenze di radiazione solare, di umidità e temperatura del suolo sono stati riscontrati tra i trattamenti, in particolare, le aree gestite a salvage logging risultano essere associate a condizioni microclimatiche piuttosto critiche per la rinnovazione. Nelle aree percorse dal fuoco ad alta severità, la disponibilità di seme è diminuita consistentemente a causa della drastica riduzione di piante porta-seme. Ciò ha permesso di individuare la distanza dalle piante porta-seme quale fattore determinante per l’insediamento della rinnovazione di Pinus. In relazione alle diverse scale spazio-temporali di analisi, questa ricerca evidenzia un impatto significativo dei trattamenti nei riguardi delle dinamiche di ricostituzione della vegetazione forestale. La gestione del post-incendio può incidere in maniera significativa sulle condizioni del microclima, in particolare in situazioni ambientali critiche per la rinnovazione (p.es aridità dei versanti). La presenza di necromassa legnosa consente la formazione di micrositi nei quali i valori estremi e le fluttuazioni dei parametri microclimatici si riducono, creando condizioni favorevoli per l’insediamento e la sopravvivenza dei semenzali. Per tale motivo, risulta opportuno il rilascio di piante morte in piedi o di materiale legnoso a terra durante le operazioni di ricostituzione attiva post-incendio.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:lingua, emanuele
Correlatore:marzano, raffaella
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > TERRITORIO, AMBIENTE, RISORSE E SALUTE > ECOLOGIA
Data di deposito della tesi:28 Gennaio 2013
Anno di Pubblicazione:31 Gennaio 2013
Parole chiave (italiano / inglese):Ricostituzione post-incendio / Post-fire restoration Microsito / Microsite amelioration Elementi di protezione / Nurse objects Taglio ed esbosco / Salvage logging Alpi Italiane / Italian Alps
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/05 Assestamento forestale e selvicoltura
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:5558
Depositato il:15 Ott 2013 10:55
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Beghin, R., Lingua, E., Garbarino, M., Lonati, M., Bovio, G., Motta, R., Marzano, R., 2010. Pinus sylvestris forest regeneration under different post-fire restoration practices in the northwestern Italian Alps. Ecological Engineering 36, 1365–1372. Cerca con Google

Beschta, R.L., Rhodes, J.J., Kauffman, J.B., Gresswell, R.E., Minshall, G.W., Karr, J.R., Perry, D. a., Hauer, F.R., Frissell, C. a., 2004. Postfire Management on Forested Public Lands of the Western United States. Conservation Biology 18, 957–967. Cerca con Google

Casady, G.M., Leeuwen, W.J.D., Marsh, S.E., 2009. Evaluating Post-wildfire Vegetation Regeneration as a Response to Multiple Environmental Determinants. Environmental Modeling & Assessment 15, 295–307. Cerca con Google

De Chantal, M., Lilja-Rothsten, S., Peterson, C., Kuuluvainen, T., Vanha-Majamaa, I., Puttonen, P., 2009. Tree regeneration before and after restoration treatments in managed boreal Picea abies stands. Applied Vegetation Science 12, 131–143. Cerca con Google

Cocke, A.E., Fulé, P.Z., Crouse, J.E., 2005. Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data. International Journal of Wildland Fire 14, 189. Cerca con Google

DeBano, L., Neary, D., Ffolliott, P., 1998. Fire Effects on Ecosystems. Wiley. Cerca con Google

DellaSala, D.A., Karr, J.R., Schoennagel, T., Perry, D., Noss, R.F., Lindenmayer, D., Beschta, R., Hutto, R.L., Swanson, M.E., Evans, J., 2006. Post-fire logging debate ignores many issues. Science 314, 51–2. Cerca con Google

Donato, D.C., Fontaine, J.B., Campbell, J.L., Robinson, W.D., Kauffman, J.B., Law, B.E., 2006. Post-wildfire logging hinders regeneration and increases fire risk. Science (New York, N.Y.) 311, 352. Cerca con Google

Foster, D.R., Orwig, D. a., 2006. Preemptive and Salvage Harvesting of New England Forests: When Doing Nothing Is a Viable Alternative. Conservation Biology 20, 959–970. Cerca con Google

Franklin, J.F., Lindenmayer, D., MacMahon, J.A., McKee, A., Magnuson, J., Perry, D.A., Waide, R., Foster, D., 2000. Threads of Continuity. There are immense differences between even-aged silvicultural disturbances (especially clearcutting) and natural disturbances, such as windthrow, wildfire, and even volcanic eruptions. Conservation in Practice 1, 8–17. Cerca con Google

11 Cerca con Google

Greene, D.F., Macdonald, S.E., Cumming, S., Swift, L., 2005. Seedbed variation from the interior through the edge of a large wildfire in Alberta. Canadian Journal of Forest Research 35, 1640–1647. Cerca con Google

Greene, D.F., Macdonald, S.E., Haeussler, S., Domenicano, S., Noël, J., Jayen, K., Charron, I., Gauthier, S., Hunt, S., Gielau, E.T., Bergeron, Y., Swift, L., 2007. The reduction of organic-layer depth by wildfire in the North American boreal forest and its effect on tree recruitment by seed. Canadian Journal of Forest Research 37, 1012–1023. Cerca con Google

Hille, M., Den Ouden, J., 2004. Improved recruitment and early growth of Scots pine (Pinus sylvestris L.) seedlings after fire and soil scarification. European Journal of Forest Research 123, 213–218. Cerca con Google

Jonášová, M., Van Hees, A., Prach, K., 2006. Rehabilitation of monotonous exotic coniferous plantations: A case study of spontaneous establishment of different tree species. Ecological Engineering 28, 141–148. Cerca con Google

Legras, E.C., Vander Wall, S.B., Board, D.I., 2010. The role of germination microsite in the establishment of sugar pine and Jeffrey pine seedlings. Forest Ecology and Management 260, 806–813. Cerca con Google

Leverkus, A.B., Puerta-Piñero, C., Guzmán-Álvarez, J.R., Navarro, J., Castro, J., 2012. Post-fire salvage logging increases restoration costs in a Mediterranean mountain ecosystem. New Forests 43, 601–613. Cerca con Google

Levin, S.A., 1992. The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture. Ecology 73, 1943–1967. Cerca con Google

Lindenmayer, D.B., Burton, P.J., Franklin, J.F., 2008. Salvage Logging and Its Ecological Consequences. Island Press. Cerca con Google

McCann, K.S., 2000. The diversity-stability debate. Nature 405, 228–33. Cerca con Google

McIver, J.D., Starr, L., 2001. A Literature Review on the Environmental Effects of Postfire Logging. Western Journal of Applied Forestry 16, 159–168. Cerca con Google

Noss, F., Lindenmayer, D.B., 2006. Special Section: The Ecological Effects of Salvage Logging after Natural Disturbance. Conservation Biology 20, 946–948. Cerca con Google

Núñez, M., Calvo, L., Pando Fernández, V., Bravo, F., 2008. Floristic changes induced by fire on“ Pinus sylvestris” plantations in northwest of Spain. Investigación agraria. Sistemas y recursos forestales 17, 168–177. Cerca con Google

12 Cerca con Google

Ordóñez, J.L., Retana, J., Espelta, J.M., 2005. Effects of tree size, crown damage, and tree location on post-fire survival and cone production of Pinus nigra trees. Forest Ecology and Management 206, 109–117. Cerca con Google

O’Neill, R. V., Milne, B.T., Turner, M.G., Gardner, R.H., 1988. Resource utilization scales and landscape pattern. Landscape Ecology 2, 63–69. Cerca con Google

Proença, V., Pereira, H.M., Vicente, L., 2010. Resistance to wildfire and early regeneration in natural broadleaved forest and pine plantation. Acta Oecologica 36, 626–633. Cerca con Google

Puerta-Piñero, C., Sánchez-Miranda, a., Leverkus, a., Castro, J., 2010. Management of burnt wood after fire affects post-dispersal acorn predation. Forest Ecology and Management 260, 345–352. Cerca con Google

Purdy, B.G., Macdonald, S.E., Dale, M.R.T., 2002. The regeneration niche of white spruce following fire in the mixedwood boreal forest. Silva Fennica 36, 289–306. Cerca con Google

Rosario Nuñez, M., Bravo, F., Calvo, L., 2003. Predicting the probability of seed germination in Pinus sylvestris L. and four competitor shrub species after fire. Annals of Forest Science 60, 75–81. Cerca con Google

Running, S.W., 2006. Climate change. Is global warming causing more, larger wildfires? Science (New York, N.Y.) 313, 927–8. Cerca con Google

Spanos, I., Raftoyannis, Y., Goudelis, G., Xanthopoulou, E., Samara, T., Tsiontsis, A., 2005. Effects of Postfire Logging on Soil and Vegetation Recovery in a Pinus halepensis Mill. Forest of Greece. Plant and Soil 278, 171–179. Cerca con Google

White, J.D., Ryan, K.C., Key, C.C., Running, S.W., 1996. Remote sensing of forest fire severity and vegetation recovery. The International Journal of Wildland Fire 6, 125–136. Cerca con Google

Wiens, J.A., 1989. Spatial scaling in ecology. Functional Ecology 3, 385–397. Cerca con Google

Allen JL, Sorbel B, 2008. Assessing the differenced Normalized Burn Ratio’s ability to map burn severity in the boreal forest and tundra ecosystems of Alaska’s national parks. International Journal of Wildland Fire 17, 463–475. Cerca con Google

Ammer, C., 1996. Impact of ungulates on structure and dynamics of natural regeneration of mixed mountain forests in the Bavarian Alps. Forest Ecology and Management 88, 43–53. Cerca con Google

Amorini E, 1983. Thinning trials in the black pine stand of Monte della Modina in the Tuscan Apennines. Ann Ist Sper Selvic 14:47–99. Cerca con Google

Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32–46. Cerca con Google

Asrar, G., Fuchs, M., Kanemasu, E. T., and Hatfield, J. L., 1984. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat, Agron. J. 76:300-306. Cerca con Google

Beers, R.W., Dress, P.E. and Wensel, L.C., 1966. Aspect transformation in site productivity research. J. For. 64:691-692. Cerca con Google

Beghin, R., Lingua, E., Garbarino, M., Lonati, M., Bovio, G., Motta, R., Marzano, R., 2010. Pinus sylvestris forest regeneration under different post-fire restoration practices in the northwestern Italian Alps. Ecological Engineering 36, 1365-1372. Cerca con Google

Beschta, R. L., J. J. Rhodes, B. Kauffman, R. E. Gresswell, W. Minshall, J. R. Karr, D. A. Perry, F. R. Hauer, Frissell C. A., 2004. Post-fire management on forested public lands of the Western United States. Conservation Biology 18:957–967. Cerca con Google

Biondini, M.E., Mielke Jr., P.W., Berry, K.J., 1988. Data-dependent permutation techniques for the analysis of ecological data. Vegetation 75, 161–168. Cerca con Google

Brewer K, Winne C, Redmond R, Opitz D, Mangrich M, 2005. Classifying and mapping wildfire severity: a comparison of methods. Photogrammetric Engineering and Remote Sensing 71, 1311–1320. Cerca con Google

Brown, R.T., Agee, J.K., Franklin, J.F., 2004. Forest restoration and fire: principles in the context of place. Conservation Biology 18, 903–912. Cerca con Google

Caetano, M., Mertes, L., Cadete, L., and Pereira, J. M. C., 1996. Assessment of AVHRR data for characterizing burned areas and post-fire vegetation recovery. EARSeL Advances in Remote Sensing, 4, 124–134. Cerca con Google

Carlson T., Ripley D., 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62: 241–252. Cerca con Google

Castro, J., Allen, C.D., Molina-Morales, M., Marañón-Jiménez, S., Sánchez-Miranda, Á., Zamora, R., 2011. Salvage Logging Versus the Use of Burnt Wood as a Nurse Object to Promote Post-Fire Tree Seedling Establishment. Restoration Ecology 19, 537–544. Cerca con Google

Chafer CJ, Noonan M, Macnaught E.,2004. The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney wildfires. International Journal of Wildland Fire 13, 227–240. doi:10.1071/WF03041. Cerca con Google

Chander, G., Markham, B.L., Helder, D.L., 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment 113, 893–903. Cerca con Google

Chen, X., Vogelmann, J., Rollins, M., 2011. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine. International Journal of Remote Sensing 32, 7905-7927. Cerca con Google

Clark, J. S., Macklin E., Wood. L., 1998. Stages and spatial scales of recruitment limitation in southern Appalachian forests. Ecological Monographs 68:213-235. Cerca con Google

Cocke, A., Fule, P., Crouse, J., 2005. Comparison of burn severity assessments using differenced Normalized Burn Ratio and ground data. International Journal of Wildland Fire 14, 189–198. Cerca con Google

Cohen, W. B., Spies, T. A., 1992. Estimating structural attributes of Douglas-Fir/Western Hemlock forest stands from Landsat and Spot Imagery. Remote Sensing of Environment, 41,1–17. Cerca con Google

Cohen, W. B., Spies, T. A., Fiorella, M., 1995, Estimating the age and structure of forests in a multi-ownership landscape of western Oregon, U.S.A., International Journal of Remote Sensing, 16: 721-746. Cerca con Google

Crist, E.P., Cicone, R.C., 1984. A Physically-Based Transformation of Thematic Mapper Data-The TM Tasseled Cap. IEEE Transactions on Geoscience and Remote Sensing GE-22, 256-263. Cerca con Google

DeBano, L. F., Savage, S. M., Hamilton, D. M., 1977, The transfer of heat and hydrophobic substances during burning. Journal of the Soil Science Society of America, 40, 779–782. Cerca con Google

DeBano, L. F., Neary, D. G., Ffolliott, P. F.,1998. Fire's effects on ecosystems. New York: John Wiley and Sons, Inc. 333 pp. Cerca con Google

Díaz-Delgado, R., Salvador, R., Pons, X., 1998, Monitoring of plant regeneration after fire by remote sensing. In Fire Management and Landscape Ecology, edited by L. Trabaud (Fairfield: International Association of Wildland Fire), pp. 315–326. Cerca con Google

Díaz-Delgado, R., Pons, X., 2001, Spatial patterns of forest fires in Catalonia (NE Spain) along the period 1975–1995. Analysis of vegetation recovery after fire. Forest Ecology and Management, 147, 67–74. Cerca con Google

Díaz-Delgado, R., Lloret, F., Pons, X., 2003. Influence of fire severity on plant regeneration by means of remote sensing imagery. International Journal of Remote Sensing 24, 1751-1763. Cerca con Google

Donato, D.C., Fontaine, J.B., Campbell, J.L., Robinson, W.D., Kauffman, J.B., Law, B.E., 2006. Post-wildfire logging hinders regeneration and increases fire risk. Science 311, 352. Cerca con Google

Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z., Quayle, B.,Howard, S., 2007. A project for monitoring trends in burn severity. Fire Ecology 3, 3–21. Cerca con Google

Elson, L.T., Simon, N.P.P., 2006. Plant Abundances Following Clearcutting and Stripcutting in Central Labrador. North J Appl For 1-19. Cerca con Google

Epting, J., Verbyla, D., Sorbel, B., 2005. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+ . Remote Sensing of Environment, 96, pp. 328–339. Cerca con Google

Escuin, S., Navarro, R., Fernández, P., 2008. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. International Journal of Remote Sensing 29, 1053-1073. Cerca con Google

Fahnestock, G. R., Hare, R. C., 1964. Heating of tree trunks in surface fires. Journal of Forestry, 62, 779–805. Cerca con Google

Firm, D., Nagel, T.A., Diaci, J., 2009. Disturbance history and dynamics of an old- growth mixed species mountain forest in the Slovenian Alps. For. Ecol. Manage. 257, 1893–1901. Cerca con Google

Foster, D.R., Orwig, D.A., 2006. Preemptive and salvage harvesting of New England forests: when doing nothing is a viable alternative. Conserv. Biol. 20, 959–970. Cerca con Google

Franklin, S. E., Lavigne, M. B., Wulder, M. A., McCaffrey, T.M., 2002. Large-area forest structure change detection: An example. Canadian Journal of Remote Sensing, 28(4), 588–592. Cerca con Google

French, N.H.F., Kasischke, E.S., Hall, R.J., Murphy, K. a., Verbyla, D.L., Hoy, E.E., Allen, J.L., 2008. Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results. International Journal of Wildland Fire 17, 443. Cerca con Google

Gilabert, M., González-Pi ueras, J., Garc a-Haro, F., Meliá, J., 2002. A generalized soil-adjusted vegetation index. Remote Sensing of Environment 82, 303-310. Cerca con Google

Gómez-Aparicio, L., Zamora, R., Gómez, J.M., Hódar, J. a., Castro, J., Baraza, E., 2004. Applying Plant Facilitation To Forest Restoration: a Meta-Analysis of the Use of Shrubs As Nurse Plants. Ecological Applications 14, 1128–1138. Cerca con Google

Gracia, M., 2002. Mid-term successional patterns after fire of mixed pine–oak forests in NE Spain. Acta Oecologica 23, 405-411. Cerca con Google

Hais, M., Jonášová, M., Langhammer, J., Kučera, T., 2009. Comparison of two types of forest disturbance using multitemporal Landsat TM/ETM+ imagery and field vegetation data. Remote Sensing of Environment 113, 835-845. Cerca con Google

Hall, Forrest G., D.E. Strebel, J.E. Nickeson, S.J. Goetz, 1991. Radiometric Rectification: Toward a Common Radiometric Response among Multidate, Multisensor Images, Remote Sensing of Environment, 35:ll-27. Cerca con Google

He, L., Chen, J.M., Zhang, S., Gomez, G., Pan, Y., McCullough, K., Birdsey, R., Masek, J.G., 2011. Normalized algorithm for mapping and dating forest disturbances and regrowth for the United States. International Journal of Applied Earth Observation and Geoinformation 13, 236–245. Cerca con Google

Healey S. P., Cohen W.B., Yang Z., Krankina O. N., 2005. Comparison of tasseled cap-based Landsat data structures for use in forest disturbance detection. Remote Sensing of Environment, 97,301−310. Cerca con Google

Healey, S. P., Yang, Z., Cohen,W. B., & Pierce, D. J., 2006. Application of two regression- based methods to estimate the effects of partial harvest on forest structure using Landsat data. Remote Sensing of Environment, 101,115−126. Cerca con Google

Hill J. e Sturm B., 1991. Radiometric correction of multitemporal Thematic Mapper data for use in agricultural land-cover classification and vegetation monitoring. International Journal of Remote Sensing. 12 (7): 1471-1491. Cerca con Google

Howard, S.M., Lacasse, M.L., 2004, An evaluation of Gap-Filled Landsat SLC-Off imagery for wildland fire burn severity mapping. Photogrammetric Engineering and Remote Sensing, 70, pp. 877–879. Cerca con Google

Hoy EE, French NHF, Turetsky MR, Trigg SN, Kasischke ES, 2008.Evaluating the potential of Landsat TM/ETM+ imagery for assessing fire severity in Alaskan black spruce forests. International Journal of Wildland Fire 17, 500–514. Cerca con Google

Huang, C., Wylie, B., Yang, L., Homer, C., Zylstra, G., 2002. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. International Journal of Remote Sensing 23, 1741-1748. Cerca con Google

Huang, C., Song, K., Kim, S., Townshend, J.R.G., Davis, P., Masek, J.G., Goward, S.N., 2008. Use of a dark object concept and support vector machines to automate forest cover change analysis. Remote Sensing of Environment 112, 970-985. Cerca con Google

Huang, C., Goward, S.N., Schleeweis, K., Thomas, N., Masek, J.G., Zhu, Z., 2009. Dynamics of national forests assessed using the Landsat record: Case studies in eastern United States. Remote Sensing of Environment 113, 1430-1442. Cerca con Google

Huang, C., Goward, S.N., Masek, J.G., Thomas, N., Zhu, Z., Vogelmann, J.E., 2010. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sensing of Environment 114, 183–198. Cerca con Google

Hudak, A., Morgan, P., Bobbitt, M., Smith, A., Lewis, S., Lentile, L., Robichad, P., Clark, J., McKinley, R., 2007. The relationship of multispectral satellite imagery to immediate fire effects. Journal of Fire Ecology 3, 64–90. Cerca con Google

Huete, A.R., 1988. A soil-adjusted vegetation index (SAVI). Rem. Sens. Environ. 25, 295–309. Cerca con Google

Isaev A, Korovin G, Bartalev S, ErshovD, Janetos A, Kasischke E, Shugart H, French N, Orlick B, Murphy T, 2002. Using remote sensing to assess Russian forest fire carbon emissions. Climatic Change 55, 235–249. Cerca con Google

ITT VIS., (2009). ENVI 4.7-The Environment for Visualizing Images. Boulder, Colorado, USA: ITT Visual Information Solutions. Cerca con Google

Jin, S., Sader, S., 2005. Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sensing of Environment 94, 364-372. Cerca con Google

Johnstone, J.F., Kasischke, E.S., 2005. Stand-level effects of burn severity on post- fire regeneration in a recently burned black spruce forest. Can. J. For. Res. 35, 2151–2163. Cerca con Google

Johnstone, J.F., Chapin, F.S. 2006. Effects of soil burn severity on post-fire tree recruitment in the boreal forest. Ecosystems, 9: 14–31. Cerca con Google

Jonášová, M., Prach, K., 2004. Central-European mountain spruce (Picea abies (L.) Karst.) forests: regeneration of tree species after a bark beetle outbreak. Ecological Engineering 23, 15-27. Cerca con Google

Jonásová, M., Vávrová, E., Cudlin, P., 2010. Western Carpathian mountain spruce forest after a windthrow: Natural regeneration in cleared and uncleared areas. Forest Ecology and Management 259, 1127–1134. Cerca con Google

Justice, C.O., Townshend, J.R.G., Holben, B.N., Tucker, C.J., 1985. Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens. 6, 1271–1318. Cerca con Google

Kauth, R. J., Thomas, C. S., 1976. The Tasseled Cap-a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat, Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, Purdue University, West Lafayette, IN, pp. 4B41-4B51. Cerca con Google

Keeley, J.E., 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire 18, 116. Cerca con Google

Kerr, Y.H., Imbernon, J., Dedieu, G., Hautecoeur, O., Lagouarde, J.P., Seguin, B., 1989. NOAA AVHRR and its uses for rainfall and evapotranspiration monitoring. Int. J. Remote Sens. 10, 847–854. Cerca con Google

Key CH, Benson NC, 2002. Measuring and remote sensing of burn severity. In ‘US Geological Survey Wildland Fire Workshop Report’, Los Alamos, NM 31 October– 3 November 2000, USGS Open-File Report 02–11:55-56. Cerca con Google

Key CH, Benson NC, 2005. Landscape assessment: ground measure of severity; the Composite Burn Index, and remote sensing of severity, the Normalized Burn Index. In ‘FIREMON: Fire Effects Monitoring and Inventory System’. (Eds D Lutes, R Keane, J Caratti, C Key, N Benson, S Sutherland, L Grangi) USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-164-CD LA, pp. 1–51. (Fort Collins, CO). Cerca con Google

Key CH, Benson NC, 2006. Landscape Assessment (LA). In ‘FIREMON: Fire Effects Monitoring and Inventory System’. (Eds DC Lutes, RE Keane, JF Caratti, CH Key, NC Benson, S Sutherland, LJ Gangli) USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-164-CD. (Fort Collins, CO). Cerca con Google

Kumar, L., Skidmore, A.K., Knowles, E., 1997. Modelling topographic variation in solar radiation in a GIS environment. International Journal for Geographical Information Science 11, 475–497. Cerca con Google

Kuuluvainen, T., Penttinen, A., Leinonen, K., Nygren, M., 1996. Statistical Opportunities for Comparing Stand Structural Heterogeneity in Managed and Primeval Forests: An Example from boreal Spruce forest in southern Finland. Silva Fennica 30, 315-328. Cerca con Google

Legendre, P., and L. Legendre. 1998. Numerical ecology, 2nd English Ed. Developments in environmental modeling, Vol. 20. Elsevier, Amsterdam, The Netherlands. 853 p. Cerca con Google

Lentile LB, Holden ZA, Smith AM, Falkowski MJ, Hudak AT, Morgan P, Lewis S, Gessler PE, Benson NC, 2006. Remote sensing techniques to assess active fire characteristics and post-fire effects. International Journal of Wildland Fire 15, 319–345. Cerca con Google

Leprieur, C., Verstraete,M.M., Pinty, B., 1994. Evaluation of the performance of var- ious vegetation indices to retrieve vegetation cover from AVHRR data. Remote Sensing Reviews 10, 265–284. Cerca con Google

Lindenmayer, D. B., Noss R. F., 2006. Salvage logging, ecosystem processes, and biodiversity conservation. Conservation Biology 20: 949–958. Cerca con Google

Loboda, T., O'Neal, K., Csiszar, I., 2007. Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data. Remote Sensing of Environment, 109, 429–442. Cerca con Google

López García M, Caselles V, 1991. Mapping burns and natural reforestation using Thematic Mapper data. Geocarto International 6, 31–37. Cerca con Google

Magurran A.E., 2004. Measuring Biological Diversity. Blackwell Publishing, pp.256. Cerca con Google

Masek, G. J., 2005. LEDAPS disturbance products: User’s guide and algorithm description v.2. NASA GSFC, Greenbelt MD. http://ledaps.nascom.nasa.gov. Vai! Cerca con Google

McArdle BH, Anderson MJ, 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297. Cerca con Google

McCune, B., Grace, J.B., 2002. Analysis of Ecological Communities. MjM Software, Gleneden Beach, Oregon, U.S.A. Cerca con Google

McCune, B., Mefford, M.J., 2011. PC-ORD. Multivariate Analysis of Ecological Data. MjM Software Design, Gleneden Beach, Oregon, USA. Cerca con Google

McGaughey, RJ, 2002. SVS – Stand Visualization System. A product of the USDA Forest Service, Pacific Northwest Research Station [online] http://faculty.washington.edu/mcgoy/svs.html Vai! Cerca con Google

Mendoza, I., Gómez-Aparicio, L., Zamora, R., Matías, L., 2009. Recruitment limitation of forest communities in a degraded Mediterranean landscape. Journal of Vegetation Science 20, 367-376. Cerca con Google

Meng, Q., Meentemeyer, R.K., 2011. Modeling of multi-strata forest fire severity using Landsat TM Data. International Journal of Applied Earth Observation and Geoinformation 13, 120-126. Cerca con Google

Miller JD, Yool SR, 2002. Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data. Remote Sensing of Environment 82, 481–496. Cerca con Google

Miller J, Thode A, 2007. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment 109, 66–80. Cerca con Google

Murphy KA, Reynolds JH, Koltun JM, 2008. Evaluating the ability of the differenced Normalized Burn Ratio (dNBR) to predict ecologically significant burn severity in Alaskan boreal forests. International Journal of Wildland Fire 17, 490–499. Cerca con Google

Nagel, T.A., Diaci, J., 2006. Intermediate wind disturbance in an old-growth beech–fir forest in southeastern Slovenia. Can. J. For. Res. 36, 629–638. Cerca con Google

Nicholson, S.E., Davenport, M.L., Malo, A.R., 1990. A comparison of the vegetation response to rainfall in the Sahel and East-Africa, using normalized difference vegetation index from NOAA AVHRR. Clim. Change 17, 209–241. Cerca con Google

Ordonez, J.L., Franco, S., Retana, J., 2004. Limitation of the recruitment of Pinus nigra in a gradient of post-fire environmental conditions. Ecoscience 11, 296–304. Cerca con Google

Parr, C.L., Andersen, A.N., 2006. Patch mosaic burning for biodiversity conservation: a critique of the pyrodiversity paradigm. Conserv. Biol. 20, 1610–1619. Cerca con Google

Pausas, J.G., Ouadah, N., Ferrán, A., Gimeno, T., Vallejo, R., 2003. Fire severity and seedling establishment in Pinus halepensis woodlands, eastern Iberian Peninsula. Plant Ecol. 2, 205–213. Cerca con Google

Peck, J., 2010. Multivariate Analysis for Community Ecologists - step by step using PD-ORD, MJM Software. Cerca con Google

Reed, B.C., Brown, J.F., Vanderzee, D., Loveland, T.R., Merchant, J.W., Ohlen, D.O., 1994. Measuring phenological variability from satellite imagery. J. Veg. Sci. 5, 703–714. Cerca con Google

Retana, J., Espelta, J.M., Habrouk, A., Ordonez, J.L., de Sola-Morales, F., 2002. Regeneration patterns of three Mediterranean pines and forest changes after a large wildfire in northeastern Spain. Ecoscience 9, 89–97. Cerca con Google

Rondeaux, G., Steven, M., 1996. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment 55, 95-107. Cerca con Google

Rouvinen, S., Kuuluvainen, T., 2005. Tree diameter distributions in natural and managed old -dominated forests. Forest Ecology and Management 208, 45-61. Cerca con Google

Roy, D.P., Boschetti, L., Trigg, S.N., 2006. Remote Sensing of Fire Severity: Assessing the Performance of the Normalized Burn Ratio. IEEE Geoscience and Remote Sensing Letters 3, 112-116. Cerca con Google

Salvador, R., Valeriano, J., Pons, X., D ´az-Delgado, R., 2000. A semi-automatic methodology to detect fire scars in shrubs and evergreen forests with Landsat MSS time series. Int. J. Remote Sens. 4, 655–671. Cerca con Google

Schönenberger, W., 2001. Trends in mountain forest management in Switzerland. Schweizerische Zeitschrift für Forstwesen 152, 152–156. Cerca con Google

Schroeder, T., Wulder, M., Healey, S.P., Moisen, G.G., 2011. Mapping wildfire and clearcut harvest disturbances in boreal forests with Landsat time series data. Remote Sensing of Environment 115, 1421-1433. Cerca con Google

Smith, M.S., Lentile, L.B., Hudak, T., Morgan, P., 2007. Evaluation of linear spectral unmixing and ΔNBR for predicting post‐fire recovery in a North American ponderosa pine forest. International Journal of Remote Sensing 28, 5159-5166. Cerca con Google

Solans Vila, J.P., Barbosa, P., 2010. Post-fire vegetation regrowth detection in the Deiva Marina region (Liguria-Italy) using Landsat TM and ETM+ data. Ecological Modelling 221, 75-84. Cerca con Google

Spanos, I., Y Raftoyannis, G. Goudelis, E. Xanthopoulou, T. Samara, and A. Tsiontsis., 2005. Effects of postfire logging on soil and vegetation recovery in a Pinus halepensis Mill. forest of Greece. Plant and Soil 278:171–179. Cerca con Google

Statgraphics Centurion XVI, 2010. StatPoint technologies, Inc., Virginia, USA. Cerca con Google

Thies, W.G., Westlind, D.J., Loewen, M., Brennerm, G., 2006. Prediction of delayed mortality of fire damaged ponderosa pine following prescribed fires in eastern Oregon, USA. International Journal of Wildland Fire, 15, pp. 19–29. Cerca con Google

Thomas, P.A., Wein, R.W., 1985. The influence of shelter and the hypothetical effect of fire severity on the postfire establishment of conifers from seed. Can. J. For. Res. 15, 148–155. Cerca con Google

Tucker, C. J., Sellers, P. J., 1986. Satellite remote sensing of primary production. International Journal of Remote Sensing, 7, 1395−1416. Cerca con Google

van Wagtendonk JW, Root RR, Key CH, 2004. Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sensing of Environment 92, 397–408. Cerca con Google

Veraverbeke, S., Verstraeten, W.W., Lhermitte, S., Goossens, R., 2010. Evaluating Landsat Thematic Mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in Greece. International Journal of Wildland Fire 19, 558–569. Cerca con Google

Verstraete,M.M., Pinty, B., 1991. The potential contribution of satellite remote sensing to the understanding of arid lands processes. Plant Ecology 91: 1-2, 59–72. Cerca con Google

Volcani, A, Karnieli, A, Svoray, T., 2005. The use of remote sensing and GIS for spatio-temporal analysis of the physiological state of a semi-arid forest with respect to drought years. Forest Ecology and Management 215, 239-250. Cerca con Google

White, J. D., Ryan, K. C., Key, C., Running, S. W., 1996. Remote sensing of forest fire severity and vegetation recovery. International Journal of Wildland Fire, 6, 125–136. Cerca con Google

Wiegand, C. L., Richardson, A. J., Escobar, D. E., and Gerber- mann, A. H. (1991), Vegetation indices in crop assessments, Remote Sens. Environ. 35:105-119. Cerca con Google

Woodcock, C. E., Macomber S. A., Pax-Lenney M., Cohen W. B., 2001. Monitoring large areas for forest change using Landsat: Generalization across space, time and Landsat sensors, Remote Sens. Environ., 78, 194–203. Cerca con Google

Wulder, M., White, J.C., Alvarez, F., Han, T., Rogan, J., Hawkes, B., 2009. Characterizing boreal forest wildfire with multi-temporal Landsat and LIDAR data. Remote Sensing of Environment 113, 1540-1555. Cerca con Google

Wulder, M.A., Hall, R.J., Coops, N.C., Franklin, S.E., 2004. High spatial resolution remotely sensed data for ecosystem characterization. Bioscience 54, 511–521. Cerca con Google

Zlatanov, T., Velichkov, I., Lexer, M.J., Dubravac, T., 2010. Regeneration dynamics in aging black pine (Pinus nigra Arn.) plantations on the south slopes of the Middle Balkan Range in Bulgaria. New Forests 40, 289-303. Cerca con Google

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., Ab, W., 1998. Crop evapotranspiration - Guidelines for computing crop water requirements. Cerca con Google

Allison, S.D., Treseder, K.K., 2008. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology 14, 2898–2909. Cerca con Google

Amiro, B., Barr, a, Black, T., Iwashita, H., Kljun, N., Mccaughey, J., Morgenstern, K., Murayama, S., Nesic, Z., Orchansky, a, 2006. Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada. Agricultural and Forest Meteorology 136, 237–251. Cerca con Google

Beghin, R., Lingua, E., Garbarino, M., Lonati, M., Bovio, G., Motta, R., Marzano, R., 2010. Pinus sylvestris forest regeneration under different post-fire restoration practices in the northwestern Italian Alps. Ecological Engineering 36, 1365–1372. Cerca con Google

Bergner, B., Johnstone, J., Treseder, K.K., 2004. Experimental warming and burn severity alter soil CO2 flux and soil functional groups in a recently burned boreal forest. Global Change Biology 10, 1996–2004. Cerca con Google

Bernstein, L.S., Sundberg, R.L., Levine, R.Y., Perkins, T.C., Berk, A., 2005. A New Method for Atmospheric Correction and Aerosol Optical Property Retrieval for VIS-SWIR Multi- and Hyperspectral Imaging Sensors: QUAC (QUick Atmospheric Correction). Cerca con Google

Beschta, R.L., Rhodes, J.J., Kauffman, J.B., Gresswell, R.E., Minshall, G.W., Karr, J.R., Perry, D. a., Hauer, F.R., Frissell, C. a., 2004. Postfire Management on Forested Public Lands of the Western United States. Conservation Biology 18, 957–967. Cerca con Google

Bhattacharjee, J., Taylor, J.P., Smith, L.M., Spence, L.E., 2008. The Importance of Soil Characteristics in Determining Survival of First-Year Cottonwood Seedlings in Altered Riparian Habitats. Restoration Ecology 16, 563–571. Cerca con Google

Bodí, M.B., Mataix-Solera, J., Doerr, S.H., Cerdà, A., 2011. The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma 160, 599–607. Cerca con Google

Boulanger, Y., Sirois, L., 2006. Postfire dynamics of black spruce coarse woody debris in northern boreal forest of Quebec. Canadian Journal of Forest Research 36, 1770–1780. Cerca con Google

Boulanger, Y., Sirois, L., Hébert, C., 2011. Fire severity as a determinant factor of the decomposition rate of fire-killed black spruce in the northern boreal forest. Canadian Journal of Forest Research 41, 370–379. Cerca con Google

Breshears, D., Nyhan, J., Heil, C., Wilcox, B., 1998. Effects of woody plants on microclimate in a semiarid woodland: soil temperature and evaporation in canopy and intercanopy patches. International Journal of Plant Sciences 159, 1010–1017. Cerca con Google

Breshears, D.D., Ludwig, J.A., 2010. Near-ground solar radiation along the grassland–forest continuum: Tall-tree canopy architecture imposes only muted trends and heterogeneity. Austral Ecology 35, 31–40. Cerca con Google

Burles, K., Boon, S., 2011. Snowmelt energy balance in a burned forest plot, Crowsnest Pass, Alberta, Canada. Hydrological Processes 25, 3012–3029. Cerca con Google

Campbell, G.S., Norman, J.M., 1998. Introduction to Environmental Biophysics. Springer. Cerca con Google

Caplat, P., Lepart, J., Marty, P., 2006. Landscape patterns and agriculture: modelling the long-term effects of human practices on Pinus sylvestris spatial dynamics (Causse Mejean, France). Landscape Ecology 21, 657–670. Cerca con Google

Carroll, E.M., Miller, W.W., Johnson, D.W., Saito, L., Qualls, R.G., Walker, R.F., 2007. Spatial analysis of a large magnitude erosion event following a Sierran wildfire. Journal of environmental quality 36, 1105–11. Cerca con Google

Castro, J., Allen, C.D., Molina-Morales, M., Marañón-Jiménez, S., Sánchez-Miranda, Á., Zamora, R., 2011. Salvage Logging Versus the Use of Burnt Wood as a Nurse Object to Promote Post-Fire Tree Seedling Establishment. Restoration Ecology 19, 537–544. Cerca con Google

Castro, J., Zamora, R., 2004. Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: consequences of being in a marginal Mediterranean habitat. Journal of Ecology 92, 266–277. Cerca con Google

Cavalli, M.A., Tarolli, P.A., 2010. Application of LiDAR technology for rivers analysis. Italian Journal of Engineering Geology and Environment 1, 5–16. Cerca con Google

Chander, G., Markham, B.L., Helder, D.L., 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment 113, 893–903. Cerca con Google

Churkina, G., Running, S.W., Schloss, A.L., Intercomparison, T.P.O.T.P., 1999. Comparing global models of terrestrial net primary productivity (NPP): the importance of water availability. Global Change Biology 5, 46–55. Cerca con Google

Davidson, E.A., Verchot, L. V, Henrique, J., 2000. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia 53–69. Cerca con Google

DeBano, L., Neary, D., Ffolliott, P., 1998. Fire Effects on Ecosystems. Wiley. Cerca con Google

DeBano, L.., 2000. The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology 231-232, 195–206. Cerca con Google

De Chantal, M., Lilja-Rothsten, S., Peterson, C., Kuuluvainen, T., Vanha-Majamaa, I., Puttonen, P., 2009. Tree regeneration before and after restoration treatments in managed boreal Picea abies stands. Applied Vegetation Science 12, 131–143. Cerca con Google

Donato, D.C., Fontaine, J.B., Campbell, J.L., Robinson, W.D., Kauffman, J.B., Law, B.E., 2006. Post-wildfire logging hinders regeneration and increases fire risk. Science (New York, N.Y.) 311, 352. Cerca con Google

Drexler, J.Z., Snyder, R.L., Spano, D., Paw U, K.T., 2004. A review of models and micrometeorological methods used to estimate wetland evapotranspiration. Hydrological Processes 18, 2071–2101. Cerca con Google

Field, C.B., Lobell, D.B., Peters, H. a., Chiariello, N.R., 2007. Feedbacks of Terrestrial Ecosystems to Climate Change *. Annual Review of Environment and Resources 32, 1–29. Cerca con Google

Foley, J.A., Costa, M.H., Delire, C., Ramankutty, N., Snyder, P., 2003. Green Surprise? How Terrestrial Ecosystems Could Affect Earth’s Climate. Frontiers in Ecology and the Environment 1, 38. Cerca con Google

Frazer, G.W., 1999. Gap Light Analyzer ( GLA ): Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs. Cerca con Google

Gabet, E.J., Bookter, A., 2011. Physical, chemical and hydrological properties of Ponderosa pine ash. International Journal of Wildland Fire 20, 443–452. Cerca con Google

Gash, J.H.C., Nobre, C.A., 1997. Climatic effects of Amazonian deforestation: Some results from ABRACOS. Bulletin of the American Meteorological Society 78, 823–830. Cerca con Google

Germino, M.J., Smith, W.K., Resor, A.C., 2002. Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecology 162, 157–168. Cerca con Google

Ginzburg, O., Steinberger, Y., 2012. Salvage logging versus natural regeneration post-fire practices in a forest: Soil chemical and microbial aspects. Open Journal of Ecology 02, 29–37. Cerca con Google

Gracia, M., 2002. Mid-term successional patterns after fire of mixed pine–oak forests in NE Spain. Acta Oecologica 23, 405–411. Cerca con Google

Gray, A.N., Spies, T.A., 1997. Microsite controls on tree seedling establishment in conifer forest canopy gaps. Ecology 78, 2458–2473. Cerca con Google

Gray, A.N., Zald, H.S.J., Kern, R.A., North, M., 2005. Stand conditions associated with tree regeneration in Sierran mixed-conifer forests. Forest science 51, 198–210. Cerca con Google

Greene, D.F., Macdonald, S.E., Cumming, S., Swift, L., 2005. Seedbed variation from the interior through the edge of a large wildfire in Alberta. Canadian Journal of Forest Research 35, 1640–1647. Cerca con Google

Greene, D.F., Macdonald, S.E., Haeussler, S., Domenicano, S., Noël, J., Jayen, K., Charron, I., Gauthier, S., Hunt, S., Gielau, E.T., Bergeron, Y., Swift, L., 2007. The reduction of organic-layer depth by wildfire in the North American boreal forest and its effect on tree recruitment by seed. Canadian Journal of Forest Research 37, 1012–1023. Cerca con Google

Gutiérrez-Jurado, H., Vivoni, E.R., Harrison, J.B.J., Guan, H., 2006. Ecohydrology of root zone water fluxes and soil development in complex semiarid rangelands. Hydrological Processes 3316, 3289–3316. Cerca con Google

Hamman, S.T., Burke, I.C., Knapp, E.E., 2008. Soil nutrients and microbial activity after early and late season prescribed burns in a Sierra Nevada mixed conifer forest. Forest Ecology and Management 256, 367–374. Cerca con Google

Hardy, J.P., Melloh, R., Koenig, G., Marks, D., Winstral, a., Pomeroy, J.W., Link, T., 2004. Solar radiation transmission through conifer canopies. Agricultural and Forest Meteorology 126, 257–270. Cerca con Google

Harmon, M.E., Franlklin, J.F., Swanson, F.J., Sollins, P., Gregory, S.V., Lattin, J.D., Anderson, N.H., Cline, S.P., Aumen, N.G., Sedell, J.R., Lienkaemper, G.W., Cromack Jr., K., Cummins, K.W., 2004. Ecology of course woody debris in temperate ecosystems. Advances in Ecological Research 34, 59–234. Cerca con Google

Haskell, D.E., Flaspohler, D.J., Webster, C.R., Meyer, M.W., 2012. Variation in Soil Temperature, Moisture, and Plant Growth with the Addition of Downed Woody Material on Lakeshore Restoration Sites. Restoration Ecology 20, 113–121. Cerca con Google

Hay, J.E., 1976. A revised method for determining the direct and diffuse components of the total short‐wave radiation. Atmosphere 14, 278–287. Cerca con Google

Herr, D.G., Duchesne, L.C., Reader, R.J., 1999. Effects of soil organic matter, moisture, shading and ash on white pine (Pinus strobus L.) seedling emergence. New Forests 18, 219–230. Cerca con Google

Hille, M., Den Ouden, J., 2004. Improved recruitment and early growth of Scots pine (Pinus sylvestris L.) seedlings after fire and soil scarification. European Journal of Forest Research 123, 213–218. Cerca con Google

Holmgren, M., Scheffer, M., Huston, M.A., 1997. The interplay of facilitation and competition in plant communities. Ecology 78, 1966–1975. Cerca con Google

Huang, C., Wylie, B., Yang, L., Homer, C., Zylstra, G., 2002. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. International Journal of Remote Sensing 23, 1741–1748. Cerca con Google

Huxman, T., Wilcox, B., Breshears, D., 2005. Ecohydrological implications of woody plant encroachment. Ecology 86, 308–319. Cerca con Google

Jarčuška, B., 2008. Methodological overview to hemispherical photography, demonstrated on an example of the software GLA. Folia Oecologica 35, 1–4. Cerca con Google

Jonasson, S., Castro, J., Michelsen, A., 2006. Interactions between plants, litter and microbes in cycling of nitrogen and phosphorus in the arctic. Soil Biology and Biochemistry 38, 526–532. Cerca con Google

Jonasson, S., Michelsen, A., Schmidt, I.K., Nielsen, E. V., 1999. Responses in microbes and plants to changed temperature, nutrient, and light regimes in the arctic. Ecology 80, 1828–1843. Cerca con Google

Kempes, C., Myers, O., Breshears, D., 2008. Comparing response of Pinus edulis tree-ring growth to five alternate moisture indices using historic meteorological data. Journal of Arid 72, 350–357. Cerca con Google

Klopatek, J.M., Conant, R.T., Francis, J.M., Malin, R.A., Murphy, K.L., Klopatek, C.C., 1998. Implications of patterns of carbon pools and fluxes across a semiarid environmental gradient. Landscape and Urban Planning 39, 309–317. Cerca con Google

Kloss, S., Sass, O., Geitner, C., Prietzel, J., 2012. Soil properties and charcoal dynamics of burnt soils in the Tyrolean Limestone Alps. CATENA 99, 75–82. Cerca con Google

Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15, 259–263. Cerca con Google

Kustas, W., Choudhury, B., Moran, M., Reginato, R., Jackson, R., Gay, L., Weaver, H., 1989. Determination of sensible heat flux over sparse canopy using thermal infrared data. Agricultural and Forest Meteorology 44, 197–216. Cerca con Google

Kuuluvainen, T., Juntunen, P., 1998. Seedling establishment in relation to microhabitat variation in a windthrow gap in a boreal Pinus sylvestris forest. Journal of Vegetation Science 9, 551–562. Cerca con Google

Lampainen, J., Kuuluvainen, T., Wallenius, T.H., Karjalainen, L., Vanha-Majamaa, I., 2004. Long-term forest structure and regeneration after wildfire in Russian Karelia. Journal of Vegetation Science 15, 245-256. Cerca con Google

Lauenroth, W.K., Sala, O.E., Coffin, D.P., Kirchner, T., 1994. The Importance of Soil Water in the Recruitment of Bouteloua Gracilis in the Shortgrass Steppe. Ecological Applications 4, 741–749. Cerca con Google

Lawler, R.R., Link, T.E., 2011. Quantification of incoming all-wave radiation in discontinuous forest canopies with application to snowmelt prediction. Hydrological Processes 25, 3322–3331. Cerca con Google

Legras, E.C., Vander Wall, S.B., Board, D.I., 2010. The role of germination microsite in the establishment of sugar pine and Jeffrey pine seedlings. Forest Ecology and Management 260, 806–813. Cerca con Google

Leverkus, A.B., Puerta-Piñero, C., Guzmán-Álvarez, J.R., Navarro, J., Castro, J., 2012. Post-fire salvage logging increases restoration costs in a Mediterranean mountain ecosystem. New Forests 43, 601–613. Cerca con Google

Li, J., Islam, S., 1999. On the estimation of soil moisture profile and surface fluxes partitioning from sequential assimilation of surface layer soil moisture. Journal of Hydrology 220, 86–103. Cerca con Google

Liang, S., 2000. Narrowband to broadband conversions of land surface albedo I Algorithms. Remote Sensing of Environment 76, 213-238. Cerca con Google

Liston, G., 1995. Local advection of momentum, heat, and moisture during the melt of patchy snow covers. Journal of Applied Meteorology 34, 1705–1715. Cerca con Google

Marañón-Jiménez, S., Castro, J., Kowalski, a. S., Serrano-Ortiz, P., Reverter, B.R., Sánchez-Cañete, E.P., Zamora, R., 2011. Post-fire soil respiration in relation to burnt wood management in a Mediterranean mountain ecosystem. Forest Ecology and Management 261, 1436–1447. Cerca con Google

Matías, L., Castro, J., Zamora, R., 2011. Soil-nutrient availability under a global-change scenario in a Mediterranean mountain ecosystem. Global Change Biology 17, 1646–1657. Cerca con Google

McIver, J.D., Starr, L., 2001. A Literature Review on the Environmental Effects of Postfire Logging. Western Journal of Applied Forestry 16, 159–168. Cerca con Google

Mercalli, L., Cat Berro, D., 2003. Atlante climatico della Valle d’Aosta. SMS. Cerca con Google

Meyers, T., Hollinger, S., 2004. An assessment of storage terms in the surface energy balance of maize and soybean. Agricultural and Forest Meteorology 125, 105–115. Cerca con Google

Mlambo, D., Mwenje, E., Nyathi, P., 2007. Effects of tree cover and season on soil nitrogen dynamics and microbial biomass in an African savanna woodland dominated by Colophospermum mopane. Journal of Tropical Ecology 23, 437–448. Cerca con Google

Monin, A.S., Obukhov, A.M., 1959. Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk SSSR Geophiz. Inst. 24, 163–187. Cerca con Google

Monteith, J.L., Unsworth, M.H., 2008. Principles of Environmental Physics. Academic Press. Cerca con Google

Muneer, T., 2004. Solar Radiation and Daylight Models. Elsevier. Cerca con Google

Musselman, K.N., Molotch, N.P., Margulis, S.A., Kirchner, P.B., Bales, R.C., 2012. Influence of canopy structure and direct beam solar irradiance on snowmelt rates in a mixed conifer forest. Agricultural and Forest Meteorology 161, 46–56. Cerca con Google

Noss, F., Lindenmayer, D.B., 2006. Special Section: The Ecological Effects of Salvage Logging after Natural Disturbance. Conservation Biology 20, 946–948. Cerca con Google

Noss, R.F., Franklin, J.F., Baker, W.L., Schoennagel, T., Moyle, P.B., 2006. Managing fire-prone forests in the western United States. Frontiers in Ecology and the Environment 4, 481–487. Cerca con Google

Nye, P.H., Tinker, P.B., 1977. Solute Movement in the Soil-Root System. University of California Press. Cerca con Google

Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., Loumagne, C., 2005. Which potential evapotranspiration input for a lumped rainfall–runoff model? Journal of Hydrology 303, 290–306. Cerca con Google

Peel, M., Finlayson, B., McMahon, T., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11, 1633–1644. Cerca con Google

Pezzatti, G.B., Bajocco, S., Torriani, D., Conedera, M., 2009. Selective burning of forest vegetation in Canton Ticino (southern Switzerland). Plant Biosystems 143, 609–620. Cerca con Google

Pomeroy, J.W., Marks, D., Link, T., Ellis, C., Hardy, J., Rowlands, A., Granger, R., 2009. The impact of coniferous forest temperature on incoming longwave radiation to melting snow. Hydrological Processes 23, 2513–2525. Cerca con Google

Priestley, C., Taylor, R., 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly weather review 81–92. Cerca con Google

Promis, A., Butler-Manning, D., 2011. Comparison of four different programs for the analysis of hemispherical photographs using parameters of canopy structure and solar radiation transmittance. Waldokologie, landschaftsforschung und naturschulz 11, 19–33. Cerca con Google

Purdy, B.G., Macdonald, S.E., Dale, M.R.T., 2002. The regeneration niche of white spruce following fire in the mixedwood boreal forest. Silva Fennica 36, 289–306. Cerca con Google

Rich, P.M., 1989. A Manual for Analysis of Hemispherical Canopy Photography. Los Alamos National Laboratory Report LA-11733-M., Science. Cerca con Google

Rich, P.M., 1990. Characterizing plant canopies with hemispherical photographs. Remote Sensing Reviews 114, 95–29. Cerca con Google

Royer, P.D., Breshears, D.D., Zou, C.B., Cobb, N.S., Kurc, S. a., 2010. Ecohydrological energy inputs in semiarid coniferous gradients: Responses to management- and drought-induced tree reductions. Forest Ecology and Management 260, 1646–1655. Cerca con Google

Russel, E., 1988. Russell’s Soil Conditions and Plant Growth. Longman Sc & Tech. Cerca con Google

Sadler, E.J., Bauer, P.J., Busscher, W.J., Millen, J.A., 2000. Site-Specific Analysis of a Droughted Corn Crop : II. Water Use and Stress 92, 403–410. Cerca con Google

Santos, a. J.B., Silva, G.T.D. a., Miranda, H.S., Miranda, a. C., Lloyd, J., 2003. Effects of fire on surface carbon, energy and water vapour fluxes over campo sujo savanna in central Brazil. Functional Ecology 17, 711–719. Cerca con Google

Scharmer, K., Greif, J., 2000. The European Solar Radiation Atlas: Fundamentals and maps. Presses des MINES. Cerca con Google

Senay, G.B., Budde, M., Verdin, J.P., Melesse, A.M., 2007. A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields. Sensors 7, 979–1000. Cerca con Google

Serrano-Ortiz, P., Marañón-Jiménez, S., Reverter, B.R., Sánchez-Cañete, E.P., Castro, J., Zamora, R., Kowalski, a. S., 2011. Post-fire salvage logging reduces carbon sequestration in Mediterranean coniferous forest. Forest Ecology and Management 262, 2287–2296. Cerca con Google

Shuttleworth, W., 2007. Putting the’vap' into evaporation. Hydrology and Earth System Sciences 11, 210–244. Cerca con Google

Shuttleworth, W., Gurney, R., Hsu, A., Ormsby, J., 1989. FIFE: the variation in energy partition at surface flux sites. IAHS Publication 186, 67–74. Cerca con Google

Tsouni, A., Kontoes, C., Koutsoyiannis, D., Elias, P., Mamassis, N., 2008. Estimation of Actual Evapotranspiration by Remote Sensing: Application in Thessaly Plain, Greece. Sensors 8, 3586–3600. Cerca con Google

Ulery, A.L., Graham, R.C., 1993. Forest Fire Effects on Soil Color and Texture. Soil Science Society of America Journal 57, 135. Cerca con Google

Valese, E., Conedera, M., Vacik, H., Japelj, A., Beck, A., Cocca, G., Cvenkel, H., Di Narda, N., Ghiringhelli, A., Lemessi, A., Mangiavillano, A., Pelfini, F., 2011. Wildfires in the Alpine region : first results from the ALP FFIRS project, in: 5th International Wildland Fire Conference - South Africa. pp. 1–15. Cerca con Google

Verhoef, W., Bach, H., 2003. Remote sensing data assimilation using coupled radiative transfer models. Physics and Chemistry of the Earth, Parts A/B/C 28, 3–13. Cerca con Google

Verstraeten, W., Veroustraete, F., Feyen, J., 2008. Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors 8, 70–117. Cerca con Google

Walter, H., Breckle, S.-W., 2002. Walter’s Vegetation of the Earth: The Ecological Systems of the Geo-Biosphere. Springer. Cerca con Google

Wang, K., Liang, S., 2008. Estimation of Surface Net Radiation from Solar Shortwave Radiation Measurements, in: IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium. IEEE, pp. 483–486. Cerca con Google

Wang, K., Wang, P., Li, Z., Cribb, M., Sparrow, M., 2007. A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. Journal of Geophysical Research 112, 1–14. Cerca con Google

Wastl, C., Schunk, C., Lüpke, M., Cocca, G., Conedera, M., Valese, E., Menzel, A., 2013. Large-scale weather types, forest fire danger, and wildfire occurrence in the Alps. Agricultural and Forest Meteorology 168, 15–25. Cerca con Google

Whelan, R., 1995. The Ecology of Fire. Cambrige University Press. Cerca con Google

Winkler, R., 2011. Changes in snow accumulation and ablation after a fire in south-central British Columbia. Streamline Watershed Management Bulletin 14, 1–6. Cerca con Google

Winsa, H., Sahlén, K., 2001. Effects of Seed Invigoration and Microsite Preparation on Seedling Emergence and Establishment After Direct Sowing of Pinus sylvestris L. at Different Dates. Scandinavian Journal of Forest Research 16, 422–428. Cerca con Google

Wirth, C., Gleixner, G., Heimann, M., 2009. Old-Growth Forests: Function, Fate and Value, Ecological. ed, Biological Invasions. Springer. Cerca con Google

Yao, Y., Qin, Q., Ghulam, A., Liu, S., Zhao, S., Xu, Z., Dong, H., 2011. Simple method to determine the Priestley–Taylor parameter for evapotranspiration estimation using Albedo-VI triangular space from MODIS data. Journal of Applied Remote Sensing 5, 053505. Cerca con Google

Zar, J., 2009. Biostatistical analysis, 5th ed. Pearson International. Cerca con Google

Zhang, L.H., Chen, Y.N., Zhao, R.F., Li, W.H., 2010. Significance of temperature and soil water content on soil respiration in three desert ecosystems in Northwest China. Journal of Arid Environments 74, 1200–1211. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record